
Novel Keyboard Layout Optimization

Michael C. Mortenson∗ and Cassandra S. Sweeten†

Brigham Young University, Provo, UT, 84602

Since the advent of the invention of the typewriter in 1897 by Shoes, Glidden, and Soule,
keyboard layouts have been the subject of extensive research. Amidst many competing key-
board layouts, the 1972 QWERTY keyboard has gained traction and standard acceptance
with the rise of personal computers. However, the various drawbacks of the QWERTY layout,
which have been extensively researched and documented, have spurred research into alternate
keyboard layouts. Herein, a method for optimizing a alternate 30-key keyboard is presented
using a custom gradient-free genetic algorithm. The optimization relies on an effective distance
objective function which incorporates digraph frequency analysis, effectively bypassing uncer-
tainty in the literature regarding the commonly used Fitts-Digraph objective function. Finally,
a resulting optimal keyboard is presented and suggestions for further inquiry are elaborated.

I. Introduction

Keyboards are ubiquitous in today’s society. With an increase in computer technologies, including touch screen
computers, the need for an optimal keyboard has climbed. The now commonplace QWERTY keyboard was initially

introduced for the typewriter in 1972, primarily as a means of slowing down the typing speed to reduce jamming in
mechanical parts [1]. The mechanical issues of the keyboard have long since been resolved, but the QWERTY keyboard
remains through force of habit. Arguments in favor of replacing the QWERTY layout point to research that poorly
design keyboard layouts decrease efficiency, productivity, and potential health impacts [2–4]. While many might still
consider replacing the QWERTY keyboard inconceivable, alternate keyboard layouts have gained a small measure of
popularity, most notably the Dvorak keyboard, proposed by August Dvorak and William Dealey, which places the
vowels in the home row [5].

Three main courses of inquiry are often pursued in keyboard optimization problems: ergonomic optimization
(physical keyboard shape), ambiguous layout optimization (free-format key layout, especially popular in touch screen
applications), and normal layout optimization (set-format key layout focusing on pairing characters with keys). This
paper focuses on a normal layout optimization of a standard 3 x 10 grid, inspired by the current QWERTY layout
which is shown in Fig. 1. One popular objective function for keyboard layout was initially proposed by Paul M. Fitts
in 1954, known as the Fitts-digraph model or Fitts’ law [6]. A digraph is a sequential combination of two characters.
The Fitts-digraph model estimates typing time by taking into account key distances and digraph frequencies using
empirically determined coefficients. These coefficients have been the center of much scholarly debate, so this research
has opted to use the computationally inexpensive and physically unambiguous effective distance objective used by Bi et
al. [7–9].

Fig. 1 Typical 30-key QWERTY Keyboard Layout

Within normal layout optimization, some have pointed out that keyboard optimization depends heavily upon
the intended language of use [5, 7]. Additionally, the QWERTY keyboard layout favors left-handed users, with a
disproportionate number of the most common letters on the left half of the keyboard. This work seeks to address both of

∗Student, Mechanical Engineering Department.
†Student, Mechanical Engineering Department.

1

these challenges: intended language by the introduction of a C++ program for parsing through a text corpus for digraph
frequencies and handedness by proposing a mirrored keyboard layout option.

As a final note, it must be mentioned that a keyboard layout design is partially objective and partially subjective. It
can be objective in terms of the frequency the letters are used and how they are paired, as well as the ease of motion to
then select certain letters and symbols, but the subjective side is shown through human preferences often based on
aesthetics and ergonomics. While some have attempted to address this complexity through multi-objective optimization
[8], the optimal JESAN keyboard presented in this work is based on the authors subjective sensibilities.

This report compiles the work put towards creating a novel keyboard optimizer. The problem’s methodological
background and development, as well as rationales for decisions made and the resulting keyboard layout optimization
will be presented. Final results and findings will be presented and compared to similar works.

II. Methods
Optimizing to reduce the distance the fingers travel, we used an approach borrowed from Bi et al. [7] that uses an

effective distance objective function (1). The effective distance equation is formulated as follows:

3 =

=∑
8=1

=∑
9=1

�8 9 ∗ �8 9 (1)

Often optimizations use the value of n is 26, corresponding to the 26 Roman characters of the English alphabet. �8 9
is the frequency of the sequential combination of the 8th and 9 th letters, known as the digraph frequency. �8 9 is the
distance between the centers of the 8th and 9 th keys. This creates our objective function.

To create a matrix of digraph (two-character combination) frequencies, C++ script was created that takes an input
.txt file and creates an F matrix of digraph frequencies. This script is adaptable to other input files and could be used
to create a custom keyboard based on a specific text corpus. See Appendix A for an example F matrix of digraph
frequencies for Lewis Carroll’s Alice’s Adventures in Wonderland and the C++ code that created it.

In exploring optimization methods to solve the objective function, both gradient-based and gradient-free approaches
were considered. We selected the gradient-free approach to focus on developing further. Both methods are described
below.

A. Gradient-Based Approach
First a continuous gradient-based formulation of the problem was considered. This continuous formulation used the

x- and y-coordinates from each key as continuous design variables. The distances between keys were then calculated
from the x- and y-coordinates for the center of each key. Assuming circular keys with constraints to keep the centers
of each key a diameter apart from each other to avoid overlapping. Based on the predicted letter combination use, as
provided in the "Digraph Frequencies" file, the objective function determined the effective distance for the keyboard
layout.

By assuming circular keys, we were able to generate a matrix of constraints by ensuring that the centers of each key
were at least one unit away from all over key centers. Inequality constraints were of the form:

2 ≥ 1 −
√
(G1 − G2)2 + (H1 − H2)2 (2)

where the x- and y-values represent key center coordinates. To account for every key the problem required 252

constraints. The effective distance objective function and the constraint function were optimized using MATLAB’s
native constrained optimizer, fmincon.m. Due to the additional number of constraints that would be needed to constrain
the keyboard layout into 3 x 10 grid, this continuous formulation with gradient-based optimization was discarded as the
primary optimization method. See Appendix B for code.

B. Gradient-free Approach
Due to troubles with constraints in the gradient-based optimization, we turned to a gradient free approach with

discrete variables which avoided the need for constraints but required a different setup for the problem. Other researches
have used gradient-free optimization approaches including simulated annealing [10, 11], colony optimization [12], and
genetic algorithm optimization (GA) [13?]. For our gradient-free approach we selected a GA approach. Using the

2

same effective distance equation as the objective function, a predetermined keyboard format was introduced. This new
formulation used a rectangular keyboard shape with 3 rows of 10 keys (30 keys total) instead of the floating circular
design with only 26 keys. Indices 1 through 30 were used as discrete design variables. The 30 keys and 30 indices were
correlated with the 26 letters of the English alphabet and 4 punctuation marks: hyphen (-), period (.), comma (,), and the
question mark(?). Each key was given an index value based on a right-handed, alternating hand heuristic. The key
indices are shown in Fig. 2.

Fig. 2 Key indices for 3 x 10 keyboard layout

The genetic algorithm follows a typical process of population generation, selection, crossover, and mutation. For
population generation the two most common first letters of words in /text.itAlice’s Adventures in Wonderland, the letters
A and T, were set as a "seed" as the top two index positions to encourage a satisfactory output. The algorithm began with
with an initial population of 200 randomized keyboard layouts. In the selection portion of the code, the effective distance
was calculated and a mating pool was created. Child keyboard layouts were created using a tournament style crossover.
Then the the keyboard layouts we standardized in the mutation phase to remove duplicates and add in missing values,
ensuring each member of the population was a permutation of the numbers 1 through 30.A convergence check was then
completed by comparing the average effective distance of the population against the best fitness in the population. The
problem was considered converged when the population average and the population best were within an epsilon value of
10e-6. For comparison purposes, the results of the genetic algorithm were compared against results obtained using
MATLAB’s gradient-free Nelder-Mead optimizer, fminsearch.m. See Appendix B for code.

III. Results and Discussion

A. Gradient-based Results
The greatest advantage to the gradient-based method for the keyboard optimization problem was that it was relatively

efficient in converging to a solution. However, the number of constraints necessary to create a normal layout result
would have overwhelmed any efficiency gained from the gradient-based method.

With the continuous formulation of the problem, we didn’t have as much control over the shape of the keyboard.
However, the keyboard consistently formed a the honeycomb pattern as shown in Fig. 3. Although at times, the
optimizer ignored the constraints and overlapped keys, the gradient-based method worked well. If our objective had
been to pursue an ambiguous keyboard layout optimization, gradient-based optimization would have been the approach
of choice. Despite the lack of consistency in the output keyboard layout, the gradient-based optimization was integral in
understanding that the effective distance function has many local minima.

B. Gradient-free Results
Using Matlab’s built in Nelder-Mead approach, fminsearch.m, the 30 key layout was optimized, outputting many

solutions, one is shown in Fig. 4 below. Beginning with a random permutation of 30 indices, the average number of
function calls to solve the problem based on a sample of 100 starting vectors was 729 function calls, based on a range of
function evaluations from 479 to 6028 calls. This was likely due to the proximity of a given random starting point to an
optimum.

To compare to the custom genetic algorithm, on average, the algorithm converged in 50 generations (see Fig. 5.)
With 400 function calls made every generation, a average of about 20,000 function calls were made to solve the GA.
Due to the objective function being so simple, this was not a significant problem sine the algorithm solved in less than 3
seconds on our machines.

3

Fig. 3 A fmincon Optimized Keyboard

Fig. 4 A fminsearch optimized keyboard

A favorite optimized keyboard solution, the JESAN keyboard, is shown in Fig. 6.

IV. Conclusion
A common theme across all the optimizations was significant variation mainly due to the objective function’s many

local minima. The genetic algorithm compounds the output variety due to randomness in the starting population. In
a way, this is useful because it allows for some human selectivity and aesthetic preference to come into play when
choosing an optimal layout. On the other hand, it is frustrating to not have the optimizer land on the “best” solution
every time. Something that may be worth developing in future code is a feature to prevent punctuation marks on the
keyboard’s home row to help assure more aesthetically pleasing keyboards. Since the overall keyboard aesthetics is
a human judgement call, we chose to allow user preference. Future studies could study qualitative opinion of the
desirability of the aesthetics of different layouts. Consistent with our aesthetic preferences, we chose a favorite optimal

4

Fig. 5 Convergence of the custom genetic algorithm

Fig. 6 JESAN Keyboard created with the custom genetic algorithm

keyboard: the JESAN keyboard (Fig. 6.)
There are many additional routes to consider in improving this optimization. To improve the genetic algorithm,

different population sizes might be considered, as well as additional work on scaling the problem to try to decrease the
likelihood of finding local minima. The digraph frequency code could easily be adapted to work with different text
inputs. Foreign languages as well as different text formats, such as computer code or math-heavy writing, are attractive
candidates. Additionally, the optimization could be expanded to include shift functionality (doubling characters to key
locations) or to include another row of keys. Finally, a customized script could be created to track a user’s keystrokes
in real-time which could then be used to generate a personalized optimal keyboard. If the results of such personal
optimizations could be aggregated, a truly universal optimal keyboard might be possible. Such future research remains
untenable for now, but, should people’s opinions of the QWERTY keyboard layout sour, one thing is certain: there will
be an optimal keyboard layout ready to rise and take its place.

5

Appendix A

A
B

C
D

E
F

G
H

I
J

K
L

M
N

O
P

Q
R

S
T

U
V

W
X

Y
Z

-
.

,
?

A
0.
00
1
0.
24
7
0.
19
2
0.
50
5
0.
00
2
0.
06
8
0.
18
5
0.
02
7
0.
79
4
0.
01
3
0.
13
7
1.
07
3
0.
21
5
1.
82
6
0.
00
3
0.
12
3
0.
00
0
0.
81
5
1.
00
2
1.
33
0
0.
08
7
0.
18
8
0.
08
6
0.
00
8
0.
30
6
0.
00
5
0.
02
1
0.
01
3
0.
00
8
0.
00
1

B
0.
08
6
0.
07
1
0.
00
2
0.
00
1
0.
61
1
0.
00
0
0.
00
0
0.
00
0
0.
12
9
0.
00
8
0.
00
0
0.
12
8
0.
00
1
0.
00
0
0.
23
0
0.
00
0
0.
00
0
0.
06
4
0.
03
0
0.
00
9
0.
23
5
0.
00
0
0.
00
0
0.
00
0
0.
10
5
0.
00
0
0.
00
0
0.
00
3
0.
00
0
0.
00
0

C
0.
36
1
0.
00
0
0.
02
0
0.
00
4
0.
79
9
0.
00
0
0.
00
0
0.
51
6
0.
04
3
0.
00
0
0.
19
3
0.
08
8
0.
00
2
0.
00
0
0.
42
1
0.
00
0
0.
00
0
0.
12
3
0.
00
2
0.
14
4
0.
11
6
0.
00
0
0.
00
0
0.
00
0
0.
00
9
0.
00
0
0.
00
1
0.
00
1
0.
00
4
0.
00
0

D
0.
10
6
0.
00
2
0.
00
1
0.
07
2
0.
52
4
0.
01
2
0.
03
4
0.
00
2
0.
30
8
0.
00
1
0.
00
0
0.
06
6
0.
00
1
0.
05
8
0.
49
0
0.
00
0
0.
00
0
0.
09
6
0.
09
9
0.
00
5
0.
07
1
0.
02
6
0.
00
5
0.
00
0
0.
05
1
0.
00
0
0.
04
2
0.
22
2
0.
10
4
0.
00
9

E
0.
86
5
0.
01
7
0.
21
0
1.
07
4
0.
53
6
0.
09
8
0.
14
2
0.
03
6
0.
11
8
0.
00
1
0.
01
6
0.
50
4
0.
29
6
1.
09
6
0.
03
4
0.
16
7
0.
01
3
2.
09
7
0.
76
1
0.
42
9
0.
00
1
0.
21
8
0.
05
5
0.
18
4
0.
24
0
0.
01
5
0.
07
5
0.
55
6
0.
24
9
0.
04
0

F
0.
11
9
0.
00
0
0.
00
0
0.
00
0
0.
17
3
0.
13
4
0.
00
0
0.
00
0
0.
20
5
0.
00
0
0.
00
0
0.
03
6
0.
00
0
0.
00
0
0.
39
5
0.
00
0
0.
00
0
0.
10
6
0.
00
0
0.
08
8
0.
11
0
0.
00
0
0.
00
0
0.
00
0
0.
00
8
0.
00
0
0.
00
9
0.
06
5
0.
02
6
0.
00
5

G
0.
23
9
0.
00
0
0.
00
1
0.
00
0
0.
33
2
0.
00
0
0.
02
0
0.
35
2
0.
10
5
0.
00
1
0.
00
0
0.
06
6
0.
00
0
0.
01
4
0.
21
7
0.
00
2
0.
00
0
0.
22
6
0.
07
8
0.
00
3
0.
07
6
0.
00
0
0.
00
0
0.
00
0
0.
00
1
0.
00
1
0.
01
9
0.
10
9
0.
04
7
0.
00
9

H
1.
27
0
0.
00
5
0.
00
0
0.
00
1
4.
17
0
0.
00
1
0.
00
0
0.
00
0
0.
89
5
0.
00
1
0.
00
0
0.
00
6
0.
00
5
0.
00
3
0.
64
1
0.
00
0
0.
00
0
0.
09
0
0.
00
5
0.
25
7
0.
06
4
0.
00
0
0.
00
0
0.
00
0
0.
05
4
0.
00
0
0.
00
6
0.
09
4
0.
02
1
0.
00
4

I
0.
05
1
0.
03
0
0.
68
3
0.
76
2
0.
22
7
0.
19
9
0.
24
1
0.
00
0
0.
01
0
0.
00
0
0.
10
5
0.
41
4
0.
32
5
2.
30
3
0.
23
4
0.
02
4
0.
00
0
0.
24
4
0.
71
4
1.
49
7
0.
01
1
0.
13
5
0.
00
1
0.
01
1
0.
00
0
0.
03
1
0.
00
4
0.
00
3
0.
00
0
0.
00
1

J
0.
00
8
0.
00
0
0.
00
1
0.
00
0
0.
05
7
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
01
8
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
11
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0

K
0.
01
1
0.
00
0
0.
00
0
0.
00
0
0.
39
7
0.
00
0
0.
00
0
0.
00
0
0.
22
7
0.
00
0
0.
00
0
0.
02
4
0.
00
0
0.
15
0
0.
00
0
0.
00
0
0.
00
0
0.
00
1
0.
02
4
0.
00
1
0.
00
1
0.
00
0
0.
00
0
0.
00
0
0.
01
0
0.
00
0
0.
01
3
0.
05
0
0.
02
1
0.
00
4

L
0.
36
8
0.
00
4
0.
00
5
0.
36
9
0.
84
9
0.
15
5
0.
00
1
0.
00
0
0.
96
6
0.
00
0
0.
06
3
0.
79
0
0.
01
2
0.
00
0
0.
36
5
0.
01
3
0.
00
0
0.
00
5
0.
06
2
0.
06
5
0.
02
7
0.
01
3
0.
01
6
0.
00
0
0.
49
0
0.
00
0
0.
00
3
0.
08
6
0.
02
5
0.
00
5

M
0.
39
8
0.
07
0
0.
00
1
0.
00
0
0.
66
8
0.
01
1
0.
00
2
0.
00
0
0.
20
2
0.
00
0
0.
00
0
0.
00
3
0.
01
7
0.
01
8
0.
36
5
0.
09
4
0.
00
0
0.
00
0
0.
03
1
0.
00
0
0.
13
8
0.
00
0
0.
00
1
0.
00
0
0.
07
4
0.
00
0
0.
01
6
0.
06
2
0.
01
8
0.
00
2

N
0.
11
6
0.
02
5
0.
21
0
1.
44
5
0.
63
5
0.
03
0
1.
26
7
0.
00
2
0.
19
5
0.
00
3
0.
11
9
0.
09
6
0.
00
0
0.
05
9
0.
61
4
0.
00
2
0.
00
6
0.
00
2
0.
17
4
0.
79
8
0.
06
1
0.
02
4
0.
00
8
0.
01
8
0.
11
1
0.
00
0
0.
02
4
0.
23
2
0.
12
0
0.
01
8

O
0.
01
9
0.
04
2
0.
11
1
0.
11
5
0.
05
1
0.
73
3
0.
04
5
0.
04
8
0.
13
1
0.
03
5
0.
23
0
0.
18
9
0.
33
6
1.
26
5
0.
49
0
0.
13
7
0.
01
2
0.
85
4
0.
14
9
0.
49
3
1.
76
9
0.
10
3
0.
59
5
0.
01
4
0.
01
6
0.
00
2
0.
01
9
0.
07
4
0.
02
1
0.
00
8

P
0.
14
4
0.
00
3
0.
00
2
0.
00
1
0.
32
9
0.
00
0
0.
00
0
0.
06
8
0.
14
3
0.
00
0
0.
00
0
0.
20
9
0.
00
1
0.
00
0
0.
19
7
0.
12
7
0.
00
0
0.
17
6
0.
03
3
0.
06
4
0.
09
1
0.
00
0
0.
00
0
0.
00
0
0.
03
1
0.
00
0
0.
00
2
0.
02
6
0.
00
8
0.
00
3

Q
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
23
6
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
1
0.
00
0

R
0.
31
5
0.
00
1
0.
06
5
0.
19
4
1.
35
4
0.
01
1
0.
09
2
0.
02
0
0.
43
7
0.
00
0
0.
07
2
0.
06
1
0.
10
0
0.
10
2
0.
45
6
0.
07
5
0.
00
0
0.
10
3
0.
41
5
0.
28
9
0.
09
1
0.
01
0
0.
01
1
0.
00
0
0.
40
6
0.
00
0
0.
02
4
0.
17
8
0.
08
9
0.
01
4

S
0.
70
8
0.
00
1
0.
04
9
0.
00
0
0.
90
5
0.
00
2
0.
00
3
0.
92
3
0.
30
1
0.
00
0
0.
05
6
0.
07
4
0.
03
6
0.
06
0
0.
47
7
0.
09
8
0.
00
6
0.
00
0
0.
22
0
0.
70
1
0.
18
2
0.
00
1
0.
03
5
0.
00
0
0.
00
9
0.
00
0
0.
04
5
0.
30
3
0.
11
4
0.
01
9

T
0.
30
0
0.
00
3
0.
05
0
0.
00
1
0.
97
3
0.
01
6
0.
00
0
3.
93
1
0.
57
2
0.
00
0
0.
00
0
0.
31
4
0.
03
0
0.
01
5
1.
13
9
0.
00
5
0.
00
0
0.
19
7
0.
32
3
0.
37
0
0.
21
5
0.
00
0
0.
09
0
0.
00
0
0.
08
3
0.
00
0
0.
04
1
0.
32
6
0.
11
0
0.
03
9

U
0.
02
3
0.
03
8
0.
19
4
0.
07
3
0.
18
1
0.
00
5
0.
19
1
0.
00
0
0.
09
6
0.
00
0
0.
00
0
0.
37
8
0.
06
4
0.
28
7
0.
00
3
0.
22
9
0.
00
0
0.
59
6
0.
47
9
0.
69
3
0.
00
0
0.
00
8
0.
00
0
0.
00
0
0.
00
0
0.
01
5
0.
00
6
0.
03
6
0.
00
4
0.
01
2

V
0.
02
9
0.
00
0
0.
00
0
0.
00
0
0.
81
0
0.
00
0
0.
00
0
0.
00
0
0.
07
4
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
06
9
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
1
0.
00
1
0.
00
0
0.
00
0
0.
00
0
0.
00
3
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0

W
0.
64
0
0.
00
0
0.
00
0
0.
01
1
0.
39
1
0.
00
5
0.
00
0
0.
55
5
0.
41
8
0.
00
0
0.
00
0
0.
03
3
0.
00
0
0.
15
2
0.
31
0
0.
00
0
0.
00
0
0.
03
8
0.
02
6
0.
00
1
0.
00
0
0.
00
0
0.
00
1
0.
00
0
0.
00
2
0.
00
0
0.
01
1
0.
05
9
0.
03
3
0.
01
1

X
0.
01
4
0.
00
0
0.
01
6
0.
00
0
0.
02
8
0.
00
0
0.
00
0
0.
00
0
0.
02
5
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
03
2
0.
00
0
0.
00
0
0.
00
0
0.
10
3
0.
00
0
0.
00
0
0.
00
0
0.
00
8
0.
00
0
0.
00
0
0.
00
1
0.
00
4
0.
00
2
0.
00
1

Y
0.
01
4
0.
01
1
0.
00
2
0.
00
5
0.
10
7
0.
00
1
0.
00
0
0.
00
0
0.
05
6
0.
00
0
0.
00
0
0.
00
5
0.
00
6
0.
00
1
0.
60
4
0.
06
2
0.
00
0
0.
02
3
0.
04
8
0.
04
3
0.
00
0
0.
00
1
0.
00
3
0.
00
0
0.
00
3
0.
00
1
0.
03
3
0.
20
5
0.
08
8
0.
01
5

Z
0.
00
8
0.
00
0
0.
00
0
0.
00
0
0.
03
8
0.
00
0
0.
00
0
0.
00
0
0.
01
3
0.
00
0
0.
00
0
0.
01
5
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
2
0.
01
5
0.
00
0
0.
00
0
0.
00
0
0.
00
0

-
0.
04
5
0.
04
1
0.
00
9
0.
00
8
0.
01
8
0.
01
7
0.
00
4
0.
01
8
0.
03
2
0.
00
2
0.
00
1
0.
00
6
0.
01
1
0.
01
2
0.
03
5
0.
01
9
0.
00
0
0.
00
5
0.
01
8
0.
05
8
0.
00
6
0.
00
1
0.
02
4
0.
00
0
0.
00
8
0.
00
0
0.
28
3
0.
00
0
0.
00
0
0.
00
0

.
0.
00
4
0.
00
1
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
1
0.
00
2
0.
00
0
0.
00
0
0.
00
1
0.
00
0
0.
00
1
0.
00
3
0.
00
0
0.
00
0
0.
00
0
0.
00
1
0.
00
1
0.
00
0
0.
00
0
0.
00
2
0.
00
0
0.
00
0
0.
00
0
0.
00
0
0.
00
1
0.
00
0
0.
00
0

,
0.
09
3
0.
01
6
0.
02
6
0.
01
0
0.
01
0
0.
00
5
0.
00
6
0.
02
8
0.
10
6
0.
00
3
0.
00
1
0.
00
5
0.
00
3
0.
02
7
0.
03
0
0.
01
2
0.
00
0
0.
00
3
0.
03
0
0.
12
4
0.
00
2
0.
00
4
0.
07
2
0.
00
1
0.
03
2
0.
00
1
0.
00
9
0.
00
0
0.
00
2
0.
00
0

?
0.
00
1
0.
00
1
0.
00
1
0.
00
1
0.
00
0
0.
00
1
0.
00
0
0.
00
2
0.
01
9
0.
00
0
0.
00
0
0.
00
1
0.
00
2
0.
00
3
0.
00
4
0.
00
1
0.
00
0
0.
00
1
0.
00
3
0.
01
6
0.
00
0
0.
00
0
0.
00
5
0.
00
0
0.
00
5
0.
00
0
0.
00
4
0.
00
1
0.
00
1
0.
00
0

6

Here is the Digraph Frequency C++ code:

/* Digraph Frequency Analyzer
Michael Mortenson March 6, 2020

This program parses through a .txt file and generates
a matrix of digraph frequencies, which it then outputs
into a text document.

Created for ME EN 575
*/

#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
#include <array>
#include <cctype>
#define UNICODE
#define _UNICODE

using namespace std;

int main(int argc, char* argv[])
{

// Total number of keys (or letters) to be analyzed
size_t const numKeys(30);

// Initialize digraph frequency array variables
double freqArray[numKeys][numKeys] = { 0 };
double totalDigraphs(0);

// Choose characters to go with keys
string allChars;
allChars = "ABCDEFGHIJKLMNOPQRSTUVWXYZ-,.?";
string chars = allChars.substr(0, numKeys);

// Parse input text file
if (argc < 3)
{
cerr << "Please provide the name of the input and output files";
return 1;
}
ifstream in(argv[1]);
if (!in)
{
cerr << "Unable to open " << argv[1] << endl;
return 2;
}

7

ofstream out(argv[2]);
if (!out)
{
in.close();
cerr << "Unable to open " << argv[2] << " for output";
return 3;
}

// Read in file
string word;

while (!in.eof())
{
getline(in, word, ’ ’);
if (word[0] == ’\n’) { continue; }

//If word is one character, start loop over
if (word.size() == 1) { continue; }

//Convert to Uppercase
for (size_t i = 0; i < word.size(); ++i)
{
word[i] = toupper(word[i]);
}

//Remove extraneous characters
for (size_t i = 0; i < word.size();)
{
if (chars.find(word[i]) == string::npos)
{
word.erase(i, 1);
if (i != 0)
{
i = i - 1;
}

}
else if (word[i] == ’\n’)
{
word.erase(i, 1);
if (i != 0)
{
i = i - 1;
}
}
else
{
i = i + 1;
}
}

//If word is one character or empty, start loop over

8

if (word.size() <= 1) { continue; }

//Cycle through characters of word to get digraphs
char char1;
char char2;
size_t indexChar1;
size_t indexChar2;

for (size_t i = 0; i < word.size() - 1; ++i)
{
char1 = word[i];
char2 = word[i + 1];
indexChar1 = chars.find(char1);
indexChar2 = chars.find(char2);
freqArray[indexChar1][indexChar2] = freqArray[indexChar1][indexChar2] + 1;
totalDigraphs = totalDigraphs + 1;
}
}

//Normalize digraph frequencies by the total number of digraphs
for (size_t i = 0; i < numKeys; ++i)
{
for (size_t j = 0; j < numKeys; ++j)
{
freqArray[i][j] = freqArray[i][j] * 100 / totalDigraphs; // multiply by 100 to get percentages

out << setw(15) << left << freqArray[i][j];
}
out << ’\n’;
}

//Close file streams
in.close();
out.close();

return 0;
}

9

Appendix B
Here is the Gradient-Based Method code:

clc; clear all; close all;

numkeys = 26; %Number of Keys, can be changed
position = rand(numkeys*2,1); %Initial Guess

%-------Function Testing-------%
%[score] = obj(position);
%[c] = con(position);

%-------Digraph Weights Matrix-------%
global F
F = rand(numkeys,numkeys).*ones(numkeys,numkeys); %To be replaced
F = round(F,1,’significant’);

%-------fmincon settings-------%
func = @obj;
x0 = position; %starting guess
lb = []; %lower bound
ub = []; %upper bound
options = optimoptions(’fmincon’);
options.Display = ’iter-detailed’;
options.Algorithm = ’active-set’;
options.PlotFcn = @optimplotfirstorderopt;
%options.PlotFcn = {@optimplotx, @optimplotfval, @optimplotfirstorderopt};
global mu;

%-------Generate Solution-------%
[xopt2, fopt2] = fmincon(func, x0, [],[],[],[], lb, ub, @con, options);
xopt2 = [xopt2(1:numkeys),xopt2((numkeys+1):end)];
xcoords = xopt2(1:numkeys);
ycoords = xopt2((numkeys+1):end);

figure()
plotkeyboard(xcoords,ycoords)
hold off

%% FUNCTIONS

%-------Objective function: effective distance function-------%
function [score] = obj(position)

numkeys = length(position)/2;
global F

%Relative Distances [D]
D = zeros(numkeys,numkeys);
for i = 1:numkeys

for j = 1:numkeys
D(i,j) = dist(position(i),position(i+numkeys), position(j),position(j + numkeys));

end
end

10

%Score - function value to return
score = 0;
for i = 1:length(D)

for j = 1:length(D)
score = score + F(i,j).*D(i,j);

end
end

end

%-------Constraint Function-------%
function [c, ceq] = con(position)

numkeys = length(position)/2;
c = zeros(numkeys,numkeys);
for i = 1:numkeys

for j = 1:numkeys
c(i,j) = (1 - dist(position(i),position(i+numkeys),position(j),

position(j+numkeys))).*100;
end

c(i,i) = 0;
end
c = c’; %Transpose
c = c(:); %Turn Matrix to column vector
ceq = [];

end

%-------Distance between 2 points-------%
function [d] = dist(x1, y1, x2, y2)

d = sqrt((x1 - x2).^2 + (y1 - y2).^2);
end

%-------Plot the Keyboard-------%
function [] = plotkeyboard(x,y)

hold on
n = length(x);
r = 0.5;
for i = 1:n

angle = linspace(0,2*pi);
xpoints = r.*cos(angle) + x(i);
ypoints = r.*sin(angle) + y(i);
plot(xpoints,ypoints)

end

%Add letters to keys
L = strsplit(sprintf(’%c\n’,’A’:’z’)); % Letter Labels
text(x, y, L(1:length(x)), ’HorizontalAlignment’,’center’, ’VerticalAlignment’,’middle’)
title("Optimized Keyboard Layout")
axis equal

end

11

Here is the Custom Keyboard Genetic Algorithm Optimizer code:
%% Keyboard Genetic Algorithm Optimizer
% Michael Mortenson & Cassie Sweeten
% ME EN 575
%
% This program builds a optimum rectangular keyboard layout
% based on digraph (two-character combination) frequencies.
% The program uses a seed of the top two most common letters.
% A digraph frequency matrix can be created by running the
% DigraphFrequencyGenerator C++ program with an input .txt
% file.

clc; clear all; close all;

%-------Read in First Letter Frequency File-------%
Firsts = dlmread("FirstLetterFrequencies.txt"); %Must be in folder with the .m file

%-------Complete List of Keyboard Characters-------%
str = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ-,.?’;
for i = 1:length(str)

L(i) = strsplit(str(i));
end

%-------Select Anchor Letters-------%
firstIndex = find(Firsts == max(Firsts));
Firsts(firstIndex) = 0;
display("Anchor Letter RH: " + str(firstIndex));
secondIndex = find(Firsts == max(Firsts));
Firsts(secondIndex)= 0;
display("Anchor Letter LH: " + str(secondIndex));

%-------Read in Digraph Frequency File-------%
global F;
F = dlmread("DigraphFrequencies.txt"); %Must be in folder with .m file

%-------D Matrix-------%
global D;

D = [0,3,1,4,2,5,3,6,2,1,1,3.16227766016838,1.41421356237310,4.12310562561766,2.236067977
49979,5.09901951359278,3.16227766016838,6.08276253029822,2.23606797749979,1.41421356237310,
1,3.16227766016838,1.41421356237310,4.12310562561766,2.23606797749979,5.09901951359278,
3.16227766016838,6.08276253029822,2.23606797749979,1.41421356237310;3,0,4,1,5,2,6,3,1,2,
3.16227766016838,1,4.12310562561766,1.41421356237310,5.09901951359278,2.23606797749979,
6.08276253029822,3.16227766016838,1.41421356237310,2.23606797749979,3.16227766016838,1,
4.12310562561766,1.41421356237310,5.09901951359278,2.23606797749979,6.08276253029822,3.16
227766016838,1.41421356237310,2.23606797749979;1,4,0,5,1,6,2,7,3,2,1.41421356237310,4.123
10562561766,1,5.09901951359278,1.41421356237310,6.08276253029822,2.23606797749979,7.07106
781186548,3.16227766016838,2.23606797749979,1.41421356237310,4.12310562561766,1,5.0990195
1359278,1.41421356237310,6.08276253029822,2.23606797749979,7.07106781186548,3.16227766016
838,2.23606797749979;4,1,5,0,6,1,7,2,2,3,4.12310562561766,1.41421356237310,5.09901951359278,
1,6.08276253029822,1.41421356237310,7.07106781186548,2.23606797749979,2.23606797749979,
3.16227766016838,4.12310562561766,1.41421356237310,5.09901951359278,1,6.08276253029822,
1.41421356237310,7.07106781186548,2.23606797749979,2.23606797749979,3.16227766016838;2,5,
1,6,0,7,1,8,4,3,2.23606797749979,5.09901951359278,1.41421356237310,6.08276253029822,1,

12

7.07106781186548,1.41421356237310,8.06225774829855,4.12310562561766,3.16227766016838,
2.23606797749979,5.09901951359278,1.41421356237310,6.08276253029822,1,7.07106781186548,
1.41421356237310,8.06225774829855,4.12310562561766,3.16227766016838;5,2,6,1,7,0,8,1,3,4,
5.09901951359278,2.23606797749979,6.08276253029822,1.41421356237310,7.07106781186548,1,
8.06225774829855,1.41421356237310,3.16227766016838,4.12310562561766,5.09901951359278,
2.23606797749979,6.08276253029822,1.41421356237310,7.07106781186548,1,8.06225774829855,
1.41421356237310,3.16227766016838,4.12310562561766;3,6,2,7,1,8,0,9,5,4,3.16227766016838,
6.08276253029822,2.23606797749979,7.07106781186548,1.41421356237310,8.06225774829855,1,
9.05538513813742,5.09901951359278,4.12310562561766,3.16227766016838,6.08276253029822,
2.23606797749979,7.07106781186548,1.41421356237310,8.06225774829855,1,9.05538513813742,
5.09901951359278,4.12310562561766;6,3,7,2,8,1,9,0,4,5,6.08276253029822,3.16227766016838,
7.07106781186548,2.23606797749979,8.06225774829855,1.41421356237310,9.05538513813742,1,
4.12310562561766,5.09901951359278,6.08276253029822,3.16227766016838,7.07106781186548,
2.23606797749979,8.06225774829855,1.41421356237310,9.05538513813742,1,4.12310562561766,
5.09901951359278;2,1,3,2,4,3,5,4,0,1,2.23606797749979,1.41421356237310,3.16227766016838,
2.23606797749979,4.12310562561766,3.16227766016838,5.09901951359278,4.12310562561766,1,
1.41421356237310,2.23606797749979,1.41421356237310,3.16227766016838,2.23606797749979,
4.12310562561766,3.16227766016838,5.09901951359278,4.12310562561766,1,1.41421356237310;1,
2,2,3,3,4,4,5,1,0,1.41421356237310,2.23606797749979,2.23606797749979,3.16227766016838,
3.16227766016838,4.12310562561766,4.12310562561766,5.09901951359278,1.41421356237310,1,
1.41421356237310,2.23606797749979,2.23606797749979,3.16227766016838,3.16227766016838,4.12
310562561766,4.12310562561766,5.09901951359278,1.41421356237310,1;1,3.16227766016838,1.41
421356237310,4.12310562561766,2.23606797749979,5.09901951359278,3.16227766016838,6.082762
53029822,2.23606797749979,1.41421356237310,0,3,1,4,2,5,3,6,2,1,2,3.60555127546399,2.23606
797749979,4.47213595499958,2.82842712474619,5.38516480713450,3.60555127546399,6.324555320
33676,2.82842712474619,2.23606797749979;3.16227766016838,1,4.12310562561766,1.41421356237
310,5.09901951359278,2.23606797749979,6.08276253029822,3.16227766016838,1.41421356237310,
2.23606797749979,3,0,4,1,5,2,6,3,1,2,3.60555127546399,2,4.47213595499958,2.23606797749979,
5.38516480713450,2.82842712474619,6.32455532033676,3.60555127546399,2.23606797749979,
2.82842712474619;1.41421356237310,4.12310562561766,1,5.09901951359278,1.41421356237310,
6.08276253029822,2.23606797749979,7.07106781186548,3.16227766016838,2.23606797749979,1,4,
0,5,1,6,2,7,3,2,2.23606797749979,4.47213595499958,2,5.38516480713450,2.23606797749979,
6.32455532033676,2.82842712474619,7.28010988928052,3.60555127546399,2.82842712474619;
4.12310562561766,1.41421356237310,5.09901951359278,1,6.08276253029822,1.41421356237310,
7.07106781186548,2.23606797749979,2.23606797749979,3.16227766016838,4,1,5,0,6,1,7,2,2,3,
4.47213595499958,2.23606797749979,5.38516480713450,2,6.32455532033676,2.23606797749979,
7.28010988928052,2.82842712474619,2.82842712474619,3.60555127546399;2.23606797749979,
5.09901951359278,1.41421356237310,6.08276253029822,1,7.07106781186548,1.41421356237310,
8.06225774829855,4.12310562561766,3.16227766016838,2,5,1,6,0,7,1,8,4,3,2.82842712474619,
5.38516480713450,2.23606797749979,6.32455532033676,2,7.28010988928052,2.23606797749979,
8.24621125123532,4.47213595499958,3.60555127546399;5.09901951359278,2.23606797749979,
6.08276253029822,1.41421356237310,7.07106781186548,1,8.06225774829855,1.41421356237310,
3.16227766016838,4.12310562561766,5,2,6,1,7,0,8,1,3,4,5.38516480713450,2.82842712474619,
6.32455532033676,2.23606797749979,7.28010988928052,2,8.24621125123532,2.23606797749979,
3.60555127546399,4.47213595499958;3.16227766016838,6.08276253029822,2.23606797749979,7.07
106781186548,1.41421356237310,8.06225774829855,1,9.05538513813742,5.09901951359278,4.1231
0562561766,3,6,2,7,1,8,0,9,5,4,3.60555127546399,6.32455532033676,2.82842712474619,7.28010
988928052,2.23606797749979,8.24621125123532,2,9.21954445729289,5.38516480713450,4.4721359
5499958;6.08276253029822,3.16227766016838,7.07106781186548,2.23606797749979,8.06225774829
855,1.41421356237310,9.05538513813742,1,4.12310562561766,5.09901951359278,6,3,7,2,8,1,9,0,
4,5,6.32455532033676,3.60555127546399,7.28010988928052,2.82842712474619,8.24621125123532,
2.23606797749979,9.21954445729289,2,4.47213595499958,5.38516480713450;2.23606797749979,
1.41421356237310,3.16227766016838,2.23606797749979,4.12310562561766,3.16227766016838,
5.09901951359278,4.12310562561766,1,1.41421356237310,2,1,3,2,4,3,5,4,0,1,2.82842712474619,

13

2.23606797749979,3.60555127546399,2.82842712474619,4.47213595499958,3.60555127546399,5.38
516480713450,4.47213595499958,2,2.23606797749979;1.41421356237310,2.23606797749979,2.2360
6797749979,3.16227766016838,3.16227766016838,4.12310562561766,4.12310562561766,5.09901951
359278,1.41421356237310,1,1,2,2,3,3,4,4,5,1,0,2.23606797749979,2.82842712474619,2.8284271
2474619,3.60555127546399,3.60555127546399,4.47213595499958,4.47213595499958,5.38516480713
450,2.23606797749979,2;1,3.16227766016838,1.41421356237310,4.12310562561766,2.23606797749
979,5.09901951359278,3.16227766016838,6.08276253029822,2.23606797749979,1.41421356237310,
2,3.60555127546399,2.23606797749979,4.47213595499958,2.82842712474619,5.38516480713450,
3.60555127546399,6.32455532033676,2.82842712474619,2.23606797749979,0,3,1,4,2,5,3,6,2,1;
3.16227766016838,1,4.12310562561766,1.41421356237310,5.09901951359278,2.23606797749979,
6.08276253029822,3.16227766016838,1.41421356237310,2.23606797749979,3.60555127546399,2,
4.47213595499958,2.23606797749979,5.38516480713450,2.82842712474619,6.32455532033676,
3.60555127546399,2.23606797749979,2.82842712474619,3,0,4,1,5,2,6,3,1,2;1.41421356237310,
4.12310562561766,1,5.09901951359278,1.41421356237310,6.08276253029822,2.23606797749979,
7.07106781186548,3.16227766016838,2.23606797749979,2.23606797749979,4.47213595499958,2,
5.38516480713450,2.23606797749979,6.32455532033676,2.82842712474619,7.28010988928052,3.60
555127546399,2.82842712474619,1,4,0,5,1,6,2,7,3,2;4.12310562561766,1.41421356237310,5.099
01951359278,1,6.08276253029822,1.41421356237310,7.07106781186548,2.23606797749979,2.23606
797749979,3.16227766016838,4.47213595499958,2.23606797749979,5.38516480713450,2,6.3245553
2033676,2.23606797749979,7.28010988928052,2.82842712474619,2.82842712474619,3.60555127546
399,4,1,5,0,6,1,7,2,2,3;2.23606797749979,5.09901951359278,1.41421356237310,6.082762530298
22,1,7.07106781186548,1.41421356237310,8.06225774829855,4.12310562561766,3.16227766016838,
2.82842712474619,5.38516480713450,2.23606797749979,6.32455532033676,2,7.28010988928052,
2.23606797749979,8.24621125123532,4.47213595499958,3.60555127546399,2,5,1,6,0,7,1,8,4,3;
5.09901951359278,2.23606797749979,6.08276253029822,1.41421356237310,7.07106781186548,1,
8.06225774829855,1.41421356237310,3.16227766016838,4.12310562561766,5.38516480713450,2.82
842712474619,6.32455532033676,2.23606797749979,7.28010988928052,2,8.24621125123532,2.2360
6797749979,3.60555127546399,4.47213595499958,5,2,6,1,7,0,8,1,3,4;3.16227766016838,6.08276
253029822,2.23606797749979,7.07106781186548,1.41421356237310,8.06225774829855,1,9.0553851
3813742,5.09901951359278,4.12310562561766,3.60555127546399,6.32455532033676,2.82842712474
619,7.28010988928052,2.23606797749979,8.24621125123532,2,9.21954445729289,5.38516480713450,
4.47213595499958,3,6,2,7,1,8,0,9,5,4;6.08276253029822,3.16227766016838,7.07106781186548,
2.23606797749979,8.06225774829855,1.41421356237310,9.05538513813742,1,4.12310562561766,
5.09901951359278,6.32455532033676,3.60555127546399,7.28010988928052,2.82842712474619,
8.24621125123532,2.23606797749979,9.21954445729289,2,4.47213595499958,5.38516480713450,6,
3,7,2,8,1,9,0,4,5;2.23606797749979,1.41421356237310,3.16227766016838,2.23606797749979,
4.12310562561766,3.16227766016838,5.09901951359278,4.12310562561766,1,1.41421356237310,
2.82842712474619,2.23606797749979,3.60555127546399,2.82842712474619,4.47213595499958,
3.60555127546399,5.38516480713450,4.47213595499958,2,2.23606797749979,2,1,3,2,4,3,5,4,0,1;
1.41421356237310,2.23606797749979,2.23606797749979,3.16227766016838,3.16227766016838,
4.12310562561766,4.12310562561766,5.09901951359278,1.41421356237310,1,2.23606797749979,
2.82842712474619,2.82842712474619,3.60555127546399,3.60555127546399,4.47213595499958,
4.47213595499958,5.38516480713450,2.23606797749979,2,1,2,2,3,3,4,4,5,1,0];

%-------Generate Initial Population-------%
global popSize;
global numKeys;
popSize = 200;
numKeys = 30;
population = zeros(popSize,numKeys); %pre-allocate space

for i = 1:popSize
%Generate random population. Each row is an individual.
individual = randperm(numKeys);

14

%Save values in first two slots
slot1 = individual(1);
slot2 = individual(2);

%Find indices of most frequent letters
topGuyIndex = find(individual==firstIndex);
nextGuyIndex = find(individual == secondIndex);

if (topGuyIndex ~= firstIndex || topGuyIndex ~= secondIndex)
individual(topGuyIndex) = slot1;
individual(1) = firstIndex;

end

if (nextGuyIndex ~= firstIndex || nextGuyIndex ~= secondIndex)
individual(nextGuyIndex) = slot2;
individual(2) = secondIndex;

end
individual
population(i,:) = individual;

end

%Generate 100 Optimal Keyboards, plot top 10
%for l = 1:100

%-------Genetic optimizer-------%
generation = 0;
convergence = 0;
%while generation < 100
while convergence < 10

%Compute obj for each individual of the population
individualScore = zeros(popSize,1);
for i = 1:popSize

individualScore(i) = obj(population(i,:));
end

%Choose "Mating Pool"
meanScore = mean(individualScore);
pairs = randperm(popSize);
parentIndex = zeros(popSize/2,1);
for i = 1:length(pairs)/2

if individualScore(pairs(2*i)) > individualScore(pairs(2*i-1))
parentIndex(i) = pairs(2*i-1);

else
parentIndex(i) = pairs(2*i);

end
end
for i = 1:length(parentIndex)

newPopulation(i,:) = population(parentIndex(i),:);
end

15

%Crossover
children = zeros(length(parentIndex),numKeys);
for i = 1:length(parentIndex)/2

crosspoint = randi(numKeys);
children(2*i-1,:) = [newPopulation(2*i-1,1:crosspoint),

newPopulation(2*i-1,(crosspoint+1):end)];
children(2*i,:) = [newPopulation(2*i-1,1:crosspoint),

newPopulation(2*i,(crosspoint+1):end)];
end

%Mutate (fix) children
missingNum = [];
doubleNum = [];
missingIndex = [];
doubleIndex = [];

for i = 1:length(parentIndex)
individual = children(i,:);
for j = 1:numKeys

k = find(individual == j, 2);
if isempty(k) == 1

missingNum = [missingNum, j];
elseif length(k) > 1

doubleNum = [doubleNum, j];
doubleIndex = [doubleIndex, k];

end
end

for p = 1:length(missingNum)
individual(doubleIndex(2*p-1)) = missingNum(p);

end
children(i,:) = individual;
doubleNum = [];
doubleIndex = [];
missingNum = [];

end

%Add children to population
population = [newPopulation; children];

%Increment generation
generation = generation + 1;

% %Plot Generation
score = zeros(1,length(population));
for i = 1:length(population)

score(i) = obj(population(i,:));
%plot(gen,score(i),’*’)

end
best = min(score);
avg = mean(score);
diff = avg - best;
if diff < 10e-6

16

convergence = convergence + 1;
end
hold on
plot(generation,avg,’k*’,generation,best,’ro’)
xlabel("Generation")
ylabel("Fitness Score")
title("Convergence Plot")
legend("Average","Best")

end

%bestKeyboard(l,:) = population(1,:);
% l
%end

figure
plotKeyboard(population(1,:))

%% Plot 10 Best Keyboards
%
% for y = 1:10
% k = find(best == min(best));
% %Plot Keyboard Layout%
% figure()
% plotKeyboard(bestKeyboard(k,:))
% best(k) = 10;
% end

%% Functions Prison at the Bottom of the Sea

function [score] = obj(x)

global F;
global D;
global numKeys;
score = 0;

%-------Calculate Score-------%
for i = 1:numKeys

for j = 1:numKeys
score = score + F(i,j)*(D(x(i),x(j)));

end
end

end

%-------Plot Keyboard-------%
function [] = plotKeyboard(letterIndices)
global numKeys;

xKeyCoords = [0, -3, 1, -4, 2 -5, 3, -6, -2, -1, ...
0, -3, 1, -4, 2 -5, 3, -6, -2, -1, ...
0, -3, 1, -4, 2 -5, 3, -6, -2, -1];

17

yKeyCoords = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1];

hold on
%Horizontal Lines

xhor = [-6.5, 3.5];
yhor = [-1.5, -1.5];

plot(xhor,yhor,’k’)
xhor = [-6.5, 3.5];
yhor = [-.5, -.5];

plot(xhor,yhor,’k’)
xhor = [-6.5, 3.5];
yhor = [.5, .5];

plot(xhor,yhor,’k’)
xhor = [-6.5, 3.5];
yhor = [1.5, 1.5];

plot(xhor,yhor,’k’)

%Vertical Lines
xver = [-6.5, -6.5];
yver = [-1.5, 1.5];

plot(xver,yver,’k’)
xver = [-5.5, -5.5];
yver = [-1.5, 1.5];

plot(xver,yver,’k’)
xver = [-4.5, -4.5];
yver = [-1.5, 1.5];

plot(xver,yver,’k’)
xver = [-3.5, -3.5];
yver = [-1.5, 1.5];

plot(xver,yver,’k’)
xver = [-2.5, -2.5];
yver = [-1.5, 1.5];

plot(xver,yver,’k’)
xver = [-1.5, -1.5];
yver = [-1.5, 1.5];

plot(xver,yver,’k’)
xver = [-.5, -.5];
yver = [-1.5, 1.5];

plot(xver,yver,’k’)
xver = [.5, .5];
yver = [-1.5, 1.5];

plot(xver,yver,’k’)
xver = [1.5, 1.5];
yver = [-1.5, 1.5];

plot(xver,yver,’k’)
xver = [2.5, 2.5];
yver = [-1.5, 1.5];

plot(xver,yver,’k’)
xver = [3.5, 3.5];
yver = [-1.5, 1.5];

plot(xver,yver,’k’)
axis equal;

18

%Add letters to keys
str = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ-,.?’;
for i = 1:numKeys

L(i) = strsplit(str(letterIndices(i)));
end

text(xKeyCoords, yKeyCoords, L(1:numKeys), ’HorizontalAlignment’,’center’,
’VerticalAlignment’,’middle’)

title("Optimized Keyboard Layout")
end

References
[1] Zecevic, M. D., A., and Harburn, K., “An evaluation of the ergonomics of three computer keyboards,” Ergonomics, Vol. 43,

No. 1, 2000, p. 55–722.

[2] Lin, H. R.-H. C. J.-H., Ming-I B., and Ke, X.-M., “Usage position and virtual keyboard design affect upper-body kinematics,
discomfort, and usability during prolonged tablet typing,” PLoS ONE, 2015. https://doi.org/10.1371/journal.pone.0143585.

[3] McLoone, J. M. H.-C., Hugh E., Johnson, and W., P., “User-centered design and evaluation of a next generation fixed-split
ergonomic keyboard,” Work, Vol. 37, 2010, p. 445–456. https://doi.org/10.3233/WOR-2010-1109.

[4] Swanson, N. G., Galinsky, T. L., Cole, L. L., Pan, C. S., and Sauter, S. L., “The impact of keyboard design on comfort and
productivity in a text-entry task,” Applied Ergonomics, Vol. 28, 1997, pp. 9–16.

[5] Deshwal, P. S., and Deb, K., “Ergonomic Design of an Optimal Hindi Keyboard for Convenient Use,” 2006 IEEE Congress on
Evolutionary Computation, 2006, pp. 2187–2194. https://doi.org/10.1109/cec.2006.1688577.

[6] Fitts, P. M., “The information capacity of the human motor system in controlling the amplitude of movement,” Journal of
Experimental Psychology, Vol. 47, No. 6, 1954, pp. 381–391. https://doi.org/10.1037/h0055392.

[7] Bi, X., Smith, B. A., and Zhai, S., “Multilingual Touchscreen Keyboard Design and Optimization,” HUMAN–COMPUTER
INTERACTION, Vol. 27, 2012, p. 52–382. https://doi.org/0.1080/07370024.2012.678241.

[8] Qin, Z. S. L. Y.-H. K. Y.-J. B. X., R., “Optimal-Tp: An optimized T9-like keyboard for small touchscreen devices,”
ISS ’18: Proceedings of the 2018 ACM International Conference on Interactive Surfaces and Spaces, 2018, p. 137–146.
https://doi.org/10.1145/3279778.3279786.

[9] Yazdia, M. A. A., Negahbanb, A., Cavuotoc, L., and Megahed, F. M., “Optimization of Split Keyboard Design for Touchscreen
Devices,” INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION, Vol. 35, No. 6, 2019, pp. 468–477.

[10] Li, Y., Chen, L., and Goonetilleke, R. S., “A heuristic-based approach to optimize keyboard design forsingle-finger keying
applications,” International Journal of Industrial Ergonomics, Vol. 36, 2006, pp. 695–704.

[11] Light, L. W., and Anderson, P. G., “Typewriter keyboards via simulated annealing,” AI Expert, Vol. 27, 1993, p. 20.

[12] Wagner, Y. B. K.-S. F. D., Marc O., and Eggers, J., “Ergonomic modelling and optimization of the keyboard arrangement with
an ant colony optimization algorithm,” Technical report, 2001.

[13] Glover, D. E., “Solving a complex keyboard configuration problem through generalized adaptive search,” Genetic Algorithms
and Simulated Annealing, Vol. 27, 1987, pp. 12–31.

19

https://doi.org/10.1371/journal.pone.0143585
https://doi.org/10.3233/WOR-2010-1109
https://doi.org/10.1109/cec.2006.1688577
https://doi.org/10.1037/h0055392
https://doi.org/0.1080/07370024.2012.678241
https://doi.org/10.1145/3279778.3279786

	Introduction
	Methods
	Gradient-Based Approach
	Gradient-free Approach

	Results and Discussion
	Gradient-based Results
	Gradient-free Results

	Conclusion

