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This e-companion contains four sets of supporting materials for the main paper. §EC.1 provides

algorithmic treatments to handle key market implementation issues. §EC.2 examines effects of

active market intermediation on market performance and the dealer’s wealth under the controlled

market experiment. §EC.3 studies market liquidity and heterogeneous market participation in a

randomized market environment. §EC.4 includes proofs of Lemmas and Corollaries.

EC.1 Algorithmic Treatment to Market Implementation

There are several implementation challenges when adapting the original BTM algorithm to the

asynchronous market trading environment under the dealer’s active market intervention and agent

learning. The first is premature market closure. The second is cycling.

EC.1.1 Premature Market Closure

In the extended BTM mechanism, three new factors that are related to agents and the dealer’s

behavior may lead to premature market closure: the dealer’s active inventory policy, asynchronous

communication and agent learning.

Since the dealer does not engage in production, her inventory holding aims to temporarily

balance buying and selling pressures in the market. At some point, the dealer has to switch to

the naïve inventory policy to possibly release all of her inventory to agents for their efficient use.

To time the switch, we define the moving average price norm (MAPN) in round R as MAPNR =

1
5
∑R

t=R−4 ‖pt − pt−1‖, R ≥ 5. When MAPN is smaller than a pre-specified threshold level (which

we set as 1) the dealer switches to the NA inventory policy. The rationale for this is that usually

market prices vary significantly in initial rounds of market trading but tend to stabilize as the market
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converges. The aggregate price variation decreases non-monotonically over time. We impose the

condition of 5 rounds to ensure that the dealer won’t switch her inventory policy too early after

observing relatively stable market prices in early rounds due to the lack of active trades.

In the asynchronous market trading environment agents may not be able to participate in each

round of market trading due to communication cost or other considerations. In order to prevent

premature market closure, the dealer has periodic contact with an inactive agent to make sure they

won’t be inactive forever. Specifically, define the periodic contact cycle length as Xj so that the

dealer will communicate with Agent j if she finds the agent is inactive for Xj rounds.

The reason that agent learning may lead to premature market closure is because of forecast error.

If an agent’s forecasted market prices do not agree with the equilibrium market clearing prices, the

agent may choose different bundles (in contrast to “correct” bundles under the true equilibrium

prices) or simply not be interested in submitting any new bundles based on his distorted market

information. The latter may trigger the algorithm stopping condition therefore directly affecting

full preference elicitation.

We distinguish two types of learning strategies. The first type is myopic learning, under which

an agent just uses the most recently observed market price as a proxy for the future market price.

Any other more sophisticated learning models, such as those that adopt historical time series data

to estimate future market movement, belong to the second type of strategy which we call forecast

learning.

The following Lemmas ensure an effective algorithmic treatment to guarantee market conver-

gence to an optimal solution under these two types of learning strategies. Proofs of all Lemmas are

in Section EC.4.

Lemma 4. (Convergence under Myopic Learning) Under a myopic learning strategy, if an agent’s

communication frequency is Pj, for j = 1, ..., k, and the dealer contacts the agent with the current

market prices if the agent is inactive for Xj ≥ 1/Pj rounds, then the market converges to an

equilibrium allocation if there are no new orders in X ≥ 2max(X1, ..., Xk) rounds.

Lemma 5. (Convergence under Forecast Learning) Under a forecast learning strategy, suppose an

agent’s communication frequency is Pj, for j = 1, ..., k, and the dealer contacts the agent with the

current market prices if the agent is inactive for Xj ≥ 1/Pj rounds. When there are no new orders

in X ≥ 2max(X1, ..., Xk) rounds, all agents are called and they use the current market prices in
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their bundle selection. If there are no new orders upon the market call, then the market converges

to an equilibrium allocation.

EC.1.2 Cycling

Cycling is a situation where the same agent bundles are repeatedly submitted and settlements

among several agents, possibly involving the dealer, return to earlier points of market allocation.

We can show that the following treatment can effectively deal with potential cycling.

Lemma 6. (Anti-Cycling) In a non-value-added trading round, if only one agent has a positive

trade (either a match from the dealer’s inventory or matches among its own bundles), then void

the transaction; if more than one agent trades, and the dealer’s inventory repeats a previous level

in the oscillation list, then freezing the dealer’s inventory provision until the next new order by

non-excluded agents prevents cycling.

We assume that the dealer does not honor a non-value-added trade if she is the only counter-

party in the transaction or if the agent trades with himself, but does honor a non-value-added trade

if other agents are involved as the counter-parties. With the anti-cycling treatment, the market

monotonically improves the system allocation toward an optimal solution after each profitable trade.

EC.2 Effects of Active Market Intermediation

To gain further insight about how the dealer’s inventory policies would lead to different market

outcomes, we conducted paired t-tests under different levels of agent asynchronous communication

and learning models. We selectively present results under the learning model L = MA. Table EC.1

shows the preferred inventory policies based on two criteria: market performance and the dealer’s

profit.

There are several interesting observations regarding market performance. First, no significant

market performance differences were observed when the market communication is highly asymmetric

and asynchronous (L=MA, P=0.2, 0.5). This is probably due to the difficulty of matching bundles

when agents cannot coordinate timing of their decision-making to facilitate trades among themselves.

In addition, complexity of the trading environment such as large bundle size and large number

of agents contributes to the difficulty of market matching. This is evident by the statistically

indifferent policy implication under the 50 agents 8 shared resource markets. The complicated

trading process makes the market convergence paths highly unpredictable. So no inventory policy
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Table EC.1: Preferred Inventory Policies Based on Market Performance and Dealer Wealth: O = 0
P Market Performance Dealer’s Profit

m=2 m=8 m=2 m=8

k=10 k=50 k=10 k=50 k=10 k=50 k=10 k=50

P=0.2 − − − − − NA�FISS∗ NA�FISS∗∗∗ NA�(FI)SS∗∗∗

NA�FISP∗∗∗ NA�FISP∗∗∗

SP�FISP∗∗ FISS�SS∗∗∗

SP�FISP∗∗∗

P=0.5 − − − − NA�SS∗ NA�(FI)SS∗∗ NA�(FI)SS∗∗∗ NA�(FI)SS∗∗∗

FISS�SS∗ NA�FISP∗∗∗ NA�FISP∗∗∗

FISS�SS∗∗∗ FISS�SS∗∗∗

SP�FISP∗∗ SP�FISP∗∗∗

P=0.8 NA�(FI)SS∗ − NA�SP∗ − NA�SS∗ − NA�(FI)SS∗∗∗ NA�(FI)SS∗∗∗

FISS�SS∗ NA�FISP∗∗∗ NA�FISP∗∗∗

FISS�SS∗∗∗ FISS�SS∗∗∗

SP�FISP∗∗ SP�FISP∗∗∗

P=1 NA�All∗ NA�SS∗∗∗ NA�SS∗∗ − NA�SS∗∗∗ NA�SS∗ NA�(FI)SS∗∗∗ NA�(FI)SS∗∗∗

FISS�SS∗∗ NA�(FI)SP∗ FISS�SS∗∗∗ SP�FISP∗ NA�FISP∗∗∗ NA�(FI)SP∗∗∗

FISS�SS∗∗∗ FISS�SS∗∗∗ FISS�SS∗∗∗

SP�FISP∗ SP�FISP∗∗∗

Notes: a) “−” indicates no policy difference; b) “�” indicates policy preference; c) We mark the lowest significance
level when NA outperforms all other inventory policies (NA � All).

seems to systematically outperform the others.

Second, when the market is fully synchronized (P=1), we observe the naïve inventory policy

either outperformed or yielded comparable performance than other active inventory policies (statis-

tically significant at 0.05 level). It seems to suggest that there is no need for the dealer to perform

active market intervention because the synchronized market has an inherent market liquidity effect

in bundle execution. Furthermore, under the same policy, the dealer’s informational advantage helps

improve market performance. We see that the corresponding FISS or FISP policies outperformed

SS or SP policies in many cases.

The wealth effect under different policies crucially depends on market size and bundle complexity.

For example, in a small market trading simple bundles (e.g., 10 agents and 2 shared resources),

different inventory policies do not seem to significantly affect the dealer’s wealth except for the

dominated SS policy. However, if it is in a large market or a market trading complex bundles, the

naïve inventory policy outperformed both SS and SP policies regardless of the dealer’s informational

advantage. Although the dealer’s informational advantage helps improve market performance for
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both SS and SP policies, it has positive wealth implication for the SS policy only.

EC.3 Extensions of the Computational Market Experiment

In the main text, we mainly focus on the controlled experiment design to systematically study the

impacts of key market design factors on market performance as well as agents and the dealer’s

wealth. In this extension, we perform additional randomized market experiments to analyze more

realistic market scenarios and heterogeneous market participation.

EC.3.1 Market Liquidity under Different Inventory Policies and Agent Strategies

In finance, liquidity is defined as the ease of trading. It is the ability to trade large sizes quickly.

Therefore, it is expected that liquid market prices are less volatile than illiquid ones. Apparently,

liquidity differs across assets and markets. While exchanges mainly rely on endogenous submission

of limit orders for liquidity provision, most major stock markets designate market makers with

affirmative obligations to supply liquidity. In the following, we present several measurements related

price variation and trading volume. The data in Table EC.2 are based on the market experiment

described in Section 7.1.

Recall that we use the moving average price norm MAPN to measure price variation during the

trading process. We record the maximum MAPN value, maxMAPN, for each market experiment.

We report the minimum maxMAPN value (minimum price volatility, or MPV) under each treatment

in Panel (a). Since bundle sizes vary in our experimented markets, we define a unified measurement:

the average trading volume (ATV), which is the summed trading volume for all shared resources

divided by the number of shared resources traded in the market. Panel (b) shows the mean number

of ATV for the dealer. Panel (c) reports the total market ATV, where both the dealer and all

agents’ trading volumes are counted.

We observe that both the dealer’s and the market total trading volume increase as either the

number of market participants or the number of shared resources increases. However, the effect

of market size is larger than the effect of bundle complexity. This is evident from the fact that,

regardless of the bidding strategy and the bundle size, markets with 50 agents had much higher

average ATV than markets with 10 agents.

To see whether price volatility and trading volume would differ under different inventory policies,

we perform paired t-test. Results are presented in Table EC.3.
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Table EC.2: Summary Statistics: Market Price Variation and Trading Volume
Market V Panel (a) MPV Panel (b) Dealer ATV Panel (c) Market ATV

k m TRUE RAN FIX TRUE RAN FIX TRUE RAN FIX

10 2 NA 0.45 0.43 0.58 24.9 29.20 32.07 408.2 403.6 424.2

SS 0.41 0.27 0.41 113.9 84.66 100.7 524.6 406.8 446.3

SP 0.40 0.43 0.49 38.58 45.42 45.57 488.3 355.3 463.6

FISS 0.45 0.36 0.44 103.9 70.06 81.33 507.7 327.5 451.4

FISP 0.38 0.65 0.50 75.02 67.21 59.92 379.0 453.5 455.2

8 NA 1.21 1.63 1.52 139.0 139.0 140.4 451.3 543.1 513.8

SS 1.17 1.48 1.76 244.3 284.0 335.6 597.2 714.8 905.9

SP 1.29 1.35 1.78 155.5 156.5 149.2 486.7 544.3 519.5

FISS 0.89 1.30 0.86 198.0 177.5 190.8 587.8 504.4 609.6

FISP 1.44 0.91 1.45 178.1 146.8 167.9 547.4 443.7 526.1

50 2 NA 0.52 0.62 0.66 191.3 56.24 89.74 6101.7 28560.4 3644.2

SS 0.54 0.63 0.57 509.9 648.4 770.9 3214.1 29085.5 3960.2

SP 0.61 0.60 0.58 168.3 176.9 182.2 30500 3869.0 3471.8

FISS 0.63 0.59 0.52 649.2 535.4 659.0 35936 3452.6 4798.0

FISP 0.55 0.65 0.66 625.6 844.5 606.2 4567.7 4626.3 25448

8 NA 2.26 1.45 1.54 354.9 345.9 378.1 3237.7 3094.0 2844.5

SS 1.28 1.78 1.41 680.1 619.6 768.0 3969.4 3333.4 3785.6

SP 1.66 1.69 1.28 450.5 440.5 450.9 3019.9 3615.8 3489.1

FISS 1.17 1.18 1.14 907.6 547.8 468.7 5248.7 3027.3 2814.9

FISP 1.60 1.33 1.59 457.9 546.8 449.7 2970.7 5842.4 3001.2

Table EC.3: T-Test: Market Price Variation and Trading Volume
Market V Panel (a) MPV Panel (b) Dealer ATV Panel (c) Market ATV

k m TRUE RAN FIX TRUE RAN FIX TRUE RAN FIX

10 2 NA-SS −0.53 −1.71 −0.60 −5.93∗∗∗ −6.68∗∗∗ −6.46∗∗∗ −1.12 −0.05 −0.33

NA-SP 1.01 −0.10 −0.40 −1.96 −1.67 −1.01 −1.02 0.81 −0.38

SS-FISS 0.81 0.44 −0.90 0.43 1.31 1.28 0.15 1.38 −0.07

SP-FISP −0.80 −1.38 −0.85 −2.0 −1.41 −0.78 1.53 −1.44 0.08

8 NA-SS 1.00 −0.69 −0.33 −4.19∗∗∗ −2.68∗ −4.12∗∗∗ −1.88 −1.03 −2.67∗∗

NA-SP 0.99 −0.42 −0.97 −1.10 −1.11 −0.60 −0.60 −0.01 −0.07

SS-FISS −1.38 1.44 1.91 1.57 1.80 2.72 0.10 1.31 1.67

SP-FISP −0.32 1.66 1.00 −1.18 0.68 −1.08 −0.89 1.50 −0.09

50 2 NA-SS 1.26 −0.96 0.65 −3.22∗∗ −6.00∗∗∗ −4.27∗∗∗ 1.71 −0.01 −0.35

NA-SP 0.28 0.92 0.38 0.29 −1.90 −2.0 −0.95 0.93 0.20

SS-FISS −0.91 0.92 −1.18 −0.90 0.81 0.51 −1.04 1.07 −0.54

SP-FISP 0.85 −0.58 −0.75 −2.98∗∗ −1.90 −2.29∗ 1.01 −0.55 −0.97

8 NA-SS −0.18 −1.64 1.05 −5.68∗∗∗ −5.42∗∗∗ −3.57∗∗∗ −0.69 −0.38 −1.60

NA-SP 0.05 −1.76 1.15 −2.72∗∗ −2.43∗ −1.35 0.55 −0.49 −1.26

SS-FISS 0.69 1.47 1.07 −0.74 1.09 3.07∗∗ −0.66 0.61 1.71

SP-FISP 0.77 1.19 −0.68 −0.19 −1.30 0.02 0.13 −0.74 0.88
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From Panel (a) we see that no statistically significant difference was found in market price

variation under different agent bidding strategies. In all market scenarios, Panel (b) shows that the

dealer’s average trading volume under the safety stock policy is significantly higher than the naïve

inventory policy at the 0.05 level. However, the total average trading volume difference between NA

and SS was not statistically significant except for k10m8 market under the fixed percentage bidding

strategy. It is evident that the dealer indeed actively traded in the market under the SS policy,

where more trades occur between agents and the dealer rather than agents themselves. Moreover,

in large markets with complex bundles being traded, the dealer’s informational advantage will make

her trade more conservatively (statistically significant under the fixed percentage strategy).

Under the SP policy, the dealer’s average trading volume is significantly higher than the naïve

policy only in large markets trading complex bundles. In large markets with simple bundles being

traded, the dealer’s informational advantage will make her trade more aggressively (statistically

significant under truthful bidding and fixed percentage strategy). There was no observed difference

in the average trading volume when the number of market participants is small regardless of whether

the dealer has informational advantage.

The fact that the dealer has actively traded in complex market environments without signifi-

cantly improving market performance implies the difficulty to directly apply conventional wisdom

in financial markets to the BTM market environment. The dealer’s active intermediation does not

necessarily lead to quicker price discovery. Moreover, although financial market theory suggests

that high trading volume corresponds to low price volatility, this does not seem to be supported by

our trading data. We caution the mechanism designer to be careful when implementing the BTM

framework. Traditional financial market insights may not be directly applied and transferred to the

BTM trading environment.

EC.3.2 Randomization of Agent Structure and Bidding Strategies

In this experiment, we take into account the heterogeneity of agent internal structure (the num-

ber of independent resources and the number of activities). We further allow agents to randomly

select their communication frequencies, learning models, and bidding strategies from the respec-

tive treatment sets. Table EC.4 presents the mean number of market iterations and the mean

WealthRatio under the five inventory policies and four market scenarios. Data are based on the

market experiment described in Section 7.2.
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Table EC.4: Summary Statistics under Randomized Experiment
Panel (a) Mean Number of Iterations Panel (b) Mean WealthRatio

V m=2 m=8 m=2 m=8

k=10 k=50 k=10 k=50 k=10 k=50 k=10 k=50

Mean

NA 56.54 63.07 155.44 147.81 0.97 0.99 0.81 0.93

SS 54.53 61.36 153.17 173.12 1.09 1.13 1.24 1.11

SP 55.65 62.23 153.18 147.08 0.96 0.99 0.93 1.01

FISS 58.13 64.66 163.27 154.30 0.97 1.02 0.90 1.01

FISP 55.15 60.14 211.47 178.87 1.05 1.16 0.90 1.04

t-Stat

NA-SS 0.69 0.50 0.18 −0.81 −4.72∗∗∗ −6.82∗∗∗ −8.73∗∗∗ −21.48∗∗∗

NS-SP 0.28 0.22 0.18 0.04 0.23 −0.55 −5.13∗∗∗ −7.03∗∗∗

SS-SP −0.38 −0.23 0.01 0.77 4.48∗∗∗ 5.86∗∗∗ 5.86∗∗∗ 7.35∗∗∗

NA-FISS −0.48 −0.42 −0.51 −0.32 −0.02 −5.19∗∗∗ −6.80∗∗∗ −13.77∗∗∗

NA-FISP 0.43 0.85 −0.91 −0.65 −3.79∗∗∗ −6.24∗∗∗ −5.84∗∗∗ −10.39∗∗∗

SS-FISS −1.14 −0.90 −0.76 0.53 4.51∗∗∗ 4.91∗∗∗ 6.85∗∗∗ 10.57∗∗∗

SP-FISP 0.15 0.56 −0.95 −0.64 −3.56∗∗∗ −5.64∗∗∗ 1.07 −1.92

FISS-FISP 0.87 1.24 −0.78 0.48 −3.57∗∗∗ −4.83∗∗∗ −0.10 −2.48∗

We see that markets with 2 shared resources converge under 100 rounds for all five inventory

policies, while markets with 8 shared resources take over 100 rounds to converge. This shows

that bundle size or complexity has a major impact on market convergence. However, we see that

markets trading 8 shared resources on average converge in 155.44 rounds with 10 agents, but 147.81

rounds with 50 agents under the naïve inventory policy. In fact, except for the safety stock inventory

policy, all other inventory policies yielded quicker market convergence in larger markets when trading

complex bundles. This suggests that our BTM framework is scalable to larger sized auctions with

larger sized bundles. However, as shown in the paired t-tests, the market performance differences

under different inventory policies are not statistically significant.

Although the dealer’s choice of the inventory policy does not significantly impact the market

performance, it has significant effect on the dealer’s profit. For example, the negative t-values in

the WealthRatio tests NA-SS imply that the naïve inventory policy yields higher profit than the

safety stock policy. The profit difference is significant at the 0.001 level under all tested market

scenarios. In fact, both the NA and SP policies outperform the SS policy. The NA policy further

outperforms the SP policy in complex trading environments involving large number of resources or

large number of market participants. However, in markets that trade simple bundles, there was no
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observed profit difference between the naïve and the speculative price policies.

The value of information has different wealth effect under different policies. If the dealer adopts

the safety stock policy, then the informational advantage could significantly improve the dealer’s

wealth. In contrast, if the dealer adopts the speculative price policy, then the informational ad-

vantage could lead to a statistically significant wealth decrease in markets trading simple bundles,

though the wealth effect was not significant in markets trading complex bundles. Although the SP

policy yields higher profit than the SS policy, the FISP policy yields lower profit than the FISS

policy. Therefore, the dealer would prefer the speculative price policy when she does not have in-

formational advantage, but would prefer the safety stock policy when she has better market price

information than agents.

EC.4 Proofs

Proof of Lemma 1

Proof. For limited orders, we see that Uj(wj) = vj(wj) − p
′
wj = zj(cj) − zj(cj + wj) − p

′
wj =

zj(cj)− [d
′
j x̄j + p

′
wj ]. Since zj(cj) is a constant, minimizing the objective function in problem (3)

is equivalent to identifying the highest utility bundle.

For unlimited orders, Uj(uj) = vj(uj)− p
′
uj = −d′j x̂j − p

′
uj = −[d

′
j x̂j + p

′
uj ]. Minimizing the

objective function in problem (3) is equivalent to identifying the highest utility bundle.

Proof of Lemma 2

Proof. Theorem 1 in Guo et al. (2007) shows that p′w∗ ≤ vj(w∗
j ). Since vj(w∗

j ) = zj(cj)−zj(cj+w∗
j ),

we have p′w∗
j ≤ zj(cj)−zj(cj +w∗

j ). Accordingly, we have ej(cj)−p
′
w∗

j−zj(cj +w∗
j ) ≥ ej(cj)−zj(cj).

Since ej(cj)−p
′
w∗

j−zj(cj+w∗
j ) = ej(cj+w∗

j )−zj(cj+w∗
j ) = Wj(cj+w∗

j ), and ej(cj)−zj(cj) = Wj(cj),

we haveWj(cj) ≤Wj(cj +w∗
j ). So Agent j’s wealth after trading bundle w∗

j is no less than it before

trading. That is, the trading is wealth non-decreasing.

Proof of Lemma 3

Proof. If the identity Min
∑k

j=1 zj(c
0
j + w̄j) = Z(c) holds, it is straightforward that the market

mechanism efficiently allocates resources because it achieves the allocation under complete informa-

tion. This completes the sufficiency.

Now we prove the necessity. In auction, an efficient allocation maximizes total value over all

agents. By the definition of bundle valuation,
∑k

j=1 vj(w̄j) =
∑k

j=1 zj(c
0
j )−

∑k
j=1 zj(c

0
j + w̄j). Since
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∑k
j=1 zj(c

0
j ) is fixed, we have Max

∑k
j=1 vj(w̄j) =

∑k
j=1 zj(c

0
j )−Min

∑k
j=1 zj(c

0
j + w̄j). Allocative

efficiency of the auction mechanism implies that total operating cost of all agents is minimized. We

know from the Central Problem that the minimal operating cost of all agents is Z(c). So efficient

allocation must guarantee that Min
∑k

j=1 zj(c
0
j + w̄j) = Z(c).

Under agent learning with asynchronous communication, the key for algorithm convergence to an

optimal solution is that no agents are interested in trading new bundles at the current market prices

which support an equilibrium allocation. Proofs of Lemmas 4 and 5 use this line of reasoning.

Proof of Lemma 4

Proof. Under the myopic learning strategy, an agent uses his most recently observed market price

to solve his bundle determination problem. Note that there is a two-way communication in the

asynchronous market environment. On average, an agent will contact the dealer in 1/Pj rounds.

If not, the dealer has periodic asynchronous contact with an inactive agent to make sure by any

chance they won’t be inactive forever. Let the periodic contact Xj ≥ 1/Pj . Then agent j will get the

current market price in at most 2Xj rounds. In the worst case scenario, at most 2 max (X1, ..., Xk)

rounds all k agents obtain the current market price information. Theorems 3 and 4 in Guo et al.

(2007) ensure that the market converges to an equilibrium allocation in finite number of trades.

Proof of Lemma 5

Proof. Under the forecast learning strategy, an agent uses his forecasted market price to solve his

bundle determination problem. In the EWMA price forecast model, p̃jR = απjR + (1 − α)p̃j,R−1,

where 0 < α < 1 is the smoothing constant. Note that p̃j0 = p0. Repeatedly substituting prior round

forecasted prices into the forecast equation, we have an equivalent expression p̃jR = α
∑R−1

i=0 (1 −

α)iπj,R−i + (1− α)Rp0. Since the realized prices vary in prior rounds, we see that p̃jR 6= πjR. This

requires an extra step of a market call to inform agents that it might be the last round trading.

Since forecast learning does not have future value for decision making in the last round trading,

all agents use current market prices to determine the most preferred bundles. The remaining proof

follows a similar reasoning as in Lemma 5.

Proof of Lemma 6

Proof. From Lemma A in Guo et al. (2007) we know that there is a one-to-one correspondence

of bundles and the extreme points or extreme rays in the Central Problem defined in (1). The
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following equalities hold: w∗
j = Cjx

∗
j − cj for limited bundles and u∗

j = Cjx
∗
j for unlimited bundle,

respectively. Therefore, from the Simplex method we know that if a round results in w∗
j 6= 0 or

u∗
j 6= 0, the Central Problem moves to a new basic feasible solution. Then it is termed a value-added

trading.

There are two types of cycling that prevents the Central Problem from moving to a new basic

feasible solution. Algorithmically, it is identified as a series of non-value-added trading that returns

to an earlier market allocation. The first is agent self-trading. It is possible that an agent submits

limit sell or buy orders in different rounds and his own orders get matched. This is handled in Step

2 where only one agent is added in the positive trade set Trade. The algorithm goes back to Step 1

and no settlement is carried out. So the agent’s outstanding order book Ij and Hj are not cleared

and no such orders can be resubmitted.

The second type of cycling involves the repeated exchange of resources between agents and the

dealer. This can happen when there are slack resources in the market. Agents repeatedly submit

the same sets of orders in a sequence. Slack resources are switched among agents and the dealer at

zero cost. Two treatments prevent such cycling. If the trade involves only one agent and the dealer,

then the transaction is voided so the agent’s outstanding order book Ij and Hj are not cleared and

no such orders can be resubmitted (see Step 2 in the adapted algorithm). Since the Central Problem

is non-degenerate by assumption, eventually new bundles will come in which iterates the Central

Problem solution to a new basic feasible solution that breaks the cycle.

If the trade involves more than one agent and the dealer, the trade is honored. Agents are

added to the positive trade set Trade and their outstanding order books Ij and Hj , for j ∈ Trade

are cleared. Therefore, it is possible that the same sequence of orders is repeatedly submitted and

gets matched. In order to detect such oscillation, we track the dealer’s inventory levels. Once

the dealer’s inventory oscillation is detected, freezing the dealer’s inventory can break the cycling

because it either prevents a full match of the orders that only result in inventory changes of slack

resources in agent problem or forces an agent to self-trade. The former may lead to clearance of

the outstanding order book so that a different set of orders can be submitted. The latter can be

handled as discussed in the first case. As long as the market has not converged to the system

optimal allocation, there must exist profitable trades from non-excluded agents (recall that the

excluded agents only perform non-profitable trades). This will trigger the dealer’s inventory release
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to allow her to participate in future market trades. This also guarantees that the market continues

without risking a premature closure.

Note that it is impossible that different agents switch resources among each other without

positive effect on their wealth. If an agent has a positive trade with another agent, the wealth-

improving trading bundles must have non-zero prices. Therefore, matching among different agents

will have a non-zero wealth effect. This won’t result in cycling.

Proof of Corollary 1

Proof. Lemma 4 ensures that the continuous market operation converges to an optimal allocation

in a finite number of trades under the myopic learning strategy. As shown in Lemma 5, p̃jR 6=

πjR. From linear programming sensitivity analysis, we know the solution to the agent bundle

determination problem (3) under p̃jR and πjR might be different if the two prices sufficiently differ

from each other. There is positive probability that there will be new bundles under πjR, but such

bundles cannot be discovered under p̃jR. Therefore, it is necessary to use a market call. When the

dealer calls the market to signal that it might be the last round of trading, agents find there is no need

to forecast market prices anymore. They use the current market prices in their bundle determination

problem. If there are new orders, the market continues as usual. Otherwise, the stopping criteria

satisfy Theorem 3 in Guo et al. (2007). Lemma 6 treatment ensures that the hybrid market design

can guarantee the market convergence to the optimal allocation and equilibrium market prices.

Proof of Corollary 2

Proof. Guo et al. (2007) have shown that agent strategic bundle pricing merely slows down market

convergence without affecting the algorithm finite termination and optimality properties. Under

the extended framework and adapted algorithm, now it is sufficient to show that 1) the strategic

bundle selection, 2) agent learning with asynchronous communication, and 3) the dealer’s inventory

policies do not affect the finite termination and optimality property.

As to 1), the predicted market prices based on different forecasting models will only affect the

sequence of bundle elicitation. By Lemma A in Guo et al. (2007), each bundle selected from (3)

corresponds to an extreme point or extreme ray solution to the Agent Problem (2). Theorem 2 in

Guo et al. (2007) further shows the equivalence between solving the market-matching problem (4)

and the Central Problem (1). Therefore, the sequence of bundle elicitation only determines which
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feasible solutions to the Central Problem should be evaluated in each round of market iteration.

Because the set of feasible solutions is finite and no feasible solutions can be visited twice by the

Simplex method, it is straightforward that the finite convergence and optimality properties are

preserved under the assumption that the Central Problem is non-degenerate.

Regarding 2), Lemmas 4 and 5 guarantee market convergence and optimality under agent learn-

ing with asynchronous communication.

In terms of 3), recall that the dealer eventually switches to the naïve inventory policy if she

initially adopts a different inventory policy. So the final market convergence is affected by the

market-matching problem defined in (4). Its finite termination and optimality are guaranteed by

Theorems 3&4 in Guo et al. (2007).
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