Supporting Information for

Catalytic membrane reactor of nano (Ag+ZIF-8) @ Poly(tetrafluoroethylene) built by deep-permeation synthesis fabrication

Yangmei Qin, Shizhao Jian, Ke Bai, Yuyang Wang, Zenghui Mai, Senqing Fan*,

Boya Qiu, Yu Chen, Yinan Wang, Zeyi Xiao*

School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan

Road, Chengdu 610065, China

*Corresponding author: mgch@scu.edu.cn, fansenqing86@scu.edu.cn

Figure S1. (A) Schematic illustration of the continuous catalytic reaction experiment,

(B) mechanism illustration of conversion of p-NA to p-PD via DPNS catalytic

membrane.

Figure S2. Particle size distribution of Ag+ZIF-8 NPs inside PTFE

Suspension synthesis of Ag+ZIF-8 particles

Briefly, a clear solution of Zn(NO₃)₂·6H₂O (9.2 g) in DI water (50 mL) was poured into another clear solution of H-MeIM (8.21 g) in DI water (50 mL) under stirring for 30 min. The clear solution turned milky white and showed suspended particles. The as-prepared ZIF-8/water suspension was centrifuged and washed with fresh water for three times to remove residues of unreacted reagents and by-products. The product was dried at 70 °C overnight in a vacuum drying oven ¹. Similarly, 100 mg of pretreated ZIF-8 was dispersed in 10 mL of DI water under ambient conditions, to which 10 mL of AgNO₃ (100 mg) aqueous solution was added under vigorous stirring. The desolvated ZIF-8 was stirred with AgNO₃ aqueous solution for 20 min. Then, 20 ml NaBH₄ (37.8 mg) aqueous solution was added dropwise under vigorous stirring for the complete reduction of Ag⁺. The solid was recovered by filtration and thoroughly washed by water after over 30 min stirring. The sample was finally dried in a vacuum drying oven at room temperature for further use.

Figure S3A showed low magnification TEM image of ethanol-based Ag+ZIF-8 suspensions, which indicated the particle size about 30–50 nm. Those individual particles were agglomerated. The high-resolution TEM (HRTEM) image of Ag+ZIF-8 can be found in Figure S3B. ZIF-8 displayed a mesoporous structure, as mentioned in previous reports ^{2, 3}. Figure S3B exhibited the crystal lattice fringes of Ag+ZIF-8, with the d-spacing of 0.201 nm and 0.242 nm correspond to the crystal plane of Ag (200) and Ag (111), which were close to the d spacing of the (200) and (111) plane of metallic Ag (Joint Committee on Powder Diffraction Standards 040783 File Card) ⁴.

The HRTEM image proved that the Ag and ZIF-8 crystals could coexist. If we consider the membrane pore as a microreactor, the similar individual Ag+ZIF-8 crystal could be obtained. In combination with the other characterizations described above, it can be judged that the Ag was combined with the outer sphere of the ZIF-8 in some way.

Figure S3. TEM image of Ag+ZIF-8 particles (A), HRTEM image of Ag+ZIF-8

particles (B).

Figure S4. High-resolution XPS spectra of Zn 2p (A), Ag 3d (B)

Figure S5. UV-vis absorption spectra of the p-NA solution (1 mM) reduced by

NaBH₄ in different v (ml cm² min⁻¹).

Samples	Ag content (wt %)
(Ag+ZIF-8)@PTFE before catalysis	6.96
(Ag+ZIF-8)@PTFE after deactivation	6.27
Ag@PTFE	0.59

Table S1. Ag content of three catalytic membranes by ICP analysis

Ag-based catalysts	Concentration of p-NA (mM)	NaBH ₄ (mM)	Temperature °C	R	k_{app} (min ⁻¹)	ref
Silver-doped magnetic	1	30	Room	100%, 4min	1.110	5
nanoparticles			temperature			
AgNPs on porous	1	30	50	100%, 10min	0.426	6
glass filters						
Ag-p(NiPA-co-AAc)	0.05	10	23	100%,13min	0.415	7
Hybrid Microgels						
AgNPs/T. indica seed	1	50	Not mentioned	100%, 10min	0.373	8
coat extract						
Ag-Cu nanoshells	0.01	50	Room	100%, 21min	0.12	9
			temperature			
Ag-Au nano-alloy	2	150	Not mentioned	87.2%, 20min	0.038	10
Ag nanoclusters	0.2	100	Room	100%, 12min	0.315	11
@MIL-101(Fe)			temperature			
Ag- poly(N-	0.09	18	22	100%, 11min	0.244	12
isopropylacrylamide-						
acrylicacid-						
acrylamide) microgels						
Ag rhombic	0.1	0.4(NH ₃ ·	50	100%, 1 hour	Not	13
dodecahedra		BH3)			mentioned	
(Ag+ZIF-8)@PTFE	1	200	Room	100%	1128	This
DPNS			temperature	0.015 min		work
(Ag+ZIF-8)@PTFE	0.06	12	Room	100%	991.89	This
DPNS			temperature	0.007 min		work

Table S2. Comparison of p-NA catalytic activities of several Ag-Based systems

REFERENCES

Pan, Y.; Liu, Y.; Zeng, G.; Zhao, L.; Lai, Z. Rapid synthesis of zeolitic
 imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. *Chem. Commun.* 2011, 47, 2071–2073.

(2) Fan, G.; Zheng, X.; Luo, J.; Peng, H.; Lin, H.; Bao, M.; Hong, L.; Zhou, J. Rapid synthesis of Ag/AgCl@ZIF-8 as a highly efficient photocatalyst for degradation of acetaminophen under visible light. *Chem. Eng. J.* **2018**, *351*, 782–790.

(3) Zhang, Y.; Li, Q.; Liu, C.; Shan, X.; Chen, X.; Dai, W.; Fu, X. The promoted effect of a metal-organic frameworks (ZIF-8) on Au/TiO₂ for CO oxidation at room temperature both in dark and under visible light irradiation. *Appl. Catal.*, *B* 2018, 224, 283–294.

(4) Madasu, M.; Hsieh, P-L.; Chen, Y-J.; Huang, M. H. Formation of Silver
Rhombic Dodecahedra, Octahedra, and Cubes through Pseudomorphic Conversion of Ag₂O Crystals with Nitroarene Reduction Activity. *ACS Appl. Mater. Interfaces*2019, *11*, 38039–38045.

(5) Chen, H-F.; Hung, M-J.; Hung, T-H.; Tsai, Y-W, Su, C-W.; Yang, J.; Huang,
G.G. Single-Step Preparation of Silver-Doped Magnetic Hybrid Nanoparticles for the
Catalytic Reduction of Nitroarenes. *ACS Omega* 2018, *3*, 3340–3347.

(6) Lin, H-L.; Sou, N-L.; Huang, G. G. Single-step preparation of recyclable silver nanoparticle immobilized porous glass filters for the catalytic reduction of nitroarenes. *RSC Adv.* **2015**, *5*, 19248–19254.

(7) Farooqi, Z. H.; Ijaz, A.; Begum, R.; Naseem, K.; Usman, M.; Ajmal, M.; Saeed,
U. Synthesis and Characterization of Inorganic–Organic Polymer Microgels for
Catalytic Reduction of 4-Nitroaniline in Aqueous Medium. *Polym. Compos.* 2018, *39*, 645–653.

(8) Edison, T. N. J. I.; Sethuraman, M.G.; Lee, Y. R. NaBH4 reduction of ortho and para-nitroaniline catalyzed by silver nanoparticles synthesized using Tamarindus indica seed coat extract. *Res. Chem. Intermed.* **2016**, *42*, 713–724.

(9) Chen, L.; Hu, P.; Peng, Y.; Lu, J. E.; Rojas-Andrade, M. D.; Chen, S. Silver– Copper Hollow Nanoshells as Phase-Transfer Reagents and Catalysts in the Reduction of 4-Nitroaniline. *Part. Part. Syst. Char.* **2017**, *34*, 1600358.

(10)Emam, H. E.; El-Zawahry, M. M.; Ahmed, H. B. One-pot fabrication of AgNPs, AuNPs and Ag-Au nano-alloy using cellulosic solid support for catalytic reduction application. *Carbohydr. Polym.* **2017**, *166*, 1–13.

(11) Islam, D. A.; Chakraborty, A.; Acharya, H. Fluorescent silver nanoclusters (Ag NCs) in the metal–organic framework MIL-101(Fe) for the catalytic hydrogenation of 4-nitroaniline. *New. J. Chem.* 2016, *40*, 6745–6751.

(12)Begum, R.; Naseem, K.; Ahmed, E.; Sharif, A.; Farooqi, Z. H. Simultaneous catalytic reduction of nitroarenes using silver nanoparticles fabricated in poly(N-isopropylacrylamide-acrylicacid-acrylamide) microgels. *Colloids Surf., A* **2016**, *511*, 17–26.

(13) Madasu, M.; Hsieh, P-L.; Chen, Y-J.; Huang, M. H. Formation of Silver
Rhombic Dodecahedra, Octahedra, and Cubes through Pseudomorphic Conversion of
Ag₂O Crystals with Nitroarene Reduction Activity. *ACS Appl. Mater. Interfaces* **2019**, *11*, 38039–38045.