
Supplementary Material for “Bayesian Projected
Calibration of Computer Models”

A Proof of Theorem 1

We first present a classic result regarding convergence rate of the Matérn Gaussian process

regression from van der Vaart and Zanten (2011).

Theorem A.1. Suppose η is imposed the Matérn Gaussian process with a smoothness pa-

rameter α, and η0 ∈ Cα(Ω)∩Hα(Ω), where α > p/2. Then there exists some constant C > 0,

such that

E0

{∫
Ω

[
‖η − η0‖2

L2(Ω)

]
Π(dη | Dn)

}
≤ Cn−2α/(2α+p). (A.1)

The first assertion follows immediately from the Markov’s inequality:

E0

[
Π
(
‖η − η0‖L2(Ω) > Mnn

−α/(2α+p) | Dn
)]

≤ 1

M2
nn
−2α/(2α+p)

E0

{∫
Ω

[
‖η − η0‖2

L2(Ω)

]
Π(dη | Dn)

}
≤ C

M2
n

→ 0.

The posterior distribution of η can be expressed by

Π(η ∈ U | Dn) =

[∫
U

n∏
i=1

pη(yi,xi)

p0(yi,xi)
Π(dη)

][∫ n∏
i=1

pη(yi,xi)

p0(yi,xi)
Π(dη)

]−1

,

where p0(yi,xi) = ψσ(yi−η0(xi)) is the density of the true distribution. To prove the second

assertion, we need the following result from Xie et al. (2017) to bound the denominator of

the preceding display.

Lemma A.1. Assume the conditions of Theorem 1 hold. For any D > 0, define the event

Hn =

{∫ n∏
i=1

pη(yi,xi)

p0(yi,xi)
Π(dη) ≥ Π(‖η − η0‖L∞(Ω) < εn) exp

[
−
(
D +

1

σ2

)
nε2n

]}
.

Suppose (εn)∞n=1 is a sequence such that nε2n →∞ and εn → 0. Then P0(Hc
n)→ 0.

Since α > p/2, there exists some positive β such that β ∈ (max{α, p/2}, α). Define

εn = n−β/(2β+p). Since the Matérn Gaussian process assigns prior probability one to the
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space Cβ(Ω) (see, for example, section 3.1 in van der Vaart and Zanten, 2011), then the

Gaussian process prior on η can be regarded as a mean-zero Gaussian random element in

the Banach space Cβ(Ω) equipped with the β-Hölder norm ‖·‖Cβ(Ω). Therefore by the Borell’s

inequality (see, for example, Ghosal and van der Vaart, 2017) it holds that

Π

(
‖η‖Cβ(Ω) > 4x

[∫
‖η‖2

Cβ(Ω)Π(dη)

]1/2
)
≤ 2e−2x2

. (A.2)

for any positive x.

By Lemma 15 in van der Vaart and Zanten (2011) there exists a constant M̃ > 0 such

that ‖f‖L∞(Ω) ≤ M̃‖f‖p/(2β+p)
Cβ(Ω) ‖f‖2β/(2β+p)

L2(Ω) for any function f ∈ Cβ(Ω). Let s > 0 be a

constant determined later. Then{
‖η − η0‖L2(Ω) ≤Mnn

−α/(2α+p)
}
∩

{
‖η‖Cβ(Ω) ≤ 4s

√
nεn

[∫
‖η‖2

Cβ(Ω)Π(dη)

]1/2
}

⊂
{
‖η − η0‖L∞(Ω) ≤ M̃‖η − η0‖p/(2β+p)

Cβ(Ω) M2β/(2β+p)
n n−(2αβ)/[(2α+p)(2β+p)]

}
∩

{
‖η‖Cβ(Ω) ≤ 4s

√
nεn

[∫
‖η‖2

Cβ(Ω)Π(dη)

]1/2
}

⊂
{
‖η − η0‖L∞(Ω) ≤ M̃

(
‖η‖Cβ(Ω) + ‖η0‖Cβ(Ω)

)p/(2β+p)
M2β/(2β+p)

n n−2αβ/[(2α+p)(2β+p)]
}

∩

{
‖η‖Cβ(Ω) ≤ 4s

√
nεn

[∫
‖η‖2

Cβ(Ω)Π(dη)

]1/2
}

⊂
{
‖η − η0‖L∞(Ω) ≤M1M

2β/(2β+p)
n n−2αβ/[(2α+p)(2β+p)]np

2/[2(2β+p)2]
}

for some constant M1 > 0 depending on η0 only when n is sufficiently large. Note that

−α/(2α + p) < −β/(2β + p), then taking Mn = log n yields{
‖η − η0‖L∞(Ω) ≤M1M

2β/(2β+p)
n n−2αβ/[(2α+p)(2β+p)]np

2/[2(2β+p)2]
}

⊂
{
‖η − η0‖L∞(Ω) ≤M1(log n)2β/(2β+p)n−(2β2−p2/2)/(2β+p)2

}
⊂
{
‖η − η0‖L∞(Ω) ≤M

}
for some constant M > 0, where β > p/2 is applied. Since by the first assertion Π(‖η −

η0‖L2(Ω) ≤ Mnn
−α/(2α+p) | Dn) = 1 − oP0(1), it suffices to show that E0 [Π(Un | Dn)] → 0,
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where Un is the event

Un =

{
‖η‖Cβ(Ω) > 4s

√
nεn

[∫
‖η‖2

Cβ(Ω)Π(dη)

]1/2
}
.

The following argument is quite similar to that of Lemma 1 in Ghosal and van der Vaart

(2007) and is included here for completeness. Let Hn be defined as in Lemma A.1 with the

constant D be determined later. Then P0(Hc
n) → 0, and we directly compute by Fubini’s

theorem

E0 [Π (Un | Dn)] ≤ E0 [1(Hn)Π (Un | Dn)] + P0(Hc
n)

= E0

1(Hn)

[∫ n∏
i=1

pη(yi,xi)

p0(yi,xi)
Π(dη)

]−1 [∫
Un

n∏
i=1

pη(yi,xi)

p0(yi,xi)
Π(dη)

]+ o(1)

≤ exp[(D + 1/σ2)nε2n]

Π(‖η − η0‖L∞(Ω) < εn)

∫
Un

E0

[
n∏
i=1

pη(yi,xi)

p0(yi,xi)

]
Π(dη) + o(1)

≤ exp[(D + 1/σ2)nε2n]Π(Un)

Π(‖η − η0‖L∞(Ω) < εn)
+ o(1).

By Lemma 3 and Lemma 4 in van der Vaart and Zanten (2011) we have

Π(‖η − η0‖L∞(Ω) ≤ εn) ≥ exp
(
−Cε−p/αn

)
≥ exp

(
−Cnpβ/[α(2β+p)]

)
for some constant C > 0. Now take D = 1/(2σ2), s = 1/σ, and we conclude

E0{Π(Un | Dn)} ≤ exp

(
3

2σ2
nε2n + Cnpβ/[α(2β+p)]

)
Π(Un) + o(1)

≤ 2 exp

(
3

2σ2
nε2n + Cn(pβ/[α(2β+p)] − 2

σ2
nε2n

)
+ o(1)→ 0,

where the last inequality is due to (A.2) and the fact β < α.

B Proof of Lemma 1

We first prove the first assertion, i.e., the Taylor’s expansion of θ∗η with respect to η. Re-

call that θ∗η = arg minθ∈Θ ‖η(·) − ys(·,θ)‖2
L2(Ω). Since by condition A4 it is permitted to

interchange the differentiation with respect to θ and the integral, it follows that

0 =
∂

∂θ
‖η(·)− ys(·,θ)‖2

L2(Ω)

∣∣∣∣
θ=θ∗η

= −2

∫
Ω

[
η(x)− ys(x,θ∗η)

] ∂ys
∂θ

(x,θ∗η)dx.
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Now define the function F : F ×Θ→ Rq by

F(η,θ) = −2

∫
Ω

[η(x)− ys(x,θ)]
∂ys

∂θ
(x,θ)dx.

It follows immediately that F(η,θ∗η) = 0. The partial derivative of F with respect to θ is

given by

Fθ(η,θ) :=
∂

∂θ
F(η,θ) =

∫
Ω

{
∂2

∂θ∂θT
[η(x)− ys(x,θ)]2

}
dx,

and the partial Fréchet derivative of F with respect to η is a function Fη : F → Rq given by

[Fη(η,θ)](h) = −2

∫
Ω

h(x)
∂ys

∂θ
(x,θ)dx,

since F is linear with respect to η. Therefore by the implicit function theorem on Banach

space, there exists some ε > 0 such that over {η ∈ F : ‖η − η0‖L2(Ω) < ε}, the functional

θ∗η : η 7→ arg minθ∈Θ ‖η(·)− ys(·,θ)‖2
L2(Ω) is continuous, the Fréchet derivative θ̇∗η : F → Rq

for θ∗η exists, and can be computed by

θ̇∗η(h) = −
[
Fθ(η,θ

∗
η)
]−1 [

Fη(η,θ
∗
η)
]

(h) = 2V−1
η

∫
Ω

h(x)
∂ys

∂θ
(x,θ∗η)dx.

Therefore we obtain by the fundamental theorem of calculus and the mean-value theorem

that

θ∗η − θ∗0 =

∫ 1

0

d

du
θ∗η[u]du

=

∫ 1

0

θ̇∗η[u]

(
d

du
η[u]

)
du

= 2

∫ 1

0

V−1
η[u]

∫
Ω

[η(x)− η0(x)]
∂ys

∂θ
(x,θ∗η[u])dxdu

= 2

∫
Ω

[η(x)− η0(x)]V−1
η[u′]

∂ys

∂θ
(x,θ∗η[u′])dx,

where η[u] = η0 + (η− η0)u for 0 ≤ u ≤ 1 and u′ ∈ [0, 1]. By condition A3, we know that the

smallest eigenvalue λmin(Vη) of Vη is strictly positive in an L2-neighborhood of η0, and we

can without loss of generality require that inf‖η−η0‖L2(Ω)≤ε λmin(Vη) > 0. Hence we proceed

by condition A4 and Jensen’s inequality that

‖θ∗η − θ∗0‖ ≤ 2 sup
‖η−η0‖L2(Ω)≤ε

∥∥V−1
η

∥∥ sup
(x,θ)∈Ω×Θ

∥∥∥∥∂ys∂θ
(x,θ)

∥∥∥∥∫
Ω

|η(x)− η0(x)|dx
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≤ 2

[
inf

‖η−η0‖L2(Ω)≤ε
λmin(Vη)

]−1

sup
(x,θ)∈Ω×Θ

∥∥∥∥∂ys∂θ
(x,θ)

∥∥∥∥{∫
Ω

[η(x)− η0(x)]2dx

}1/2

= L(1)
η0
‖η − η0‖L2(Ω)

for some constant L
(1)
η0 > 0 depending on η0 only.

We now analyze the property of Vη as a functional {η ∈ F : ‖η−η0‖L2(Ω) < ε} →∈ Rq×q,

η 7→ Vη. For a matrix A ∈ Rq×q, denote [A]ij to be the (i, j)-th element of A. Directly

compute

[Vη]jk − [V0]jk = 2

∫
Ω

[
∂ys

∂θj
(x,θ∗η)

∂ys

∂θk
(x,θ∗η)−

∂ys

∂θj
(x,θ∗0)

∂ys

∂θk
(x,θ∗0)

]
dx

− 2

∫
Ω

{
[η(x)− ys(x,θ∗η)]

[
∂2ys

∂θj∂θk
(x,θ∗η)−

∂2ys

∂θj∂θk
(x,θ∗0)

]}
dx

− 2

∫
Ω

{
[η(x)− η0(x) + ys(x,θ∗0)− ys(x,θ∗η)]

∂2ys

∂θj∂θk
(x,θ∗0)

}
dx

:= 2V1 − 2V2 − 2V3.

For V1, by condition A4 we know that ∂ys/∂θ is Lipschitz continuous on Ω×Θ, and therefore

|V1| ≤
∫

Ω

∣∣∣∣∂ys∂θj
(x,θ∗η)

∣∣∣∣ ∣∣∣∣∂ys∂θk
(x,θ∗η)−

∂ys

∂θk
(x,θ∗0)

∣∣∣∣ dx

+

∫
Ω

∣∣∣∣∂ys∂θj
(x,θ∗η)−

∂ys

∂θj
(x,θ∗0)

∣∣∣∣ ∣∣∣∣∂ys∂θk
(x,θ∗0)

∣∣∣∣ dx

≤ sup
(x,θ)∈Ω×Θ

∥∥∥∥∂ys∂θ
(x,θ)

∥∥∥∥
[∥∥∥∥∂ys∂θk

(·,θ∗η)−
∂ys

∂θk
(·,θ∗0)

∥∥∥∥
L1(Ω)

+

∥∥∥∥∂ys∂θj
(·,θ∗η)−

∂ys

∂θj
(·,θ∗0)

∥∥∥∥
L1(Ω)

]

≤ 2 sup
(x,θ)∈Ω×Θ

∥∥∥∥∂ys∂θ
(x,θ)

∥∥∥∥ sup
(x,θ)∈Ω×Θ

∥∥∥∥ ∂2ys

∂θ∂θT
(x,θ)

∥∥∥∥ ‖θ∗η − θ∗0‖

. ‖η − η0‖L2(Ω).

Condition A4 also implies that ∂2ys/(∂θj∂θk) is Lipschitz continuous on Ω×Θ. Hence

|V2| .
∫

Ω

[|η(x)− η0(x)|+ |η0(x)− ys(x,θ∗η)]‖θ∗η − θ∗0‖dx

≤ L(1)
η0
‖η − η0‖L2(Ω)

{
2

∫
Ω

[η(x)− η0(x)]2dx + 2

∫
Ω

[η0(x)− ys(x,θ∗η)]2dx

}1/2

≤ L(1)
η0
‖η − η0‖L2(Ω)

(
2ε2 + 4‖η0‖2

L2(Ω) + 4 sup
θ∈Θ
‖ys(·,θ)‖2

L2(Ω)

)1/2
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. L(1)
η0
‖η − η0‖L2(Ω).

Now we consider V3:

|V3| ≤ sup
(x,θ)∈Ω×Θ

∣∣∣∣ ∂2ys

∂θj∂θk

∣∣∣∣ ∫
Ω

[|η(x)− η0(x)|+ |ys(x,θ0)− ys(x,θ∗η)|]dx

≤ sup
(x,θ)∈Ω×Θ

∣∣∣∣ ∂2ys

∂θj∂θk

∣∣∣∣
[
‖η − η0‖L2(Ω) + sup

(x,θ)∈Ω×Θ

∥∥∥∥∂ys∂θ
(x,θ)

∥∥∥∥ ‖θ∗η − θ∗0‖dx

]

≤ sup
(x,θ)∈Ω×Θ

∣∣∣∣ ∂2ys

∂θj∂θk

∣∣∣∣
[

1 + sup
(x,θ)∈Ω×Θ

∥∥∥∥∂ys∂θ
(x,θ)

∥∥∥∥L(1)
η0

]
‖η − η0‖L2(Ω).

We conclude that |[Vη]jk− [V0]jk| ≤ Cη0‖η−η0‖L2(Ω) for all j, k = 1, . . . , q for some constant

Cη0 > 0 depending on η0 only. By the fact that

q∑
j=1

|λj(A)− λj(B)| ≤ ‖A−B‖2
F

holds for any positive definite matrices A,B ∈ Rq×q (see, for example, Hoffman and Wielandt,

2003), we obtain

|λmin(Vη)− λmin(V0)| ≤ ‖Vη −V0‖2
F =

q∑
j=1

q∑
k=1

|[Vη]jk − [V0]jk|2 ≤ q2C2
η0
‖η − η0‖2

L2(Ω).

We may also assume without loss of generality that ε is sufficiently small such that |λmin(Vη)−

λmin(V0)| ≤ λmin(V0)/2 whenever ‖η − η0‖L2(Ω) ≤ ε, in which case it holds that ‖V−1
η ‖ ≥

2‖V−1
0 ‖. Hence ∥∥V−1

η −V−1
0

∥∥ =
∥∥V−1

0 (V0 −Vη)V
−1
η

∥∥
≤
∥∥V−1

0 ‖‖V0 −Vη‖‖V−1
η

∥∥
≤ 2

∥∥V−1
0

∥∥2 ‖Vη −V0‖F
≤ 2qCη0

∥∥V−1
0

∥∥ ‖η − η0‖L2(Ω)

whenever ‖η − η0‖L2(Ω) < ε. Hence

r(η, η0) = θ∗η − θ∗0 − 2

∫
Ω

[η(x)− η0(x)]V−1
0

∂ys

∂θ
(x,θ∗0)dx

= 2

∫
Ω

[η(x)− η0(x)]

[
V−1
η[u′]

∂ys

∂θ
(x,θ∗η[u′])−V−1

0

∂ys

∂θ
(x,θ∗0)

]
dx
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= 2

∫
Ω

[η(x)− η0(x)]

[
(V−1

η[u′] −V−1
0 )

∂ys

∂θ
(x,θ∗η[u′])

]
dx

+ 2

∫
Ω

[η(x)− η0(x)]V−1
0

[
∂ys

∂θ
(x,θ∗η[u′])−

∂ys

∂θ
(x,θ∗0)

]
dx,

and hence,

‖r(η, η0)‖ ≤ 2

∫
Ω

|η(x)− η0(x)|

[∥∥∥V−1
η[u′] −V−1

0

∥∥∥ sup
(x,θ)∈Ω×Θ

∥∥∥∥∂ys∂θ
(x,θ)

∥∥∥∥
]

dx

+ 2

∫
Ω

|η(x)− η0(x)|
[
‖V−1

0 ‖
∥∥∥∥∂ys∂θ

(x,θ∗η[u′])−
∂ys

∂θ
(x,θ∗0)

∥∥∥∥] dx

. ‖η − η0‖L2(Ω)q
2C2

η0
‖V−1

0 ‖‖η − η0‖L2(Ω) + ‖V−1
0 ‖‖η − η0‖2

L2(Ω),

implying that ‖r(η, η0)‖ ≤ L
(2)
η0 ‖η − η0‖2

L2(Ω) for some constant L
(2)
η0 depending on η0 only.

This completes the proof of the first assertion.

To prove the second assertion, note that if A1 and A3 hold for all η in an L2-neighborhood

U of η0, then for any η1 ∈ U , A1 and A3 hold for all η in an L2-neighborhood of η1 inside

U . Therefore, the first assertion can be applied to η1: For all η1 ∈ U , θ∗η is a continuous

functional of η at η = η1. Namely, θ∗η is a continuous functional of η ∈ U . Therefore,

M(U) = {(η,θ∗η) : η ∈ U} becomes the graph of this continuous functional. It follows

directly that the maps T1 : M(U) → U : (η,θ∗η) 7→ η and T2 : U → M(U) : η 7→ (η,θ∗η)

are continuous and invertible to each other. Therefore, the transition map T2 ◦ T−1
1 is the

identity on U , showing that M(U) is a Banach manifold.

C Proof of Lemma 2

Before proceeding, we introduce the notion of covering number for a metric space (X, d).

The ε-covering number of (X, d) for ε > 0, is the smallest number of ε-balls (with respect to

the metric d) that are needed to cover X.

Since η is imposed the Matérn Gaussian process with a smoothness parameter α, it

follows that the concentration function

ϕη0(ε) = inf
η1∈HΨα (Ω):‖η1−η0‖L∞(Ω)≤ε

1

2
‖η1‖2

HΨα (Ω) − log Π(‖η‖L∞(Ω) < ε)
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satisfies ϕη0(ε) ≤ Cε−p/α for some constant C > 0 for sufficiently small ε > 0. Then by

Theorem 2.1 in van der Vaart and van Zanten (2008), it holds that

Π(‖η − η0‖L∞(Ω) < εn) ≥ exp(−C2nε2n), (C.1)

where εn = n−α/(2α+p). Pick β > 0 such that β ∈ (max{α, p/2}, α). Then we know that

the Matérn Gaussian process GP(0,Ψα) assigns prior probability one to Cβ(Ω). Now set

Bn = εnC
1
β(Ω) +mnH1

Ψα
(Ω), where

C1
β(Ω) =

{
f ∈ Cβ(Ω) : ‖f‖Cβ(Ω) ≤ 1

}
, H1

Ψα(Ω) =
{
f ∈ HΨα(Ω) : ‖f‖HΨα (Ω) ≤ 1

}
,

mn is some sequence determined later, and HΨα(Ω) is the reproducing kernel Hilbert space

(abbreviated as RKHS) associated with the Matérn covariance function Ψα. Denote Φ to

be the cumulative distribution function of the standard normal distribution and set mn =

−2Φ−1(exp[−(2C + 1/σ2)nε2n]). Since η ∼ GP(0,Ψα) can be viewed as a Gaussian random

element in the Banach space Cβ(Ω) with the norm ‖ · ‖Cβ(Ω), then by the Borell’s inequality

(van der Vaart and van Zanten, 2008) we have

Π(Bn) ≥ Φ
(
Φ−1

(
exp

(
−Cnε2n

))
+mn

)
= Φ

(
Φ−1

(
exp

(
−Cnε2n

))
− 2Φ−1

(
exp

[
−
(

2C +
1

σ2

)
nε2n

]))
≥ Φ

(
−Φ−1

(
exp

[
−
(

2C +
1

σ2

)
nε2n

]))
= 1− exp

[
−
(

2C +
1

σ2

)
nε2n

]
.

Hence

Π(η ∈ Bcn) ≤ exp

[
−
(

2C +
1

σ2

)
nε2n

]
. (C.2)

Now we prove the first inequality using (C.1) and (C.2). Let Hn be defined as in Lemma

A.1. Denote Mn = log n. Then

E0[Π(Bcn | Dn)] ≤ E0[1(Hn)Π(Bcn | Dn)] + P0(Hc
n)

= E0

1(Hn)

[∫ n∏
i=1

pη(yi,xi)

p0(yi,xi)
Π(dη)

]−1 [∫
Bcn

n∏
i=1

pη(yi,xi)

p0(yi,xi)
Π(dη)

]+ o(1)
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≤ exp[(D + σ−2)nε2n]

Π(‖η − η0‖L∞(Ω) < εn)
Π(Bcn) + o(1)

≤ exp

[(
D +

1

σ2

)
nε2n + Cnε2n −

(
2C +

1

σ2

)
nε2n

]
+ o(1)

≤ exp
[
(D − C)nε2n

]
+ o(1).

Hence taking D = C/2 yields E0[Π(Bcn | Dn)]→ 0.

Finally we prove the second inequality involving the bracketing integral. Since HΨα(Ω) is

the RKHS of the Matérn covariance function with a smoothness parameter α, then HΨα(Ω)

coincides with the Sobolev space Hα+p/2(Ω) (see, for example, Corollary 1 of Tuo and Wu,

2016). The logarithm of the covering number of ρH1
Ψα

(Ω) is bounded by (Edmunds and

Triebel, 2008)

logN
(
ε, ρH1

Ψα(Ω), ‖ · ‖L∞(Ω)

)
.
(ρ
ε

)2p/(2α+p)

for sufficiently small ε > 0. The metric entropy for the α-Hölder space εnC
1
α(Ω) is also known

in the literature (see, for example, van der Vaart and Wellner, 1996):

logN
(
ε, εnC

1
β(Ω), ‖ · ‖L∞(Ω)

)
.
(εn
ε

)p/β
.

Hence for sufficiently small ε > 0,

logN (ε,Bn, ‖ · ‖L∞(Ω)) .
(mn

ε

)2p/(2α+p)

+
(εn
ε

)p/β
,

and it follows by simple algebra that

J[·](Mnεn,Bn, ‖ · ‖L2(Ω)) .
∫ Mnεn

0

√
logN

(
ε,Bn, ‖ · ‖L∞(Ω)

)
dε

. mp/(2α+p)
n (Mnεn)2α/(2α+p) + εp/2βn (Mnεn)(2β−p)/(2β)

�M2α/(2α+p)
n

√
nε2n +M (2β−p)/(2β)

n εn

.M2α/(2α+p)
n

√
nε2n

for sufficiently large n.
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D Proof of Lemma 3

Before proceeding, we establish the following fact: if (Wn)∞n=1 is a sequence of event such

that Π(Wn | Dn) = oP0(1), then∫
Wn

exp(`n(η)− `n(η0))Π(dη) = Π(Wn | Dn)

∫
exp(`n(η)− `n(η0))Π(dη)

= oP0(Dn), (D.1)

where

Dn :=

∫
exp(`n(η)− `n(η0))Π(dη).

Recall that the RKHS HΨα(Ω) of the Matérn Gaussian process with a smoothness pa-

rameter α > p/2 coincides with the Sobolev space Hα+p/2(Ω) (Wendland, 2004; Tuo and Wu,

2016), and the RKHS norm ‖ ·‖HΨα (Ω) is equivalent to the Sobolev norm ‖ ·‖Hα+p/2(Ω). Recall

the definition of the isometry U . Then under the prior distribution Π, for any h ∈ HΨα(Ω),

U(h) ∼ N
(

0, ‖h‖2
HΨα (Ω)

)
. Hence by Lemma 17 in Castillo (2012), for any measurable func-

tion T : C(Ω)→ R, any g, h ∈ HΨα(Ω), and any ρ > 0,

EΠ [1{|U(g)| ≤ ρ}T (η − h)]

= EΠ

{
1
[∣∣U(g) + 〈g, h〉HΨα (Ω)

∣∣ ≤ ρ
]
T (η) exp

[
U(−h)− 1

2
‖h‖2

HΨα (Ω)

]}
. (D.2)

Let εn = n−α/(2α+p). Denote A1n = {‖η − η0‖L2(Ω) ≤ Mnεn}, A2n = {‖η − η0‖L∞(Ω) ≤ M},

and take

g(x) = 2σ2tTV−1
0

∂ys

∂θ
(x,θ∗0), h(x) =

2σ2

√
n

tTV−1
0

∂ys

∂θ
(x,θ∗0).

Since U(g/‖g‖HΨα (Ω)) follows the standard normal distribution under the prior, it follows

that for sufficiently large L,

Π(Ccn) = Π

{∣∣∣∣U ( g

‖g‖HΨα (Ω)

)∣∣∣∣ > L
√
nεn

}
≤ 2 exp

(
−L

2
nε2n

)
.

Then by the proof of Lemma 2, we know that Π(Ccn | Dn) = oP0(1) by taking a sufficiently

large L. This completes the proof of the first assertion.
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Now we focus on proving the second assertion. Observe that∣∣〈g, h〉HΨα (Ω)

∣∣ =
4σ4

√
n

∥∥∥∥tTV−1
0

∂ys

∂θ
(·,θ∗0)

∥∥∥∥2

HΨα (Ω)

≤ 4σ4

√
n
‖V−1

0 t‖2

q∑
j=1

sup
θ∈Θ

∥∥∥∥∂ys∂θj
(·,θ)

∥∥∥∥2

HΨα (Ω)

= o(
√
nεn),

which implies that for sufficiently large n,{
|U(g)| ≤ (L/2)

√
nεn‖g‖HΨα (Ω)

}
⊂
{∣∣U(g) + 〈g, h〉HΨα (Ω)

∣∣ ≤ L
√
nεn‖g‖HΨα (Ω)

}
⊂
{
|U(g)| ≤ 2L

√
nεn‖g‖HΨα (Ω)

}
. (D.3)

On the other hand,

‖h‖L2(Ω) ≤
2qσ2

√
n
‖V−1

0 t‖ max
j=1,··· ,q

sup
θ∈Θ

∥∥∥∥∂ys∂θj
(·,θ)

∥∥∥∥
L2(Ω)

= o(εn),

implying that

A1n =
{
‖ηt − η0 + h‖L2(Ω) ≤Mnεn

}
⊂
{
‖ηt − η0‖L2(Ω) ≤Mnεn + ‖h‖L2(Ω)

}
⊂
{
‖ηt − η0‖L2(Ω) ≤ 2Mnεn

}
:= Au1n(t) (D.4)

for sufficiently large n, where the fact n−1/2 ≤ εn is applied. Similarly, for sufficiently large

n it holds that

A1n ⊃ {‖ηt − η0‖L2(Ω) ≤Mnεn/2} := Al1n(t). (D.5)

Similarly, by taking Al2n(t) = {‖ηt−η0‖L∞(Ω) ≤M/2} one can also show that Al2n(t) ⊂ A2n.

We break the rest of the proof into two components.

Step 1: We provide an upper bound for
∫
An∩Cn exp(`n(ηt)− `n(η0))Π(dη).

Write ∫
An∩Cn

exp(`n(ηt)− `n(η0))Π(dη)

≤
∫
1
{
|U(g)| ≤ L

√
nεn‖g‖HΨα (Ω)

}
1(Au1n(t)) exp(`n(ηt)− `n(η0))Π(dη).

We obtain the upper bound of the right-hand side of the last display using the change of

11



measure formulas (D.2), (D.3), and (D.4):∫
1
{
|U(g)| ≤ L

√
nεn‖g‖HΨα (Ω)

}
1(Au1n(t)) exp(`n(ηt)− `n(η0))Π(dη)

≤
∫
1
{∣∣U(g) + 〈g, h〉HΨα (Ω)

∣∣ ≤ L
√
nεn‖g‖HΨα (Ω)

}
1(‖η − η0‖L2(Ω) ≤ 2Mnεn)

× exp(`n(η)− `n(η0)) exp

[
U(−h)− 2σ4

n

∥∥∥∥tTV−1
0

∂ys

∂θ
(·,θ∗0)

∥∥∥∥2

HΨα (Ω)

]
Π(dη)

≤
∫
1
{
|U(g)| ≤ 2L

√
nεn‖g‖HΨα (Ω)

}
1(‖η − η0‖L2(Ω) ≤ 2Mnεn)

× exp(`n(η)− `n(η0)) exp

[
U

(
− g√

n

)]
Π(dη)

≤
∫
{‖η−η0‖L2(Ω)≤2Mnεn}

exp(`n(η)− `n(η0)) exp
(
2Lεn‖g‖HΨα (Ω)

)
Π(dη)

≤ [1 + o(1)]

∫
exp(`n(η)− `n(η0))Π(dη).

Therefore we conclude that∫
An

exp(`n(ηt)− `n(η0))Π(dη) ≤ [1 + oP0(1)]

∫
exp(`n(η)− `n(η0))Π(dη). (D.6)

Step 2: We provide a lower bound for
∫
An∩Cn exp(`n(ηt)− `n(η0))Π(dη).

Recall the construction of Bn in the proof of Lemma 2: Bn = εnC
1
β(Ω) +mnHΨα(Ω), where

C1
β(Ω) =

{
f ∈ Cβ(Ω) : ‖f‖Cβ(Ω) ≤ 1

}
, H1

Ψα(Ω) =
{
f ∈ HΨα(Ω) : ‖f‖HΨα (Ω) ≤ 1

}
,

and mn = −2Φ−1(exp[−(2C+ 1/σ2)nε2n]). Now take B̃n = εnC
1
β(Ω) + (3mn/4)HΨα(Ω). Then

again by the Borell’s inequality (van der Vaart and van Zanten, 2008) we have

Π(B̃n) ≥ Φ

(
Φ−1

(
exp

(
−Cnε2n

))
+

3mn

4

)
= Φ

(
Φ−1

(
exp

(
−Cnε2n

))
− 3

2
Φ−1

(
exp

[
−
(

2C +
1

σ2

)
nε2n

]))
≥ Φ

(
−1

2
Φ−1

(
exp

[
−
(

2C +
1

σ2

)
nε2n

]))
.

Using the facts that Φ−1(u) ≤ (−1/2)
√

log(1/u) for u ∈ (0, 1/2), 1−Φ(x) ≤ (1/2)e−x
2/2 for

sufficiently large x (see, for example, Lemma K.6 in Ghosal and van der Vaart, 2017), and
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nε2n →∞, we further lower bound the last display as follows:

Π(B̃n) ≥ Φ

(
−1

2
Φ−1

(
exp

[
−
(

2C +
1

σ2

)
nε2n

]))
≥ Φ

(
1

4

√(
2C +

1

σ2

)
nε2n

)
≥ 1− 1

2
exp

[
− 1

32

(
2C +

1

2σ2

)
nε2n

]
.

Then we conclude that Π(B̃n | Dn) = oP0(1) by following an argument that is similar to that

for proving Π(Bn | Dn) = oP0(1). Furthermore, for any η ∈ B̃n, there exists η1 ∈ C1
β(Ω) and

η2 ∈ HΨα(Ω) such that η = εnη1 + (3mn/4)η2. Consequently, if ηt ∈ B̃n, then

η = ηt + h = εn(ηt)1 + (3mn/4)(ηt)2 + h = εn(ηt)1 +mn

(
3(ηt)2

4
+

h

mn

)
.

Then we directly conclude that η ∈ Bn, namely, 1(ηt ∈ B̃n) ≤ 1(η ∈ Bn), by noting that∥∥∥∥3(ηt)2

4
+

h

mn

∥∥∥∥
Ψα(Ω)

≤ 3

4
‖ηt‖Ψα(Ω) +

1

mn

‖h‖Ψα(Ω) ≤ 1.

Now we turn to the computation of the desired lower bound. Write∫
An∩Cn

exp(`n(ηt)− `n(η0))Π(dη)

≥
∫
1
{
|U(g)| ≤ L

√
nεn‖g‖HΨ(Ω)

}
1(Al1n(t))1(Al2n(t))1(ηt ∈ B̃n) exp(`n(ηt)− `n(η0))Π(dη).

We lower bound the preceeding display using (D.2), (D.3), and (D.5):∫
1
{
|U(g)| ≤ L

√
nεn‖g‖HΨα (Ω)

}
1(Al1n(t))1(Al2n(t))1(ηt ∈ B̃n) exp(`n(ηt)− `n(η0))Π(dη)

=

∫
1
{∣∣U(g) + 〈g, h〉HΨα (Ω)

∣∣ ≤ L
√
nεn‖g‖HΨα (Ω)

}
1
{
‖η − η0‖L2(Ω) ≤Mnεn/2

}
× exp(`n(η)− `n(η0)) exp

[
U

(
− g√

n

)
− 2σ2

n

∥∥∥∥tTV−1
0

∂ys

∂θ
(·,θ∗0)

∥∥∥∥2

HΨα (Ω)

]
Π(dη)

≥
∫
1
{
|U(g)| ≤ (L/2)

√
nεn‖g‖HΨα (Ω)

}
1
{
‖η − η0‖L2(Ω) ≤Mnεn/2

}
× 1

{
‖η − η0‖L∞(Ω) ≤M/2

}
1

(
η ∈ B̃n

)
exp(`n(η)− `n(η0))

× exp

(
− 1√

n
|U (g)|

)
[1− o(1)]Π(dη)

≥ [1− o(1)]

∫
1
{
|U(g)| ≤ (L/2)

√
nεn‖g‖HΨα (Ω)

}
1
{
‖η − η0‖L2(Ω) ≤Mnεn/2

}
× 1

{
‖η − η0‖L∞(Ω) ≤M/2

}
1(B̃n) exp(`n(η)− `n(η0))Π(dη).
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Since Π(‖η − η0‖L2(Ω) > Mnεn/2 | Dn) = oP0(1), Π(B̃cn) = oP0(1), and for sufficiently large

L and M , Π(|U(g)| > (L/2)
√
nεn‖g‖HΨ(Ω) | Dn) = oP0(1), Π(‖η − η0‖L∞(Ω) > M/2 | Dn) =

oP0(1), the last display can be further computed∫
1
{
|U(g)| ≤ (L/2)

√
nεn‖g‖HΨα (Ω)

}
1
{
‖η − η0‖L2(Ω) ≤Mnεn/2

}
×
{
‖η − η0‖L∞(Ω) ≤M/2

}
1(B̃n) exp(`n(η)− `n(η0))Π(dη)

≥
∫

exp(`n(η)− `n(η0))Π(dη)−
∫
{
|U(g)|>(L/2)

√
nεn‖g‖HΨα

(Ω)

} exp(`n(η)− `n(η0))Π(dη)

−
∫
{‖η−η0‖L2(Ω)>Mnεn/2}

exp(`n(η)− `n(η0))Π(dη)−
∫
B̃n

exp(`n(η)− `n(η0))Π(dη)

−
∫
{‖η−η0‖L∞(Ω)>M/2}

exp(`n(η)− `n(η0))Π(dη)

=

∫
exp(`n(η)− `n(η0))Π(dη)− oP0(Dn).

Hence we conclude that∫
An

exp(`n(η)− `n(η0))Π(dη) ≥ [1− o(1)]

∫
exp(`n(η)− `n(η0))Π(dη)− oP0(Dn)

= [1− oP0(1)]

∫
exp(`n(η)− `n(η0))Π(dη). (D.7)

The proof is completed by combining (D.6) and (D.7).

E Proof of Corollary 2

The proof is similar to that of Corollary of Yang et al. (2015) and is included here for

completeness. For each k = 1, . . . , q, let the event A = R× . . .×As× . . .×R in Theorem 2,

where the sth component is As and the rest are R. Then it follows directly from Theorem 2

that

sup
As⊂R

∣∣∣∣Π ([θ∗η]k ∈ As ∣∣ Dn)− N

(
[θ̂L2 ]k,

4σ2

n
[V−1

0 WV−1
0 ]kk

)
(As)

∣∣∣∣ = oP0(1),

14



where [·]k is the kth component of the argument vector and [·]kk is the (k, k)th element of

the argument matrix. Now set As = (−∞, [θ̂∗]k]. It follows that∣∣∣∣Φ(√ n

4σ2[V−1
0 WV−1

0 ]kk

(
[θ̂∗]k − [θ̂L2 ]k

))
− 1

2

∣∣∣∣ = oP0(1),

where Φ is the cumulative distribution function (CDF) of the standard normal distribution.

By the continuity of Φ−1, we have [θ̂∗]k − [θ̂L2 ]k = oP0(1/
√
n). Invoking the asymptotic

normality of θ̂L2 completes the proof.

F Proof of Theorem 3

Before presenting the proof, we need several auxiliary Lemmas from Mairal (2013) and Li

and Orabona (2018).

Lemma F.1 (Mairal (2013), Lemma A.5). Let (at)t≥1, (bt)t≥1 be two non-negative real se-

quences such that bt’s are bounded,
∑∞

t=1 atbt converges and
∑∞

t=1 at diverges, and |bt+1−bt| .

at. Then bt → 0 as t→∞.

Lemma F.2 (Lemma 4, Li and Orabona (2018)). Let (at)
N
t=1 be a non-negative real sequences

such that a0 > 0, and β > 1. Then
∑N

t=1 at/(a0 +
∑t

j=1 at)
β ≤ (β − 1)−1a1−β

0 .

Lemma F.3 (Lemma 5, Li and Orabona (2018)). Assume conditions A2 and A4 hold, and

the sample path η is squared-integrable. Then the iterates of Algorithm 1 satisfy the following

inequality

Ew

[
N∑
t=1

〈
∂fη(θ

(t))

∂θ
,

q∑
k=1

αtk
∂fη(θ

(t))

∂θk

〉]

≤ fη(θ
(1))− fη(θ∗η) +

1

2
sup
θ∈Θ

∥∥∥∥∫
Ω

∂

∂θ
[ys(x,θ(t))− η(x)]2dx

∥∥∥∥
L2(Ω)

× Ew

{
N∑
t=1

q∑
k=1

α2
tk

[
∂

∂θk
(ys(wt,θ

(t))− η(wt))
2

]2
}

The proof is based on a modification of the Theorem 2 in Li and Orabona (2018), which

is provided here for completeness. Observe that by Lemma F.2, conditions A2 and A4, and
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the fact that η is continuous over Ω, we have,

∞∑
t=1

q∑
k=1

α2
tk

[
∂

∂θk
(ys(wt,θ

(t))− η(wt))
2

]2

=
∞∑
t=1

q∑
k=1

α2
(t+1)k

[
∂

∂θk
(ys(wt,θ

(t))− η(wt))
2

]2

+
∞∑
t=1

q∑
k=1

(α2
tk − α2

(t+1)k)

[
∂

∂θk
(ys(wt,θ

(t))− η(wt))
2

]2

≤ a2
0

2εb2ε
0

+ sup
(w,θ)∈Ω×Θ

max
1≤k≤q

∣∣∣∣ ∂∂θk [ys(wt,θ
(t))− η(wt)

]2∣∣∣∣2 ∞∑
t=1

q∑
k=1

(α2
tk − α2

(t+1)k)

≤ a2
0

2εb2ε
0

+ sup
(w,θ)∈Ω×Θ

max
1≤k≤q

∣∣∣∣ ∂∂θk [ys(wt,θ
(t))− η(wt)

]2∣∣∣∣2 α2
1k <∞.

Therefore, for any m ∈ N+, we obtain by Cauchy-Schwarz inequality that

‖θ(N+m) − θ(N)‖2 =

∥∥∥∥∥
N+m−1∑
t=N

(θ(t+1) − θ(t))

∥∥∥∥∥
2

≤ m
N+m−1∑
t=N

‖θ(t+1) − θ(t)‖2

≤ m
N+m−1∑
t=N

∥∥∥∥2[ys(wt,θ
(t))− η(wt)]diag(αt1, . . . , αtq)

∂ys

∂θ
(wt,θ

(t))

∥∥∥∥2

≤ m
N+m−1∑
t=N

q∑
k=1

α2
tk

∣∣∣∣ ∂∂θk [ys(wt,θ
(t))− η(wt)]

2

∣∣∣∣2 ,
and the previous infinite sum being finite implies that limN→∞ ‖θ(N+m)−θ(N)‖ = 0 a.s., i.e.,

(θ(N))N forms a Cauchy sequence, and thus must converges to some point θ∗ ∈ Θ a.s.. Note

that θ∗ is still a random variable.

Next we show that θ∗ is a stationary point of fη. We obtain, by Lemma F.3 and taking

N →∞ that

Ew

[
∞∑
t=1

q∑
k=1

αtk

(
∂fη(θ

(t))

∂θk

)2
]
≤ fη(θ

(1))− fη(θ∗η) +
1

2
sup
θ∈Θ

∥∥∥∥∫
Ω

∂

∂θ
[ys(x,θ(t))− η(x)]2dx

∥∥∥∥
L2(Ω)

× Ew

{
∞∑
t=1

q∑
k=1

α2
tk

[
∂

∂θk
(ys(wt,θ

(t))− η(wt))
2

]2
}
<∞.

Therefore,
∑∞

t=1 αtk[∂fη(θ
(t))/∂θk]

2 <∞ a.s., for all k = 1, . . . , q. In addition, observe that

sup
wt,θ(t)

∥∥∥∥2[ys(wt,θ
(t))− η(wt)]diag(αt1, . . . , αtq)

∂ys

∂θ
(wt,θ

(t))

∥∥∥∥
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≤ max
t,k

αtk sup
(x,θ)∈Ω×Θ

∥∥∥∥∂ys∂θ
(x,θ)

∥∥∥∥ sup
(x,θ)∈Ω×Θ

|2[ys(x,θ)− η(x)]| <∞.

Since by the construction of Algorithm 1, θ(t) ∈ Θ\∂Θ, we see that there exists an integer

m∗, such that for all t ∈ N+, the number of times that line 11 of Algorithm 1 is called is no

greater than m∗. This implies that

a0

2m∗

{
b0 +

t−1∑
j=1

[
∂g(wj,θ

(j))

∂θk

]2
}−(1/2+ε)

≤ αtk ≤ a0

{
b0 +

t−1∑
j=1

[
∂g(wj,θ

(j))

∂θk

]2
}−(1/2+ε)

for all t ∈ N+ and all k = 1, . . . , q, where g(x,θ) = [ys(x,θ)− η(wt)]
2. This further implies

that

∞∑
t=1

αtk ≥
a0

2m∗

∞∑
t=1

{
b0 + (t− 1) sup

(x,θ)∈Ω×Θ

[
∂g(wj,θ

(j))

∂θk

]2
}−(1/2+ε)

=∞.

Since condition A4 implies that almost surely,∣∣∣∣∂fη(θ(t+1))

∂θk
− ∂fη(θ

(t))

∂θk

∣∣∣∣ ≤ |θ(t+1)
k − θ(t)

k |
∫

Ω

sup
(x,θ)∈Ω×Θ

∂2

∂θ2
k

[ys(x,θ)− η(x)]2dx

≤ αtk sup
(x,θ)∈Ω×Θ

∣∣∣∣ ∂g∂θk g(x,θ)

∣∣∣∣ ∫
Ω

sup
(x,θ)∈Ω×Θ

∂2

∂θ2
k

[ys(x,θ)− η(x)]2dx

. αtk,

then by the facts that
∑∞

t=1 αtk[∂fη(θ
(t))/∂θk]

2 < ∞ a.s., and
∑∞

t=1 αtk = ∞, we invoke

Lemma F.1 to conclude that limN→∞ ∂fη(θ
(N))/∂θk = 0 a.s., for all k = 1, . . . , q. The

continuity of ∇fη(θ) and the almost sure convergence of θ(N) → θ∗ directly yield that

∇fη(θ∗) = 0 a.s., completing the proof.

G Proof of Theorem 4

The idea of the proof is based on the proof of Theorem 2 and a fine control between θ∗η and θ̃η.

By the proof of Lemma 1, there exists some ε > 0 such that over {η ∈ F : ‖η−η0‖L2(Ω) < ε},

the functional θ∗η : η 7→ arg minθ∈Θ ‖η(·)− ys(·,θ)‖2
L2(Ω) is continuous, the Fréchet derivative

θ̇∗η : F → Rq for θ∗η exists, and can be computed by

θ̇∗η(h) = −
[
Fθ(η,θ

∗
η)
]−1 [

Fη(η,θ
∗
η)
]

(h) = 2V−1
η

∫
Ω

h(x)
∂ys

∂θ
(x,θ∗η)dx.
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By Proposition 1 in Tuo and Wu (2015), ‖η̂ − η0‖L2(Ω) = OP0(n−α/(2α+p)), since the RKHS

HΨν coincides with Hα(Ω) for ν = α − p/2. Therefore, with probability tending to one,

‖η̂ − η0‖L2(Ω) < ε. We now assume this event occurs and denote it by En. Then similar to

the proof of Lemma 1, for any η in the L2(Ω)-neighborhood of η0 with radius ε, we apply

the fundamental theorem of calculus and mean-value theorem to obtain

θ∗η − θ̂L2 =

∫ 1

0

d

du
θ∗η[u]du = 2

∫
Ω

[η(x)− η̂(x)]V−1
η[u′]

∂ys

∂θ
(x,θ∗η[u′])dx,

where η[u] = η̂ + (η − η̂)u for 0 ≤ u ≤ 1 and u′ ∈ [0, 1]. Then following the same argument

in the proof of Lemma 1, we have, ‖θ∗η − θ̂L2‖ ≤ L
(1)
η0 ‖η− η̂‖L2(Ω) for some constant L

(1)
η0 > 0

depending on η0 only. Furthermore, ‖V−1
η − V−1

0 ‖ ≤ 2qCη0‖V−1
0 ‖‖η − η0‖L2(Ω) for some

constant Cη0 > 0 whenever ‖η − η0‖L2(Ω) < ε. Therefore, using a technique similar to that

in the proof of Lemma 1,

r(η, η̂) = θ∗η − θ̃η = θ∗η − θ̂L2 − 2

∫
Ω

[η(x)− η̂(x)] V−1
η̂

∂ys

∂θ
(x, θ̂L2)dx

= 2

∫
Ω

[η(x)− η̂(x)]

[
V−1
η[u′]

∂ys

∂θ
(x,θ∗η[u′])−V−1

η̂

∂ys

∂θ
(x, θ̂L2)

]
dx

= 2

∫
Ω

[η(x)− η̂(x)]

[
(V−1

η[u′] −V−1
0 + V−1

0 −V−1
η̂ )

∂ys

∂θ
(x,θ∗η[u′])

]
dx

+ 2

∫
Ω

[η(x)− η̂(x)](V−1
0 + V−1

η̂ −V−1
0 )

[
∂ys

∂θ
(x,θ∗η[u′])−

∂ys

∂θ
(x, θ̂L2)

]
dx,

and hence,

‖r(η, η̂)‖ ≤ 2

∫
Ω

|η(x)− η̂(x)|

[(∥∥∥V−1
η[u′] −V−1

0

∥∥∥+
∥∥∥V−1

η̂ −V−1
0

∥∥∥) sup
(x,θ)∈Ω×Θ

∥∥∥∥∂ys∂θ
(x,θ)

∥∥∥∥
]

dx

+ 2

∫
Ω

|η(x)− η̂(x)|
[(∥∥V−1

0

∥∥+
∥∥∥V−1

η̂ −V−1
0

∥∥∥)∥∥∥∥∂ys∂θ
(x,θ∗η[u′])−

∂ys

∂θ
(x, θ̂L2)

∥∥∥∥] dx

.
(
‖η[u′]− η0‖L2(Ω) + ‖η̂ − η0‖L2(Ω)

) ∫
Ω

|η(x)− η̂(x)|dx

+
(∥∥V−1

0

∥∥+ 2qCη0ε
) ∫

Ω

|η(x)− η̂(x)|dx sup
(x,θ)∈Ω×Θ

∥∥∥∥ ∂2ys

∂θ∂θT
(x,θ)

∥∥∥∥ ‖θ∗η[u′] − θ̂L2‖

.
(
‖η − η̂‖L2(Ω) + ‖η̂ − η0‖L2(Ω)

)
‖η − η̂‖L2(Ω) + ‖η − η̂‖2

L2(Ω)

. ‖η − η0‖2
L2(Ω) + ‖η̂ − η0‖2

L2(Ω).
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Recall that we use An = {‖η − η0‖L2(Ω) ≤ Mnεn} ∩ {‖η − η0‖L∞(Ω)} ∩ Bn in the proof of

Theorem 2 for Mn = log n and εn = n−α/(2α+p). Let Jn = {Dn : ‖η̂ − η0‖L2(Ω) ≤ Mnεn}.

Clearly, By the argument of the proof of Theorem 2, it suffices to show that∫
An∩Cn

exp
[
tT
√
n
(
θ̃η − θ̂L2

)]
Π(dη | Dn)→ exp

[
1

2
tT
(
4σ2V−1

0 WV−1
0

)
t

]
in P0-probability for any fixed vector t ∈ Rq. First observe that by the previous derivation,

for any Dn ∈ Jn,

sup
η∈An∩Cn

∣∣∣tT
√
n(θ̃η − θ∗η)

∣∣∣ ≤ √n‖t‖ sup
η∈An

(∥∥∥θ̃η − θ̂L2 − θ∗η + θ̂L2

∥∥∥) =
√
n‖t‖ sup

η∈An
‖r(η, η̂)‖

.
√
nM2

nε
2
n = (log n)2n−(α−p/2)/(2α+p) → 0.

Therefore, for any ε > 0,

P0

(
sup

η∈An∩Cn

∣∣∣tT
√
n(θ̃η − θ∗η)

∣∣∣ > ε

)
≤ P0(J c

n) + P0

(
sup
η∈An

∣∣∣tT
√
n(θ̃η − θ∗η)

∣∣∣ > ε,Dn ∈ Jn
)
→ 0.

Since ∫
An∩Cn

exp
[
tT
√
n(θ∗η − θ̂)

]
Π(dη | Dn) = exp

[
1

2
tT(4σ2V−1

0 WV−1
0 )t

]
+ oP0(1)

by the proof of Theorem 2, it follows that∫
An∩Cn

exp
[
tT
√
n(θ̃η − θ̂)

]
Π(dη | Dn)

=

∫
An∩Cn

exp
{

tT
√
n
[
(θ̃η − θ∗η) + (θ∗η − θ̂L2)

]}
Π(dη | Dn)

= (1 + oP0(1))

{
exp

[
1

2
tT(4σ2V−1

0 WV−1
0 )t

]
+ oP0(1)

}
→ exp

[
1

2
tT(4σ2V−1

0 WV−1
0 )t

]
in P0-probability. This completes the proof.

H Additional Numerical Results on KO Calibration

In this section we provide additional results regarding the computation issue of the classical

KO approach for calibrating computer models. Recall that Kennedy and O’Hagan (2001)

formulate the computer model calibration problem as the following statistical model:

η(x) = ys(x,θ) + δ(x),
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where η is the physical system, ys is the computer model involving the calibration parameter

θ, and δ is the discrepancy between them. Classical KO approach and the variations thereof

are built on the assumption that δ follows a Gaussian process prior δ ∼ GP(µ,Ψψ) for

some mean function µ : Ω → R and some covariance function Ψ(·, · | ψ) : Ω × Ω → R+

that is typically governed by a range parameter ψ, and θ follows some prior π(θ) based on

certain expert knowledge. It is routine in the Bayes literature to further impose a hyperprior

distribution π(ψ) on the range parameter ψ. For example, in Section 5 of the manuscript we

take π(ψ) to be the inverse-Gamma distribution. For simplicity we assume that µ is zero.

After collecting noisy physical observations yi = η(xi) + ei, ei
i.i.d.∼ N(0, σ2), the joint posterior

density of θ and ψ is

π(θ, ψ | Dn) ∝ π(θ)π(ψ)

det(Ψ(x1:n,x1:n | ψ) + σ2In)1/2

× exp

[
−1

2
(y − ysθ)T(Ψ(x1:n,x1:n | ψ) + σ2In)−1(y − ysθ)

]
, (H.1)

where ysθ = [ys(x1,θ), . . . , ys(xn,θ)]T and Ψ(x1:n,x1:n | ψ) = [Ψψ(xi,xj | ψ)]n×n.

In principle, posterior computation can be directly carried out by routinely drawing

samples of θ and ψ using Metropolis-Hastings algorithm. This could be cumbersome when

n is large, since each iteration of the algorithm requires inverting an n × n matrix. Here

we present an alternative strategy to reduce the computational complexity. Rather than

drawing ψ from the Markov chain, we propose to directly estimate ψ by maximizing the

posterior density (H.1), i.e., we seek to find the maximum a posteriori (MAP) estimate of

θ and ψ. In order for the MAP estimation to be valid, the hyperprior π(ψ) for the range

parameter needs to be carefully selected. We follow the suggestion of Gu (2018) and take

π(ψ) to be of the form

π(ψ) ∝
(
ψ + σ2

)aψ exp
[
−bψ(ψ + σ2)

]
(H.2)

for some aψ > −(p + 1) and bψ > 0. Eq. (H.2) is the one-dimensional version of the jointly

robust prior proposed in Gu (2018), and has been shown to yield valid MAP estimate of ψ

for Matérn covariance function.

Having an estimate ψ̂ of ψ by maximizing (H.1) with π(ψ) in (H.2), the posterior inference
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regarding θ can be conveniently carried out by Metropolis-Hastings scheme, and the precision

matrix (Ψ(x1:n,x1:n | ψ̂) + σ2In)−1 can be computed before the MCMC. As pointed out by

one of the reviewers, besides MCMC sampling, the normalizing constant in π(θ | Dn) can

also be computed by numerical integration method when Θ is low-dimensional. Namely, one

first computes

Z(ψ̂) =

∫
Θ

π(θ, ψ̂ | Dn)dθ

using numerical integration methods (e.g., quadrature method), and then obtain the exact

posterior density of θ via π(θ | Dn) = π(θ, ψ̂ | Dn)/Z(ψ̂). The posterior density of θ

obtained via numerical integration can serve as an auxiliary result to check the accuracy of

MCMC samples. In what follows we provide an illustrative numerical example.

We adopt the same simulation setup as that of configuration 1 in Section 5.1, and is

included here for readers’ convenience. The computer model is

ys(x,θ) = 7[sin(2πθ1 − π)]2 + 2[(2πθ2 − π)2 sin(2πx− π)],

and the physical system coincides with the computer model when θ∗0 = [0.2, 0.3]T, i.e.,

η0(x) = ys(x,θ∗0). The design space Ω is [0, 1], and the parameter space Θ for θ is [0, 0.25]×

[0, 0.5]. We simulate n = 50 observations from the randomly perturbed physical system

yi = η0(xi) + ei, where (xi)
n
i=1 are uniformly sampled from Ω, and the variance for the

noises (ei)
n
i=1 is set to 0.22. We follow the aforementioned strategy to compute ψ̂ and draw

1000 posterior samples from the MCMC after 1000 burn-in iterations. These post-burn-in

samples are collected every 10 iterations during the Markov chain. The comparison between

the posterior samples and the exact posterior density obtained via numerical integration is

visualized in Figure 1. It can be seen that the distribution of these MCMC samples are in

high accordance with the exact posterior density.

Furthermore, we compute the means, standard deviations, and covariance matrices of θ

using the drawn MCMC samples and the exact posterior density, respectively, and tabulate

them in Table 1. It can be seen that the results computed using MCMC samples are close to

their exact values, and there is no sign of non-accuracy occurring in these MCMC samples.
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KO Calibration with Numerical Integration

Figure 1: Visualization of the comparison of MCMC sampling and numerical integration
for posterior inference in KO method for configuration 1 in Section 5.1. The heatmap is
the posterior density of θ in KO method, the normalizing constant of which is computed
using the cubature numerical integration method; The orange scatter points are the samples
drawn from MCMC.

Table 1: Summary statistics comparison of MCMC sampling and numerical integration for
posterior inference in KO method for configuration 1 in Section 5.1.

MCMC Sampling Numerical Integration
θ θ1 θ2 θ1 θ2

Mean 0.2013 0.2982 0.2037 0.2984
Standard Deviation 0.0244 0.0048 0.0255 0.0052

Covariance Matrix 10−4 ×
[

5.91 −0.0354
−0.0354 0.23

]
10−4 ×

[
6.48 −0.0024
−0.0024 0.27

]
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