Supporting Information

Exploration of a Living Anionic Polymerization Mechanism into Polymerization-Induced Self-Assembly and Site-Specific Stabilization of the Formed Nano-Objects

Jian Wang, Mengya Cao, Peng Zhou, and Guowei Wang*

State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.

Experimental Procedures

Materials

Styrene (S, 99 %, Sinopharm Chemical Reagent Co. (SCR)), *p-tert*-butylstyrene (*t*BS, 94 %, Alfa), *p*-methylphenylene (*p*MS, 98 %, Acros), α -methylstyrene (α MS, 98 %, TCI), and 1,1diphenylethene (DPE, 98 %, Acros) were dried over CaH₂, distilled under reduced pressure, and stored in refrigerator below 0 °C. Isoprene (I, 99 %, SCR) was dried over CaH₂, distilled and stored in refrigerator below 0 °C. Heptane (99 %, SCR) was dried over CaH₂ and distilled just before use. *n*-Butyllithium (*n*Bu'Li⁺, 1.6 M in hexane, J&K) was used as received. Divinylbenzene (DVB, 99 %, SCR) was used as received and the impurities were consumed by the addition of *n*Bu'Li⁺. Tetrahydrofuran (THF, 99 %, SCR) was refluxed and distilled from potassium naphthalenide solution. All other reagents were purchased from SCR and used as received except for additional declaration.

Typical LAP PISA Process for Diblock Copolymer PI-b-PS

Using the LAP PISA system for diblock copolymer PI₆₀-*b*-PS₁₁₈ with weight solid content of 18 % w/w as an example. First, the dry solvent of *n*-heptane (325.9 mL, 221.58 g) and THF (2.0 mL, 1.79 g), monomer of isoprene (18.0 mL, 12.26 g) were sequentially charged into a 1L baked ampoule with a stirrer, and the system was immersed into a water bath maintaining at room temperature. Then, the impurities in the mixture was pre-consumed by the addition of *n*Bu⁻Li⁺, and the metred initiator of *n*Bu⁻Li⁺ (1.5 mL, 2.45 mmol) was rapidly added to initiate the polymerization. After 2.0 h, 5.0 mL of the mixture was withdrawn for characterization and the monomer of styrene (S) (40.5 mL, 36.77 g) was subsequently added. The dispersion was gradually formed and polymerization was continued for another 5.0 h. Before the following operation for cross-linking of the nano-objects, 5.0 mL of the mixture was withdrawn for characterization.

Macro-initiator PI, SEC: $M_{n,SEC} = 4,100 \text{ g/mol}, M_w/M_n = 1.09.$ ¹H NMR (CDCl₃, δ , ppm, TMS): 0.81 (CH₃CH₂-), 1.22-2.25 (m, -C(CH₃)-, aliphatic main chain -CH₂CH-), 1.86 (m, -C(CH₃)=CH- of 1,4-addition, -C(CH₃)=CH₂ of 3,4-addition), 4.61-4.69 (-(CH₃)C=CH₂ of 3,4addition), 4.95 (-CH=CH₂ of 1,2-addition), 5.06 (-CH=C(CH₃)- of 1,4-addition), 5.70 (-CH=CH₂ of 1,2-addition). PI-*b*-PS, SEC: $M_{n,SEC} = 14,400 \text{ g/mol}, M_w/M_n = 1.17.$ ¹H NMR (CDCl₃, δ , ppm, TMS): 0.81 (CH₃CH₂-), 1.22-2.25 (m, -C(CH₃)- on PI, aliphatic main chain -CH₂CH- on PI and PS), 1.86 (m, -C(CH₃)=CH- of 1,4-addition, -C(CH₃)=CH₂ of 3,4-addition,), 4.61-4.69 (-(CH₃)C=CH₂ of 3,4-addition), 4.95 (-CH=CH₂ of 1,2-addition), 5.06 (-CH=C(CH₃)- of 1,4addition), 5.70 (-CH=CH₂ of 1,2-addition), 6.30-7.30 (m, 5H, aromatic -C₆H₅ on PS).

Cross-linking and Stabilization of the Nano-objects Formed in LAP PISA Process

Aiming to stabilize the nano-objects formed in LAP PISA, the DVB agent (5.0 mL, 4.60 g, 35.2 mmol) was added after the polymerization of styrene monomer. After another 2.0 h, the polymerization was terminated by exposure to the air. The obtained dispersions were diluted into heptane or THF for further characterization.

Typical LAP PISA Process for Diblock Copolymer PI-*b*-P(S-*co*-X) (X = *p*MS, *t*BS, α MS, or DPE)

Using the LAP PISA system for diblock copolymer PI_{62} -*b*-P(S₈₁-*co*-*p*MS₃₆) with targeted MW ratio $M_{n,P(S-co-X)}/M_{n,PI} = 3/1$, molar ratio [S]₀ / [X]₀ =2/1, and weight solid content of 18 % w/w as an example. Similar to the above procedure for PI-*b*-PS, the synthesis of macro-initiator PI was firstly synthesized. Differently, by referring our previous work,^{1, 2} the comonomer of styrene (S) and *p*-methylphenylene (*p*MS) were mixed and injected into the polymerization system in 24.0 h with a constant addition rate controlled by a programmed syringe pump (KD Scientific Legato 100)

in the second polymerization stage. After the addition of the comonomers, the polymerization was continued for another 2.0 h, and the polymerization was finally terminated by exposure to the air. Macro-initiator PI, SEC: $M_{n,SEC} = 4,200$ g/mol, $M_w/M_n = 1.08$. ¹H NMR (CDCl₃, δ , ppm, TMS): 0.81 (CH₃CH₂-), 1.22-2.25 (m, -C(CH₃)-, aliphatic main chain -CH₂CH-), 1.86 (m, -C(CH₃)=CH- of 1,4-addition, -C(CH₃)=CH₂ of 3,4-addition), 4.61-4.69 (-(CH₃)C=CH₂ of 3,4-addition), 4.95 (-CH=CH₂ of 1,2-addition), 5.06 (-CH=C(CH₃)- of 1,4-addition), 5.70 (-CH=CH₂ of 1,2-addition). PI-*b*-P(S-*co*-*p*MS), SEC: $M_{n,SEC} = 13,600$ g/mol, $M_w/M_n = 1.33$. ¹H NMR (CDCl₃, δ , ppm, TMS): 0.81 (CH₃CH₂-), 1.22-2.25 (m, -C(CH₃)- on PI, CH₃(C₆H₄)- on P(S-*co*-*p*MS)), aliphatic main chain -CH₂CH- on PI and P(S-*co*-*p*MS)), 1.86 (m, -C(CH₃)=CH- of 1,4-addition, -C(CH₃)=CH₂ of 3,4-addition,), 4.61-4.69 (-(CH₃)C=CH₂ of 3,4-addition), 4.95 (-CH=CH₂ of 1,2-addition), 5.06 (-CH=C(CH₃)- on PI, CH₃(C₆H₄)- on P(S-*co*-*p*MS)), aliphatic main chain -CH₂CH- on PI and P(S-*co*-*p*MS)), 1.86 (m, -C(CH₃)=CH- of 1,4-addition, -C(CH₃)=CH₂ of 3,4-addition,), 4.61-4.69 (-(CH₃)C=CH₂ of 3,4-addition), 4.95 (-CH=CH₂ of 1,2-addition), 5.06 (-CH=C(CH₃)- on P(CH₃)=CH- of 1,2-addition), 4.95 (-CH=CH₂ of 1,2-addition), 5.06 (-CH=C(CH₃)- on P(CH₃)=CH- of 1,2-addition), 4.95 (-CH=CH₂ of 1,2-addition), 5.06 (-CH=C(CH₃)- of 1,4-addition), 5.70 (-CH=CH₂ of 1,2-addition), 6.30-7.30 (m, 5H, aromatic -C₆H₅, CH₃(C₆H₄)- on P(S-*co*-*p*MS)).

By changing *p*MS as *t*BS, α MS, or DPE, the PI-*b*-P(S-*co*-X) with different core-forming block can be synthesized in LAP PISA system.

Instruments and characterizations

The molecular weight (MW) and molecular weight distribution (M_w/M_n) of polymers were analyzed by size exclusion chromatography (SEC) measurement, which was performed in THF at 35 °C with an elution rate of 1.0 mL/min on an Agilent 1100 equipped with a G1310A pump, a G1362A refractive index detector, and a G1314A variable wavelength detector. One 5 µm LP gel column (molecular range 500 - 2 × 10⁴ g/mol) and two 5 µm LP gel mixed bed columns (molecular range 200 - 3 × 10⁶ g/mol) were calibrated by PS standards. The injection volume was 20 µL, and the concentration was 5-10 mg/mL. The proton nuclear magnetic resonance (¹H NMR) spectra of polymers were recorded on a Bruker (400 MHz) spectrometer in CDCl₃ with tetramethylsilane (TMS) as the internal reference at 298 K.

The dynamic light scattering (DLS) using a Malvern Zetasizer Nano ZS90 was employed to determine the average hydrodynamic diameter and distribution, and the scattered light was detected at an angle of 173°. The used solvent was heptane or THF.

The transmission electron microscopy (TEM) was performed using a JEOL JEM-1230 instrument operated at 80 kV. The as-prepared nano-objects were diluted into heptane or THF to give 0.1 - 0.3 % w/w dispersion. After one drop of the dispersion was deposited onto carbon coated copper grids, the copper grids were dried in air for 24 h and used for TEM measurement.

The Kinexus Pro rheometer (Malvern Instrument Inc., UK) equipped with a steel parallel-plate geometry of 40 mm diameter was used to determine the rheological properties of the nano-objects. Loss modulus and storage modulus were measured as a function of percentage strain. The angular frequency and temperature were fixed at 10 rad/s and 25 °C, respectively.

The small-angle X-ray scattering (SAXS) measurements were performed using a Xenocs Xeuss 2.0 instrument (8 KeV Cu K α radiation) equipped with a Pilatus 3R 200K-A area detector and a beam-stop. The SAXS patterns were recorded over a scattering vector q range of 0.045 Å⁻¹ < q < 0.24 Å⁻¹. The instrument is equipped with a liquid sample holder. The liquid sample is sealed in a capillary tube and placed on a liquid sample holder for testing. The SAXS studies of the dispersions (10 % w/w) were conducted at 25 °C under vacuum.

Figure S1. TEM images of nano-objects (diluted into 0.1~0.3 % w/w dispersions, and the sample on copper grid was not stained) formed in LAP PISA process by fixing targeted MW ratio $M_{n,PS}/M_{n,PI}$ as 3/1 and weight solid content as 25 % w/w: (a) spherical micelles prepared from PI₆₉*b*-PS₁₃₅, (b, b') spherical and short wormlike micelles prepared from PI₁₁₂-*b*-PS₂₂₀, (c) spherical micelles prepared from PI₁₇₆-*b*-PS₃₄₅.

Figure S2. DLS results of nano-objects formed in LAP PISA process by fixing targeted MW ratio $M_{n,PS}/M_{n,PI}$ as 3/1and weight solid content as 25 % w/w: (a) spherical micelles prepared from PI₆₉*b*-PS₁₃₅, (b, b') spherical and short wormlike micelles prepared from PI₁₁₂-*b*-PS₂₂₀, (c) spherical micelles prepared from PI₁₇₆-*b*-PS₃₄₅.

Figure S3. The ¹H NMR spectrum for crude diblock copolymer PI-*b*-P(S-*co*-*p*MS) (in CDCl₃).

Figure S4. The ¹H NMR spectrum for crude diblock copolymer PI-*b*-P(S-*co*-*t*BS) (in CDCl₃).

Figure S5. The ¹H NMR spectrum for crude diblock copolymer PI-*b*-P(S-*co*-*a*MS) (in CDCl₃).

Figure S6. The ¹H NMR spectrum for crude diblock copolymer PI-*b*-P(S-*co*-DPE) (in CDCl₃).

Samples	Weight solid content (wt %)	Targeted MW ratio M _{n,PS} /M _{n,PI}	The first polymerization stage			The second	polymerizat	ion stage			
			M _{n,PI} ^[a]	$M_w/M_n^{[a]}$	DP _{PI} ^[b]	M _{n,PI-b-PS} ^[a]	$M_w/M_n^{[a]}$	DP _{PS} ^[c]	Morphology ^[d]		
PI87-b-PS114	10	2/1	5,900	1.10	87	21,000	1.12	114	Spherical and short wormlike micelles		
PI82-b-PS161	10	3/1	5,600	1.09	82	26,300	1.14	161	Spherical and short wormlike micelles		
PI82-b-PS214	10	4/1	5,600	1.08	82	28,500	1.07	214	Wormlike micelles		
PI70-b-PS46	18	1/1	4,800	1.06	70	8,600	1.11	46	Irregular morphology		
PI110-b-PS72	18	1/1	7,500	1.10	110	16,600	1.11	72	Irregular morphology		
PI101-b-PS119	18	1.8/1	6,900	1.03	101	22,400	1.09	119	Spherical micelles		
PI84-b-PS111	18	2/1	5,700	1.09	84	16,400	1.16	110	Spherical micelles		
PI13-b-PS26	18	3/1	900	1.17	13	3,600	1.21	26	Irregular morphology		
PI 49-b-PS 96	18	3/1	3,300	1.06	49	14,300	1.10	96	Wormlike micelles		
PI60-b-PS118	18	3/1	4,100	1.09	60	14,400	1.17	118	Wormlike micelles		
PI88-b-PS173	18	3/1	6,000	1.08	88	19,700	1.05	173	Spherical and short wormlike micelles		
PI109-b-PS214	18	3/1	7,400	1.11	109	26,300	1.13	214	Spherical and short wormlike micelles		
PI87-b-PS228	18	4/1	5,900	1.07	87	29,700	1.07	228	Wormlike micelles		
PI 29-b-PS 114	18	6/1	2,000	1.09	29	14,800	1.17	114	Wormlike micelles		
PI100-b-PS392	18	6/1	6,800	1.05	100	47,600	1.09	392	Wormlike micelle		
PI13-b-PS104	18	8/1	3,100	1.09	46	25,600	1.18	238	Wormlike micelle		
PI13-b-PS104	18	12/1	900	1.15	13	13,700	1.11	104	Precipitate		
PI22-b-PS173	18	12/1	1,500	1.12	22	20,800	1.12	173	Precipitate		
PI43-b-PS335	18	12/1	2,900	1.07	100	34,700	1.18	335	Wormlike micelles		
PI84-b-PS659	18	12/1	5,700	1.08	84	86,400	1.16	659	Spherical micelles		
PI28-b-PS329	18	18/1	1,900	1.08	28	33,100	1.16	329	Precipitate		
PI 69-b-PS 135	25	3/1	4,700	1.08	69	15,600	1.15	135	Spherical micelles		
PI112-b-PS220	25	3/1	7,600	1.11	112	23,100	1.11	220	Spherical and short wormlike micelles		
PI176- <i>b</i> -PS345	25	3/1	12,000	1.11	176	33,100	1.19	345	Spherical micelles		

Table S1. The formulation and characterization data for diblock copolymer PI-b-PS with different macro-initiator PI, targeted MW ratio

 $M_{n,PS}/M_{n,PI}$, and weight solid content.

[a] The M_n and M_w/M_n were obtained by SEC measurement using THF as elution and PS as standard. [b] DP of macro-initiator PI

 (DP_{PI}) was calculated according to the $M_{n,PI}$ from SEC measurement. [c] DP of PS (DP_{PS}) was calculated according to the DP_{PI} and ¹H

NMR spectrum. [d] The morphology was monitored by TEM measurement.

Samples	Weight solid content (wt %)	Targeted MW ratio M _{n,P(S-co-} x)/M _{n,PI}	The first polymerization stage			The second polymerization stage						
			$M_{n,\mathrm{PI}}^{[\mathrm{b}]}$	$M_w/M_n^{[b]}$	DP _{PI} ^[c]	<i>М</i> _{<i>n</i>,РІ-<i>b</i>- Р(S-со-X) [b]}	$M_w/M_n^{[b]}$	Conv.s ^[d]	Conv.x ^[d]	DP _{PS} ^[d]	DP _{PX} ^[d]	Morphology ^[e]
PI62-b-P(S81- co-pMS36)	20	2/1	4,200	1.08	62	13,600	1.33	100	100	81	36	Spherical micelles
PI ₆₆ - <i>b</i> -P(S ₈₆ - <i>co-t</i> BS ₂₈)	20	2/1	4,500	1.08	66	15,500	1.24	100	100	86	28	Irregular morphology
PI72-b-P(S94- co-αMS34)	20	2/1	4,900	1.09	72	14,700	1.32	100	81	94	34	Spherical micelles
PI63- <i>b</i> -P(S83- <i>co</i> -DPE ₁₆)	20	2/1	43,00	1.10	63	14,500	1.28	94	68	83	16	Wormlike micelles

Table S2. The formulation and characterization data for diblock copolymer PI-*b*-P(S-co-X) with different comonomers.^[a]

[a] Targeted MW ratio $M_{n,P(S-co-X)}/M_{n,PI}$ was 3/1, molar ratio [S]₀ / [X]₀ was 2/1, and MW of macro-initiator PI was between 4000~5000

g/mol, and weight solid content was 18 % w/w (X = *p*MS, *t*BS, α MS, or DPE). [b] The M_n and M_w/M_n were obtained by SEC measurement using THF as elution and PS as standard. [c] DP of macro-initiator PI (DP_{PI}) was calculated according to the $M_{n,PI}$ from SEC measurement. [d] DP of monomers (DP_{PS}, DP_{PX}), conversion of monomers (Conv._s and Conv._x) were calculated according to the DP_{PI} and ¹H NMR spectrum. [e] The morphology was monitored by TEM measurement.

References

(1) Zhao, Z. W.; Shen, H. Y.; Sui, K. Y.; Wang, G. W. Preparation of periodic copolymers by living anionic polymerization mechanism assisted with a versatile programmed monomer addition mode. *Polymer* **2018**, 137, 364-369.

(2) Shen, H. Y.; Wang, G. W. A versatile flash cyclization technique assisted by microreactor.*Polym. Chem.* 2017, 8 (36), 5554-5560.