
Comparing copy-number profiles under

multi-copy amplifications and deletions

Supplementary Material I

Additional proofs

Lemma 1. Let u,v be two CNPs with no null positions. If u − v contains a
staircase [a, b] of length k, then df (u,v) ≥ k for any unit-cost function f .

Proof of Lemma 1. We use induction on the length k of the staircase. When
k = 1, it is obvious that df (u,v) ≥ 1 as we need to apply at least one event on u.
Now assume the lemma is true for values less than k, and that for two given vec-
tors u∗,v∗ such that u∗−v∗ contains a staircase of length k′ < k, df (u∗,v∗) ≥
k′. Suppose that two given CNPs ũ and ṽ contain a staircase of length k in
interval [a, a + k − 1] in their difference vector. Let u = (ũa, . . . , ũa+k−1) and
v = (ṽa, . . . , ṽa+k−1). By Proposition 1, df (ũ, ṽ) ≥ df (u,v) since we have only
removed some positions. Moreover, u−v consists of a staircase in interval [1, k].
Let E = (e1, . . . , el) be a sequence of length l := df (u,v) satisfying u〈E〉 = v
(note that l = df (u,v) because f is unit-cost). If we show that d(f,u)v = l ≥ k,
then we are done. Let us assume, for the sake of contradiction, that l < k. Un-
der this assumption and the inductive hypothesis, we show two properties on
E.

Property 1: no amplification of E affects position k, the last position of u.
Assume otherwise, and suppose that some amplification event ê ∈ E affects
interval [c, k] for some c ∈ [k]. By Proposition 2, we may take an amp-first
reordering of E and assume that ê = e1 is the first event of E. Let û := u〈ê〉,
and notice that û−v must contain a staircase of length k−1 in interval [1, k−1].
We may apply our inductive hypothesis and we reach a contradiction, since we
get k− 1 ≤ df (û,v) = df (u,v)− 1 ≤ (k− 1)− 1 (the latter by the assumption
that df (u,v) = l < k).

Property 2: all events of E affect at least one position in [1, k − 1]. We use
a similar idea. Assume that some event ê of E does not affect any position in
[1, k− 1], i.e. it only affects position k and therefore we may write ê = (k, k, b).
By Property 1, ê must be a deletion. Moreover, since no amplification ever
affects position k, û := u〈ê〉 does not have 0 at position k, and we may further
assume that ê is the first event of E (since applying the other events will never
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make position k drop below 0). In other words, df (u,v) = df (û,v) + 1. But
then û has a staircase in interval [1, k−1] and by the same arguments as above,
k − 1 ≤ df (û,v) = df (u,v)− 1 ≤ (k − 1)− 1, again a contradiction.

So far, we know that only deletions affect position k (Property 1), and all these
deletions also affect position k−1 (Property 2). Because uk−1− vk−1 < uk− vk
and vk−1 > 0, this implies that some amplification event ê must affect position
k−1 (otherwise, applying only the deletion events affecting position k on position
k − 1 would make position k − 1 drop below vk−1). Let us assume, again using
Proposition 2, that ê is the first event of E, i.e. e1 = ê. We use the same trick for
a third time. That is, let û := u〈ê〉 and notice that û has a staircase in interval
[1, k − 1]. Once again we obtain k − 1 ≤ df (û,v) = df (u,v)− 1 ≤ (k − 1)− 1.
This contradiction forces us to conclude that l < k is false, which proves the
lemma.

Lemma 2. Let u and v be two CNPs with no null positions and let f be any
unit-cost function. If u−v contains a staircase in interval [1, k] and df (u,v) = k,
then there exists a smooth sequence transforming u into v.

Proof of Lemma 2. We prove the lemma by induction over k. As a base case,
the statement is easy to see when k = 1 since a single step can only removed
by a deletion, which is smooth. So assume k > 1 and that for any u′,v′ such
that df (u′,v′) = k− 1 and such that u′ − v′ have a staircase of length k− 1 in
[1, k − 1], there is an optimal smooth sequence transforming u′ into v′.

Let E be any sequence of k events such that u〈E〉 = v. If E is smooth, then
we are done so assume otherwise. The proof is divided in two parts. Assuming
the inductive hypothesis, we first show that there is an optimal sequence Ê con-
taining only deletions such that u〈Ê〉 = v. These deletions are not necessarily
smooth. We complete the induction in a second step, where we convert this
deletion sequence into a smooth one. For the remainder of the proof, we will
denote w := u− v.

Part 1: proof that u can be transformed into v using only deletions.
Assume that E = (e1, . . . , ek) contains some amplification, otherwise we are
done proving our first step. We first claim that only deletions affect positions
k to n, inclusively. To see this, assume on the contrary that ei = (a, b, δ) is an
amplification where b ≥ k. By Proposition 2, we may assume that ei = e1. But
u〈e1〉 still has a staircase in interval [1, k], and by Lemma 1, df (u,v) ≥ k. This
is a contradiction since e1 should reduce the distance to from u to v. Hence our
claim holds.

We now claim that, on the other hand, some amplification in E affects position
k − 1. This is clearly true if every deletion affecting position k also affects
position k − 1. Indeed, we have wk−1 < wk and without an amplification on
k−1 it would be impossible that position k−1 becomes equal to vk−1 > 0. Thus
if we suppose that no amplification affects position k − 1, there must be some
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deletion ei = (k, h, d) that affects position k but not k − 1, where here h ≥ k.
Let u′ := u〈ei〉. Since no amplification affects any position in [k, h], u′ has no
position with value 0. Furthermore, u′−v contains a staircase of length k−1 at
[1, k−1] and it is clear that df (u′,v) = k−1. By induction, there is a (smooth)
deletion sequence E′ such that u′〈E′〉 = v. In that case, the sequence formed
by ei followed by E′ transforms u into v and has only deletions, which is what
we want. Thus we may assume that our claim saying that some amplificatio
affects k − 1 holds.

Moving on, let ei = (a, k − 1, δ) be an amplification in E that affects position
k − 1 (but not k). Our previous claims show that ei exists. By Proposition 2,
we may assume that e1 = ei. Let u′ := u〈e1〉 and w′ := u′ − v. Then w′

has a staircase of length k − 1 in interval [1, k − 1] and df (u′,v) = k − 1.
Moreover, the differences in value between the steps have not changed, except
at position a. Formally, for each i ∈ [k − 1] \ {a}, w′i − w′i−1 = wi − wi−1 and
w′a − w′a−1 = wa − wa−1 + δ.

By induction, u′〈E′〉 = v for some smooth deletion sequence E′ = (e′1, . . . , e
′
k−1).

Here for each i ∈ [k − 1], e′i = (i, bi, w
′
i−1 − w′i) for some bi ≥ k − 1. Let

(i1, bi1 , di1), . . . , (il, bil , dil) be the deletion events of E′ that affect position k,
i1 < i2 < . . . < il. We distinguish two cases.

Case 1: a /∈ {i1, . . . , il}. Then the event (a, ba, w
′
a−1 − w′a) of E′ does not

affect position k, meaning that ba = k − 1 (by smoothness). Consider the
sequence E′′ obtained from E′ by replacing the event (a, k − 1, w′a−1 − w′a)
by the event (a, k − 1, wa−1 − wa). Since u′〈E′〉 − v has a 0 everywhere and
w′a −w′a−1 = wa −wa−1 + δ, it follows that u′〈E′′〉 − v has value 0 everywhere,
except at positions from a to k − 1 where it has value δ. But then, the only
difference between u and u′ is that positions a to k−1 are increased by δ. Thus
u〈E′′〉 − v has a value of 0 everywhere (and u never drops below 0, due to the
smoothness of E′). This means that u〈E′′〉 = v, which is a contradiction since
E′′ has k − 1 events.

Case 2: a = ih for some h ∈ [l]. Then the deletion of E′ starting at a is
(a, ba,−(w′a−w′a−1)) = (a, ba, wa−1−wa− δ) and affects position k, i.e. ba ≥ k.
Consider the sequence E′′ obtained from E′ by replacing the event (a, ba, wa−1−
wa − δ) by (a, ba, wa−1 − wa). Then u′〈E′′〉 − v has a 0 everywhere, except at
positions from a to ba where it has value δ. Also, u〈E′′〉−v has a 0 everywhere,
except at positions from k to ba where it has value δ. We can apply the deletion
(k, ba,−δ) to u〈E′′〉 to obtain v. Since E′′ has k−1 events, this yields a sequence
of k deletions transforming u into v.

This concludes the first part. That is, we have shown that if our inductive
hypothesis holds, then some deletion sequence of length k transforms u into v.

Part 2: construction of a smooth sequence. Now let Ê = (ê1, . . . , êk) be
a sequence of k deletions transforming u into v, which exists by Part 1. Let
(1, b, δ) be any deletion affecting position 1. Since Ê contains only deletions,
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it is safe to assume that ê1 = (1, b, δ). Let u′ := u〈ê1〉 and w′ := u′ − v. If
−δ < w1, then w′ contains a staircase of length k and we reach a contradiction
since this implies df (u′,v) ≥ k. If −δ > w1, then w′1 < 0 and position 1 can

never have the same value as v1 since Ê has only deletions. We deduce that
−δ = w1.

It follows that u′ has a staircase of length k−1 in positions [2, k]. No event of Ê
can affect position 1 after e1, so we can ignore this position in u′ and w′. That
is, suppose we remove position 1 from u′ and v, yielding two vectors u′′ and v′

of length n − 1. Let w′′ := u′′ − v′. Then w′′ has a staircase of length k − 1
in interval [1, k − 1]. This allows us to use induction, so that there is a smooth
sequence Ê′′ of length k− 1 transforming u′′ into v′. This easily translates into
a sequence Ê′ transforming u′ into v: we just “shift” every event to the right
to account for position 1 in Ê′. To be specific, we replace any event (s, t, ε)
from Ê′′ by the event (s + 1, t + 1, ε) in Ê′. Since Ê′′ is smooth, then we can
write Ê′ = ((2, b2, ε2), . . . , (k, bk, εk)) where, for each i ∈ {2, . . . , k}, bi ≥ k and
di = w′i − w′i−1.

We have not shown smoothness yet, because ê1 might not affect the whole [1, k]
interval as we wish. If indeed ê1 affects position k, i.e. if b ≥ k, then it is easy
to see that applying ê1 followed by Ê′ is a smooth sequence transforming u into
v. Thus we may assume that b < k. Observe that w′i − w′i−1 = wi − wi−1 for
all i ∈ {2, . . . , k} \ {b + 1}, because w′b+1 − w′b = wb+1 − wb + w1 (recall that

−δ = w1). Let (b + 1, b′, wb − wb+1 − w1) be the deletion of Ê′ that starts at
position b, where b′ ≥ k by smoothness. Suppose that we replace it with the
deletion (b + 1, b′, wb − wb+1) in Ê′, yielding an alternate sequence Ẽ. Then
u′〈Ẽ〉 − v has a 0 everywhere, except at positions b+ 1 to b′ where it has value
w1. This means that if in Ê, we replace ê1 by ẽ = (1, b′,−w1) and follow it
by Ẽ, we obtain a sequence transforming u into v. Now, let ũ := u〈ẽ〉. If we
remove position 1 from ũ (recalling that ũ1 = v1) and from v, we obtain a CNP
with a staircase at [1, k− 1]. Applying induction, we get a smooth sequence Ẽ′′

which we can modify into Ẽ′ to make it applicable to u (just as we did from
Ê′′ to Ê′). It is then straightforward to see that ẽ1 followed by Ẽ′ is a smooth
deletion sequence turning u into v.

Theorem 1. The CNP-transformation problem is strongly NP-hard for any
deletion-permissive unit-cost function, even if the CNPs have no null positions.

Proof of Theorem 1. From a 3-partition instance S = {s1, . . . , sn}, construct u

and v as follows. First define K := 100n and, for all i ∈ [n], put pi :=
∑i

j=1 sj ,
the idea being that pi and pi−1 differ by an amount of si. Then put v as a
vector containing only 1s. For u, construct it by adding one position at a time
from left to right: first insert the values i + 1 + Kpi for i = 1..n, and then the
values i(Kt+ 3) + 1 for i = m..1. That is, let

v = (1, 1, . . . , 1)

u = (2 +Kp1, 3 +Kp2, . . . , n+ 1 +Kpn,m(Kt+ 3) + 1, . . . , (Kt+ 3) + 1)
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This can be done in polynomial time in n (in particular, each pi is polynomial).
Observe that we have

w = (1 +Kp1, . . . , n+Kpn,m(Kt+ 3), . . . ,Kt+ 3)

In particular, w has a staircase in interval [1, n], followed by a decreasing stair-
case in interval [n + 1, n + m]. By Lemma 1, we know that df (u,v) ≥ n. We
will show that S is a YES-instance to 3-partition if and only if df (u,v) = n.

(⇒): Suppose that there exists m triplets S1, . . . , Sm such that
∑

s′∈Si
s′ = t

for all i ∈ [m]. We may assume that each si ∈ S is distinguishable, so that
for each si there is a unique k such that si ∈ Sk. We construct a sequence
E = (e1, . . . , en) of n deletions such that u〈E〉 = v. For each i ∈ [n], put
ei = (i, n+ k,wi−1 −wi), where k if the unique integer such that si ∈ Sk. Note
that the ei events are allowed because f is deletion-permissive (this is actually
the only place where we need this assumption). One can check that E is a
smooth deletion sequence and it is clear that positions 1 to n become equal to
1 after applying E on u. Now consider the events that end at position n + k,
k ∈ [m]. For each si ∈ Sk, there is such an event that decreases all the positions
n + 1 to n + k by wi − wi−1 = Ksi + 1. We get

∑
si∈Sk

(Ksi + 1) = Kt + 3.
Since this is true for every position from n+ 1 to n+m, the total decrease for
a position k ∈ [m] will be

∑m
j=kKt+ 3 = (m+ 1− k)Kt+ 3, which is exactly

wn+k. Hence u〈E〉 = v.

(⇐): Assume that df (u,v) = n. Let E = (e1, . . . , en) be an optimal sequence of
events transforming u into v. By Lemma 2, we may assume that E is smooth.
Thus each ei is a deletion of the form (i, bi, wi−1 − wi) = (i, bi,−(Ksi + 1)),
where bi ∈ [n, n + m]. Let us define Sk := {si : bi = n + k}. We claim that∑

si∈Sk
(Ksi + 1) = Kt+ 3. For k = m, this must be true since wn+m = Kt+ 3.

For k < m, we have the difference wn+k−wn+k+1 = Kt+3. This means that the
deletions that affect position n+k but not n+k+ 1 (i.e. those with bi = n+k)
must incur a total decrease of exactly Kt + 3, as claimed. We now argue that
|Sk| = 3 for each k ∈ [m]. Notice that

∑
si∈Sk

(Ksi + 1) = K
∑

si∈Sk
si + |Sk| =

Kt + 3. If
∑

si∈Sk
si = t, then |Sk| = 3. Otherwise, by isolating the |Sk| term

above, it is not hard to deduce that |Sk| ≥ K. However, this is impossible since
|Sk| ≤ n but K > n. We have therefore shown that |Sk| = 3, which in turn
implies that

∑
si∈Sk

si = t.Therefore S is a YES instance.

Lemma 3. Let u,v be two distinct CNPs with no null positions, and let
w := u− v. Then for any unit-cost function f , df (u,v) ≥ d(|Fw| − 1)/2e.

Proof of Lemma 3. We prove the Lemma by induction on df (u,v). As a base
case, when df (u,v) = 1, then Fw has 3 flat intervals: the extreme ones and the
flat interval that gets affected in the single event transforming u into v (recall
that we have artificial positions w0 = 0 and wn+1 = 0, which guarantee that
there are always two extreme intervals plus another one somewhere in [i1, n]).
The statement is clearly true in this case, as d|Fw| − 1)/2e = 1.

Now assume that the Lemma holds for any pair of CNPs u′,v′ satisfying
df (u′,v′) < df (u,v). Let E = (e1, . . . , ek) be an optimal sequence of events
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such that u〈E〉 = v. Let û := u〈e1〉 and ŵ := û−v. Let e1 = (c, d, x), where x
could be negative in case of a deletion. Let F ′w = {[a, b] ∈ Fw : [a, b]∩ [c, d] 6= ∅}
be the affected flat intervals. Assume that F ′w has l ≥ 0 intervals, say F ′w =
{[a1, b1], . . . , [al, bl]}, and that they are ordered so that bi + 1 = ai+1 for each
i ∈ [l − 1].

First consider [ai, bi] with 2 ≤ i ≤ l− 1. Note that [ai, bi] cannot be an extreme
flat interval in w. We claim that [ai, bi] must still be a non-extreme flat inter-
val in û. To see this, observe that ŵai−1 = wai−1 + x and ŵai

= wai
+ x.

Since wai−1 6= wai by maximality, we have ŵai−1 6= ŵai . By a similar argu-
ment, ŵbi+1 6= ŵbi . And because all values in [ai, bi] have changed by the same
amount x, [ai, bi] is a (maximal) flat interval (note that we need the assumption
of no null positions to argue that all positions change by the same amount).
Moreover, [ai, bi] cannot be extreme. If instead [ai, bi] was in the extreme inter-
val containing w0, then we would have ŵh = 0 for all 0 ≤ h ≤ bi. In particular,
this would imply ŵai−1 = ŵai , contrary to what we just argued. The same
occurs if we assume that [ai, bi] is part of the extreme interval containing wn+1.

Now consider any flat interval [a, b] ∈ Fw \ F ′w. It is easy to see that [a, b] is
still a flat interval in ŵ, unless perhaps if b + 1 = a1 or a − 1 = bl. In these
cases, it is possible that ŵb = ŵa1

and/or ŵa = ŵbl . These have the effect of
“merging” two flat intervals, effectively eliminating [a1, b1] and/or [al, bl] (note
that the argument also holds when [a1, b1] or [al, bl] become part of an extreme
interval). Since every flat interval except these two stays in ŵ, it follows that
|Fŵ| ≥ |Fw| − 2. Then using induction,

df (u,v)− 1 = df (û,v) ≥ d(|Fw| − 3)/2e = d(|Fw| − 1)/2e − 1

and it follows that df (u,v) ≥ d(|Fw| − 1)/2e.

Lemma 4. Suppose that vi = vi+1 = 0 for some position i. Then removing
position i or i + 1, whichever is smaller in u, from u and v preserves the
distance between u and v. Formally, for any unit-cost function f , if ui ≥ ui+1,
then df (u,v) = df (u−{i+1},v−{i+1}). Similarly if ui+1 ≥ ui, then df (u,v) =
df (u−{i},v−{i}).

Proof of Lemma 4. Assume that ui ≥ ui+1 (the other case is identical). We
know that df (u,v) ≥ df (u−{i+1},v−{i+1}), by Proposition 1. We consider the
converse bound. Take any sequence E = (e1, . . . , ek) of events transforming
u−{i+1} into v−{i+1}. Modify E to transform u into v as follows: each event
affects the same positions as before (including those that have shifted after
reinserting i+1), but we ensure that every event affecting position i also affects
position i+ 1. To be formal, define E′ = (e′1, . . . , e

′
k) as follows. If ei increases

interval [a, b] by δ (which is possibly negative), then make e′i increase interval
[a′, b′] by δ, where

a′ =

{
a if a ≤ i
a+ 1 if a > i

b′ =

{
b if b < i

b+ 1 if b ≥ i
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Aside from the new position i in u and v, every position reaches the same value
as before. Also because ui ≥ ui+1, position i+ 1 reaches 0 after applying E′ on
u.

Lemma 5. Suppose vi = 0 for some position i and that wi−1 ≥ wi or wi+1 ≥ wi.
Then df (u,v) = df (u−{i},v−{i}) for any unit-cost function f .

Proof of Lemma 5. The proof is essentially the same as in Lemma 4. If, without
loss of generality, wi−1 ≥ wi, we can take an event sequence from u−{i} to v−{i}

and adapt it so that every event affecting position i − 1 also affects position i.
This guarantees that position i drops to 0. We omit the technical details.

Finding good events in time O(n log n)

We say that an event e is good if applying it on u reduces |Fw| by 2. Here we
present the detailed version of our improved heuristic. The main algorithm that
follows transforms u into v by making calls to the findGoodEvent subroutine,
which is defined afterwards.

Data: vectors u,v
Result: Find a sequence that transforms u into v
compute w := u− v;
initialize empty sequence S;
for u 6= v do

if findGoodEvent(u,v,w) returns (i, j, x) then
add (i, j, x) to S;
for k = i, ..., j do

uk = maxuk + x, 0
else

find the first flat interval [i, j] with wi 6= 0;
increase ui, . . . uj by −wi;
add (i, j,−wi) to S;

return S
Algorithm 1: Main algorithm

The algorithm findGoodEvent below can be implemented in time O(n log n).
Our goal is to find a range of values [i, j] that verifies wi−wi−1 = wj −wj+1 :=
−δ. We further need that δ > 0, or that δ < 0 and ∀k ∈ [i, j], uk ≥ −δ : we
can then apply the event (i, j, δ). To achieve this, the idea is simply to scan w
from left to right. Each time we detect a change of wk − wk+1, we check if we
encountered the same amount of change before at some position k′ (this is −δ
in the algorithm). If so, we can return the k, k′ pair since it can be part of a
good event. Otherwise, we map δ = wk+1 − wk to position k + 1 to store the
fact that k + 1 is the latest position that could be matched with a change of δ.
The last line of the for loop ensures that if we match two positions k′ < k, all
positions in-between are sufficiently high to allow a deletion of amount δ.
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Data: vectors u,v,w
Result: Find an event that reduces |Fw| by 2
initialization of an empty dictionary R;
for k = 1, ..., n− 2 do

δ := wk+1 − wk;
if δ == 0 then continue ;
if −δ ∈ R then

return (R[−δ], k, δ);
else

Set R[δ] = k + 1;
delete all the key/value pairs (x, y) in R with uk ≤ x;

return no possible event
Algorithm 2: findGoodEvent

We argue two components: that findGoodEvent does find a good event, if there
is one, and that it can be implemented to take time O(n log n).

Proof that Algorithm findGoodEvent returns an event (i, j, δ) that re-
duces |Fw| by 2 when it exists. Consider an output (i, j, δ). Due to the
construction, we had −δ ∈ R, which can only be inserted with −δ = wi − wi−1
and δ = wj+1 − wj , so wi−1 − wi = wj+1 − wj , in which case it is easy to see
that Fw is reduced by 2. Furthermore, if δ < 0 and we had some k ∈ [i, j] with
−uk > δ, the k-th iteration would have deleted δ from E. This means that
(i, j, δ) is indeed an event that reduces |Fw| and does not make any uk drop to
0.

Reciprocally, if there is an event (i, j, δ) to be found we want to prove that the
algorithm returns something (not necessarily the same event). If the algorithm
exits before iteration j, it returns some event that we have already proven must
be correct. Let us assume that we do not exit the loop before iteration j : we
have added −δ at rank i, and it is still in R because for every k ∈ [i, j] we did
not have −δ > uk by hypothesis. Since −δ is in E and wj+1 − wj = x, the
algorithm returns (i, j, δ).

Complexity. The complexity of findGoodEvent depends on the following
operations: we need to be able to test the existence of a value in a dictionary, to
add a key/value pair and, a bit less usual, to filter all values lower than a certain
amount (the last line of findGoodEvent). We can use a treap structure (see [1]),
which is a form of binary search tree that allows to split the values higher and
lower to a certain number in log n time. This gives us a total complexity of
O(n log(n)).
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