Cross-trait genetics in immune-mediated diseases

Chris Wallace 18 May 2020

♥ chr1swallace

☆ chr1swallace.github.io

James Liley

Stasia Grinberg

Olly Burren

Guillermo Reales

Shared genetics underpin the established co-occurence of IMD

Comparison of pairs of diseases: type 1 diabetes and celiac disease

For each disease, more "hits" were shared than unique

Compare one disease to many: Type 1 diabetes versus

Onengut et al, Nat Genet 2015

Compare many diseases, clustering lead SNPs

SNPs clustered by disease susceptibility patterns

Genes near clustered SNPs tended to be biologically related (help pick causal genes?)

Cotsapas et al, PLoS Genet 2011

Goals of cross-trait genetics

Transfer

Share resources, increase knowledge

Challenges for cross-trait genetics

Challenges for cross-trait genetics

Challenges for cross-trait genetics

Information borrowing

Association count is a function of sample size

GWAS catalog, Feb 2020

- ANCA-associated vasculitis + eosinophilia, asthma
- not all patients are ANCA positive
- considered a single disease
- incidence of 0.5-3.7 / million / year
- pan-European study collected 519 cases

ANCA positive (MPO)	161
ANCA negative	358
Controls	6717

Eosinophilic Granulomatosis with Polyangiitis (EGPA)

EGPA significance enriched at both asthma and eosinophilia associated variants

Reminder: EGPA prodrome: eosinophilia, asthma

EGPA | Eos count

EGPA | Asthma

Expected -log10(p value)

cFDR: Conditional false discovery rate

False discovery rate (FDR)

$$FDR(\alpha) = \Pr(H_0|p < \alpha) = \frac{\Pr(p < \alpha|H_0)\Pr(H_0)}{\Pr(p < \alpha)}$$

cFDR: Conditional false discovery rate

False discovery rate (FDR)

$$FDR(\alpha) = \Pr(H_0|p < \alpha) = \frac{\Pr(p < \alpha|H_0)\Pr(H_0)}{\Pr(p < \alpha)}$$

conditional false discovery rate (cFDR)

Two sets of GWAS P values:

- *p* from *test disease* (EGPA)
- *q* from *conditional trait* (asthma/eosinophil count)

$$cFDR(\alpha,\gamma) = \Pr(H_0|p < \alpha, q < \gamma) = \frac{\Pr(p < \alpha|q < \gamma, H_0)\Pr(H_0|q < \gamma)}{\Pr(p < \alpha|q < \gamma)}$$

Two solutions

1. Asymptotically, ratio of $FDR(\mathcal{L})/FDR(\mathcal{M})$ is bounded 2. Generate new *v* values: $Pr((p,q) \in \mathcal{L}|H_0)$

Liley & Wallace, PLOS Gen 2015, - Biorxiv 2019

cFDR identifies 7 additional associations for EGPA

	MPO+ EGPA	ANCA- EGPA	
Distinct associations	HLA-DQ	GPA33	
Shared associations	BCL2L11, TSLP		
<i>Conditional associations</i> Asthma Eosinophilia	IL5, BACH2, 10p14 (GATA3?) CDK6, SOCS1, LPP, TBX3		
Differential symptoms (%)			
Glomerulonephritis	29	9	
Neuropathy	79	57	
Treatment response (%)			
Rituximab response	80	38	

Conclusions

EGPA is polygenic
 Symptomatic
 differences between
 subtypes supported by
 genetics
 asthma, eosinophilia in
 EGPA driven (partly) by
 same mechanisms as in
 general population

Compress information across SNPs in same region

ImmunoChip: 11 IMD / 188 genetic regions

Disease	Study	Cases	Controls
Narcolepsy	Faraco	1,886	10,421
Psoriatic arthritis	Bowes	1,962	8,923
Autoimmune thyroid disease	Cooper	2,733	9,364
Juvenile arthritis	Hinks	2,816	13,056
Primary billiary cholangitis	Liu	2,861	8,514
Type 1 diabetes	Onengut	6,670	12,262
Coeliac disease	Trynka	10,413	8,274
Rheumatoid arthritis	Eyre	11,475	15,870
Systemic lupus erythmatosus	Langefeld	11,590	15,984
Ulcerative colitis	Liu	13,449	31,766
Multiple sclerosis	IMSGC	14,498	24,091
Crohn's disease	Liu	16,619	31,766

Colocalising more than two traits

moloc

Formally extends coloc pairwise likelihood to *n* traits, exponential increase in combinations limits utility beyond 3-4 traits *Giambartolomei et al. Bioinformatics 2018*

HyPrColoc

Can analyse 100s of traits, by deterministic collapse and clustering Foley et al, bioRxiv 592238

Use coloc posteriors as a distance measure

Use standard hierarchical methods to cluster traits according to a symmetric distance measure Takes advantage of recent extension to relax single causal variant assumption *Wallace, PLoS Genetics 2020*

Shared signals

Single ATD signal in TSHR region

THSR region

RA T1D JIA MS NAR PBC CEL PSO SLE CRO UC PSA

Overview

Overview

Informed dimension reduction and information borrowing

Aim: combine dimension reduction with information borrowing

- study genetics of diseases and subtypes too rare for standard GWAS
- pull apart IMD mechanisms

Learn IMD-relevant dimensions from larger GWAS

Disease	Study	Cases	Controls
Asthma	Demenais	19954	107715
Rheumatoid arthritis	Okada	14361	43923
Ulcerative colitis	de Lange	12366	33609
Crohn's disease	de Laange	12194	28072
Multiple sclerosis	IMSGC	9772	17376
Type 1 diabetes	Cooper	5913	8829
Primary sclerosing cholangitis	Ji	4796	19955
Coeliac disease	Dubois	4533	10750
Systemic lupus erythematosus	Bentham	4036	6959
IgA Nephropathy	Kiryluk	3952	2747
Vitiligo	Jin	2853	37405
Primary biliary cholangitis	Cordell	2764	10475
Latent autoimmune diabetes in adults	Cousminer	2634	8581

	T1D -	0.1	0.1	0.1	0.7	0.3	0.2	-0.2
its	RA -	0.02	0.02	0.1	0.6	0.3	0.2	-0.2
tra	SLE -	0.02	0.01	0	0.3	0.1	0.08	-0.07
Ited	PBC -	0.006	0.02	0.001	0.1	-0.003	-0.02	0.008
dia	CEL -	0.03	0.04	0.01	0.08	0.008	-0.02	0.01
-me	UC -	-0.002	-0.004	0.009	0.03	0.005	0.004	-0.005
ne-	PSC -	-0.09	-0.07	0.02	0.03	-0.04	0.006	0.01
mm	MS -	0.01	0.02	-0.04	0.02	-0.02	-0.03	0.02
E	asthma -	-0.007	-0.01	0.003	0.01	0.01	0.02	-0.01
	CD -	0.005	0.009	0.003	-0.2	-0.07	-0.06	0.06
GNP ² GNP ² GNP ² GNP ² GNP ² GNP ²								

300,000 SNPs

Principal components analysis to generate a new "basis"

UK Biobank	Cases
Vitiligo	154
Type 1 diabetes	286
Systemic lupus	
erythematosus	366
Multiple sclerosis	1,228
Coeliac disease	1,452
Ulcerative colitis	1,795
Crohn's disease	1,032
Rheumatoid arthritis	3,730
Asthma	39,049

Naive basis captures dataset, not disease

UKBB summary data: http://www.nealelab.is/uk-biobank

Solution: focus data before principal components analysis

Solution: focus data before principal components analysis

Solution: focus data before principal components analysis

Use fine mapping techniques to create a lens

Focused basis captures disease information

UK Biobank	Cases
Vitiligo	154
Type 1 diabetes	286
Systemic lupus	
erythematosus	366
Multiple sclerosis	1,228
Coeliac disease	1,452
Ulcerative colitis	1,795
Crohn's disease	1,032
Rheumatoid arthritis	3,730
Asthma	39,049

Projection of 310 UKBB traits, global test for significance

Idiopathic inflammatory myopathies

Weakness and inflammation of muscles, cause unknown HLA association established Incidence 2-7/million/year

subtype	n. cases
adult dermatomyositis	705
juvenile dermatomyositis	473
polymyositis	532

qqplot of IIM GWAS results

expected

qqplot of IIM GWAS results

qqplot of IIM GWAS results

Component 1: sero+/- / autoimmune/inflammatory disease

AAB O None II Non-pathogenic I Pathogenic

Component 3: serum IP-10 (CXCL10), MIG (CXCL9)

- secreted by epithelial and dendritic cells
- chemoattractants for CXCR3-expressing immune cells, including Th1
- Expression at site of autoimmune target previously implicated in the development of autoimmunity
- serum IP-10 raised in patients with recent-onset/more active autoimmune disease
- monoclonal antibody to IP-10, MDX1100, clinically effective in RA
- suggest IP-10 blockade might also be considered in patients with myasthenia gravis, JIA, AS, and sarcoidosis.

Component 13: raised eosinophil count

SNP selection + Eosinophil count p<10-8 + PC13 driver SNPs

Component 13: raised eosinophil count

SNP selection + Eosinophil count p<10-8 + PC13 driver SNPs

What if we started with blood cells?

A reduced dimension basis for blood cell count genetics

Check Project other blood cell GWAS (6000 Europeans [Ferreira]; 165,000 Japanese [Kanai])

Learn Blood cell GWAS in UKBB (173,000 individuals) (Astle)

Test Project IMD GWAS + UKBB summary stats

Astle et al, Cell 2016; Kanai et al, Nat Genet 2018; Ferreira et al, AmJHG 2009

PC3, PC5 relate most strongly to eosinophils

Study + Astle + Ferreira + Kanai

Study 🕴 Astle 🔸 Ferreira 🕴 Kanai

Differential association with IMD

Trait class 🔸 BMK 🔸 IMD

-

0.05

Trait class + BMK + IMD

Summary

What makes disease A, A? (and not B?)

Transfer knowledge from better studied disease (often to rare disease)

Transfer

Share resources, increase knowledge

Summary

- Relationships between IMD are complex
- *Exploiting* relationships particularly useful to analyse genetics of rare diseases
- Must be able to control for between-study noise
- Understanding relationships harder
- We would like to deal directly with the mediating phenotypes, but typically only proxy or composite measures available
- Expert domain knowledge required, joint analysis of disease and composite phenotypes may help

IMD basis (Burren et al): bioRxiv 2020.01.14.905869v3

Cook your own basis:
ollyburren/cupcake

Colocalisation update: Wallace, PLoS Gen 2020

coloc v4:

🐱 chr1swallace/coloc

IMD Basis App

Project your own data: https://grealesm.shinyapps.io/ IMDbasisApp/

Thanks to...

James Liley

Stasia Grinberg

Olly Burren

Guillermo Reales

Patients, families, study PIs who shared data

European Vasculitis Genetics Consortium

Ken Smith Paul Lyons

Frankfurt

Urs Christen

MYOGEN consortum Fred Miller Chris Amos Claire Deakin Lucy Wedderburn

