
Benchmark of Optimizers for Optimal Dispatch of
Nuclear Hybrid Energy Systems

Daniel Hill, Nicholas Cooper, Qinyu Zhu
ME 575 - Dr. Andrew Ning
Brigham Young University

Project report

Abstract— Over the last decade, more intermittent
renewable power has been introduced to the power grid,
causing instabilities in the power grid and fluctuations
in the price of electricity. Nuclear-renewable hybrid
energy systems (NHES) have been proposed as a potential
solution. These systems can take advantage of flexible
loads and energy storage to more flexibly meet the
demands of highly-dynamic power grids. Economical
operation of these systems requires careful optimization.
In this project, a simple NHES model is developed
to capture the dynamic operational behavior of these
systems. The operation of this model is then optimized
to minimize economic costs. A series of optimizers and
algorithms, including but not limited to SNOPT, SLSQP,
Nelder-Mead, and Fmincon, are then benchmarked for
the optimization process. The resulting strengths and
weaknesses of each solver for this problem domain are
then compared and reported.

I. BACKGROUND

Modern society depends heavily on access to
vast quantities of electrical energy, and there is a
strong interest in providing that energy in clean and
environmentally-responsible ways. As a result, the
amount of power generation coming from inter-
mittent renewable sources, such as wind and solar,
has increased dramatically in recent years [25].
These intermittent renewable sources have both
predictable and unpredictable variations, which
often pose significant challenges to the stability of
the modern power grid [7].

Nuclear-renewable hybrid energy systems
(NHES) are seen as a promising method of
reducing the environmental impact of the power
grid while integrating valuable renewable energy
sources and maintaining grid stability [10]. NHES
are systems that combine nuclear and renewable
power sources with one or more loads or energy

storage methods to enable highly flexible power
generation to the grid. Many varying models
of NHES have been developed in the literature
with a broad array of configurations and involved
components [23], [10], [31].

One set of related NHES systems are those
developed by Garcia et al. [10]. These two systems
both utilize a small modular reactor (SMR) with
a renewable energy source and a flexible load
to provide economical, clean power generation
capable of scaling rapidly to meet power demand.
One of the two systems utilized wind energy and a
natural gas reforming plant to convert natural gas
to gasoline during periods of low power demand.
The other system used solar energy together with
a water desalination plant, operating as a flexible
electrical load, to provide clean water during off-
peak periods. Both of these systems demonstrated
economical power production capable of reliably
facilitating higher penetration of renewable energy
sources.

Other examples of NHES include that of Zhao
et al. [31], where a thermal energy storage unit
was combined with an SMR and concentrating
solar plant, and Papaionnou et al. [23], where
both flexible thermal and electrical loads were
combined with an SMR and a wind farm.

Overall, the optimization of NHES provides a
unique class of problems. Current literature exam-
ples provide some insight into how these systems
may be optimized. Du et al. [8] found that hybrid
energy systems, not necessarily NHES, are often
very noisy and highly multi-modal. This motivated
their use of the Nelder-Mead [21] gradient-free
algorithm in their generalized optimization frame-
work for hybrid energy systems. Some authors,



such as Augutis, Martišauskas and Krikštolaitis[3],
and Ioannou et al. [15], used custom algorithms
using stochastic sampling for unit sizing, but did
not attempt to optimize dispatch. Other authors,
such as Baker et al. [4], used a nested-loop
approach. This approach, developed by multiple
authors at Idaho National Laboratories [1], [2], [9],
[26], [28], features inner and outer optimization
loops, where unit capacity sizing is handled in the
outer loop with a stochastic optimizer and dispatch
optimization is managed on the inner loop with
generic or custom methods.

The focus of this work is to determine which
optimizers are most suited to handling the dispatch
optimization problem for NHES. Once the best
method is determined, it can be used together
with the platform previously developed by Idaho
National Laboratories to perform effective opti-
mization of NHES and thereby help to enable
environmentally-responsible, robust power gener-
ation.

II. NHES MODEL

To facilitate benchmarking of the various solvers
for dispatch optimization of NHES, a sample
NHES model was developed. This model features
a nuclear reactor, variable renewable generation
sources, and a thermal energy storage unit, as
shown in Figure 1. At every point in time, the
NHES must match the dynamic load required by
the power grid and must stay within the upper
and lower temperature bounds set on the thermal
energy storage unit.

Fig. 1. Sample NHES configuration used for benchmarking

The change in thermal energy storage unit tem-
perature is accounted for by a single differential

equation given in Equation 1.

dT

dt
= (gen− loadnet)

masssalt
Cp,salt

(1)

Detailed parameters for the model are given in
Table I.

TABLE I

PARAMETERS USED THE SAMPLE NHES MODEL

Parameter Value Units
costnuclear 0.021 $/MWh
costramp 1 $/MW/h
costblackout 1 ∗ 1010 $/MW hr undersupply
costoversupply 1 ∗ 1010 $/MW hr overage
costoverramp 1 ∗ 1010 $/MW hr overramp
rampmax 2000 MW/hr
Cp,salt 1530 J/kg K
Tmin 300 K
Tmax 700 K
masssalt 6e8 kg
capacity 54000 MW
T0 350 K

Real power grid data for Oct 1 2019, taken from
the Texas ERCOT power grid [22], was used for
running this model. This allows capturing realistic
net load variations over the course of a typical day
on the scale required by a modern power grid.

In meeting this load, it was assumed that the
entire net load of the power grid would be met by
the sample NHES. While the results and discussion
refer to this NHES as if it were a single unit,
it would more accurately be a large number of
distributed smaller NHES operating on the grid.
Because of this, many system parameters, such as
ramp rate, are not realistic for a single NHES, but
rather reflect the combined effects of a number
of cooperating systems. Economic costs associated
with this model are also not intended to be accu-
rate to the real system, but rather simply act as
motivators for the optimization.

The objective of the optimization is to minimize
the daily operational cost of the NHES, by ad-
justing the nuclear generation at each time point
(gen). There are two different constraints in this
problem. One is the temperature of the thermal
storage unit at each time point (T), which should
be between 300 K to 700 K at each time point. The
other is the ramping rate of the nuclear generation
(dgen

dt
), which should not exceed rampmax. Since

we are benchmarking different optimizers and not



all the optimizers can directly handle constraints,
both constrained and penalized formulations of
the optimization problem are presented. In the
penalized formulation, the constraints are directly
added to the objective function through an external
penalty method.

Optimization algorithms capable of handling
constraints will be benchmarked against both
the constrained and penalized formulations, while
unconstrained optimizers will be benchmarked
against only the penalized formulation.

A. Constrained Formulation

In the constrained formulation, the objective
function consists of the cost of energy generation
and the cost of ramping up and down the reactor
core. The constraints are then implemented as
normal non-linear constraints as shown in Equation
2. The evaluations of the ramping rate and the tem-
perature profile are independent of the constrained
model, and are evaluated using separate functions
to reduce computational complexity.

minimize costramp
dgen

dt
+ costnuclear gen (2)

subject to Tmin < T < Tmax (3)
dgen

dt
< rampmax (4)

gen ≤ capacity (5)

B. Penalized Formulation

In the penalized formulation, the constraints are
added to the objective function using an external
penalty method, as shown in Equation 6. Due to
this interconnected nature of the constraints and
the objective function, this formulation requires
evaluating the constraints with every call to the
objective function.

minimize costramp
dgen

dt
+ costnuclear gen

+ costblackout max(0, T − Tmax)

+ costoversupply max(0, Tmin − T )

+ costoverramp

max(0,
dgen

dt
− rampmax)

(6)

III. RESULTS AND DISCUSSION

A number of gradient-based and gradient-free
optimizers were used to optimize the dispatch
of the sample NHES model described in Sec-
tion II. The algorithms that support constrained
optimization were benchmarked against both the
constrained and the penalized formulations of the
model, while unconstrained optimizers were only
benchmarked against the penalized formulation.

A number of key metrics were used for the
benchmarking process. These consisted of the final
value of the objective function itself, the number
of function calls required for convergence, and the
feasibility of the solution. The results for each
algorithm are listed under the respective headings
below and are summarized in Table II.

A. SLSQP

Both the constrained and penalty-based formu-
lations of the NHES model were solved using the
Sequential Least Squares Programming (SLSQP)
[16] method from the SciPy [29] Python package.
SLSQP is a well-known gradient-based method
for sequential quadratic programming (SQP) prob-
lems. Overall, this algorithm performed quite
poorly in both cases.

SLSQP required 8105 function calls to converge
to a final objective function value of $26499.0. The
resulting solution, shown in Figure 2, is feasible
and quite close to the true optimal solution. It is
important to note that the temperature constraints
were very slightly (7.4 ∗ 10−7) violated in this
solution. This is likely due to how the algorithm
deals with the constraints.

For the penalized formulation, SLSQP required
4794 function calls to converge to a final objective
function value of $9.6∗1012. This solution, shown
in Figure 3, is not feasible, clearly violating the
lower temperature constraint. It did, however, stay
within the ramp constraints. For this solution, it
is important to notice that the solution is quite
smooth, indicating that the solver can utilize the
correlated nature of the inputs.

B. Nelder-Mead

The gradient-free Nelder-Mead method [21] was
implemented using the SciPy [29] Python package.
It is incapable of handling bounds and constraints,



Fig. 2. SLSQP Optimal results for constrained formulation

Fig. 3. SLSQP Optimal results for penalized formulation

so only the penalized formulation of the model
could be used. The Nelder-Mead algorithm re-
quired 13135 function calls to converge to a final
objective function value of $6.7 ∗ 1013. The final
solution, shown in Figure 4, shows that some
minimal progress was being made, but the opti-
mizer exited before converging closer to the true
optimum. Ultimately, the large number of input
variables combined with the very tight feasible
solution space make the gradient-free Nelder-Mead
algorithm a poor choice for this system.

Fig. 4. Nelder-Mead optimization results

C. SNOPT

Both the constrained and penalized formulations
were solved using SNOPT [11], [12] and the
pyOptSparse [24] Python package. While SNOPT
supports gradients, it also has internal finite-
differencing methods for approximating gradients
if no gradients are given. In both formulations, the
SNOPT internal methods were used for approxi-
mating the gradients.

The SNOPT algorithm performed quite well on
both the constrained and penalized formulations.
The constrained optimization required 4248 func-
tion calls to converge to an objective function
value of $19077.5. This is nearly the same as
the solution produced by fmincon while using
approximately two-thirds of the function calls. The
final solution, shown in Figure 5, demonstrates a
very flat solution with no ramping and effective
use of the thermal energy storage unit.

For the penalized formulation, SNOPT required
6084 function calls to converge to an objective
function value of $19146.9. This result is some-
what more computationally demanding that con-
strained counterpart, but achieves nearly the same
level of accuracy. The optimal solution is visually
identical to that of the constrained optimization
shown in Figure 5, so the plot is omitted for
brevity.



Fig. 5. Optimal results from SNOPT constrained method

D. GEKKO

GEKKO [5], a Python package for dynamic
optimization, contains options for interfacing with
IPOPT [30] - an interior point constrained opti-
mizer, and other optimizers either widely used or
unique to GEKKO. There were difficulties formu-
lating the NHES problem to work well with these
optimizers through GEKKO, thus no solutions can
be presented at this time. However, some initial
tests varying the initial guess and generation pa-
rameters allowed GEKKO to solve the problem
with three of its default optimizers, including
IPOPT. Time did not allow further analysis, but
will be beneficial to explore this behavior in future
research.

E. Pyomo

Pyomo [13], [14] is a Python package designed
for modeling and interfacing with a substantial list
of optimizers. A major benefit of using modeling
packages such as Pyomo and GEKKO [5] is their
ability to use automatic differentiation in optimiza-
tion. Unfortunately, similar to attempts made to
use the GEKKO package, there were difficulties
formulating the NHES problem so that Pyomo
could correctly pass it to an optimizer. Future use
of modeling software such as Pyomo and GEKKO
will likely yield promising results.

F. Genetic Algorithms

Part of the motivation for the NHES problem is
to explore the load-following capability of the sys-
tem. Gradient-based optimizers yield solutions that
are near steady state (for the specific parameters
used in this experiment). The interest in gradient-
free optimizers and genetic algorithms (GAs) in
particular was to see if the increased variation
of design variables could find a global solution
with more obvious load-following behavior. Two
genetic algorithms were used:

• SciPy’s differential evolution [29], [27]
• geneticOpt - a simple implementation for con-

strained optimization using the feasibility rule
[17]

The results from SciPy’s algorithm can be seen
in Figure 7 for the constrained objective, and
Figure 6 for the penalized objective. It is obvious
that the algorithm performs much better for the
penalized model than for the constrained model.
As the model is time-based, we are looking for
smooth curves as an indication of whether the
optimizer can tell that each point influences the
next point. SciPy’s algorithm with the constrained
model clearly does not gain this sense through
the optimization, while the same algorithm with
the penalized model does. The optimized cost
produced with the penalized model is $25793.0,
while the constrained optimization produces an
infeasible solution with a cost of $4.4 ∗ 1015. The
algorithm fails to report the number of function
evaluations, presumably because it was unable to
find a feasible solution. It is important to note
that the capability of the differential evolution al-
gorithm to handle constraints is very new and
was just released in SciPy version 1.4.0. This
could possibly explain the poor performance for
the constrained model. In any case, it would be
interesting to test this algorithm again in the future.

The results from the custom GA (geneticOpt)
can be seen in Figure 8. the custom GA was
only run with the constrained model. The custom
GA performs similarly to SciPy’s GA with the
penalized model, but is slightly better with a cost
of $25608.4. The custom GA is also less computa-
tionally expensive, requiring 72821 function calls
where SciPy’s GA requires 114840 function calls.
Both algorithms are very computationally expen-



Fig. 6. Optimal results from differential evolution penalized
method

Fig. 7. Optimal results from differential evolution constrained
method

sive and require around 10 minutes to complete
the optimization, while there is no guarantee that
either algorithm will converge every time.

G. Trust Region
SciPy [29] has several implementations of trust

region methods in the scipy.optimize.minimize
package. The ”trust-constr” method [6] was se-
lected for this project as it is designed to handle
constraints. Trust region methods can be consid-
ered gradient-free or gradient-based, and this spe-
cific algorithm is gradient-based. The distinguish-

Fig. 8. Optimal results from the constrained geneticOpt custom
GA

ing attribute of trust region methods as opposed
to line searches is that they choose a distance
to search, then a direction. This algorithm seems
to find solutions similar to those found by other
gradient-based optimizers. Results for the penal-
ized model can be seen in Figure 9, and for the
constrained model in Figure 10. The algorithm per-
formed similarly for each model in terms of cost
(penalized model: $21737.0, constrained model:
$21510.9) with the constrained model yielding the
lower cost. However, for the constrained model,
the algorithm required ten times as many function
calls as was required for the penalized model
(penalized: 25025, constrained: 347825). Although
this trust region implementation can produce very
reasonable solutions, the computational expense is
too large compared to other methods. In future
work, it may be beneficial to test other trust region
methods or develop a customized implementation.

H. Fmincon
Both the constrained and penalty-based models

were solved by the Sequential Quadratic Pro-
gramming (SQP) algorithm using fmincon in Mat-
lab optimization toolbox[18], [19]. This method
was chosen because SQP is an iterative approach
for solving non-linear constrained problems. And
in our case, approximating the problem with a
quadratic model might be a cheaper way due to
the complexity of the model. The built-in finite-



Fig. 9. Optimal results from the penalized model with the trust
region method

Fig. 10. Optimal results from the constrained model with the trust
region method

differencing method, more specifically the forward
differencing method, was used for approximating
the gradients. And for this model, though the
objective function and variables are pretty much on
the same order of magnitude, the ’ScaleProblem’
option was set ’true’ for numerical reasons.

The penalty-based model took 10 iterations to
converge to an utterly feasible result, and the
total number of function calls is only 279. The
optimized cost is $19672.5. The optimized nuclear
generation and temperature profile are plotted in

Figure 11, which is entirely feasible in terms of
the temperature constraints and ramping rate.

Figure 12 shows the result of fmincon optimized
constrained model. As we can observe from the
plot, the optimized solution is pretty close to that
of the penalty-based model, except for that the
optimized nuclear generation line is even flatter.
And the optimized cost of NHES is $19077.1,
which further decreases the cost by 3% compared
to that of the penalty-based model. This improve-
ment took 257 iterations and 6683 function calls.

Fig. 11. Fmincon optimal results of penalty-based model

Fig. 12. Fmincon optimal results of constrained model



I. Fminunc

Only the penalty-based model was optimized by
quasi-newton method[20] using fminunc in Mat-
lab optimization toolbox[18], [19], since fminunc
does not take any constraints. The quasi-newton
method is a second-order optimization algorithm
that solves unconstrained problems. The reason
for using this method is that it approximates
the inverse of hessian, which should give us a
better search direction without being overly ex-
pensive. Again, the gradients were numerically
approximated using forward differencing, and the
’ScaleProblem’ option was set ’true’ for numerical
reasons. The results are plotted in Figure 13. The
solution does not violate either the temperature
constraints or the ramping rate bounds. The op-
timization took only 3 iterations, and 275 func-
tion calls in total. However, the optimized cost
is $24313.6, and this value is higher than both
value optimized using fmincon. The quasi-newton
method is better at searching for local optimum.
If we start with a random initial condition that is
not even close to the global optimum, this method
might not give a decent solution.

Fig. 13. Fminunc optimal results of penalty-based model

IV. SUMMARY

The results are summarized in Table II. As
shown in the table, fmincon using the constrained
model gives optimal results. However, it is also

costly, and it takes 6683 function calls, which
is almost twice the number of function calls of
SNOPT using the constrained model, while only
improving the result by 0.03%. The constrained
model generally works better and is more expen-
sive when compared to the penalized model, which
is reasonable since penalized methods approximate
the actual problem using a series of unconstrained
sub-problems, and it is hard to perform further op-
timization when the current solution is near the ac-
tual optimum. And when comparing the gradient-
based and gradient-free method, it is obvious that
the gradient-based method is more efficient and
is capable of correlating the variables at different
time points, while the gradient-free method is very
expensive and the results are not reproducible due
to its stochastic nature. One more thing to men-
tion is that the results from the penalized model
and gradient-free optimizer are pretty sensitive to
scaling, which is not considered as a priority in this
project. The original model also includes the one-
time capital cost of molten salt, which significantly
increase the total cost and scaling makes a huge
difference in that case, as indicated by the results
from fmincon with ’ScaleProblem’ option on or
off(not shown in the report). The current model
brings the objective and design variable to the
same order of magnitude; thus, scaling is not a
significant impact factor.

TABLE II

SUMMARY OF THE RESULTS OF VARIOUS ALGORITHMS APPLIED

TO THE SAMPLE NHES MODELS

Algorithm Type Feasible Calls Optimal cost
Fmincon Constrained Yes 6683 19077.1
SNOPT Constrained Yes 4248 19077.5
SNOPT Penalized Yes 6084 19146.9
Fmincon Penalized Yes 279 19672.5
Trust Region Constrained Yes 347825 21510.9
Trust Region Penalized Yes 25025 21737.0
Fminunc Penalized Yes 275 24313.6
Custom GA Constrained Yes 72821 25608.4
Scipy GA Penalized Yes 114840 25793.0
SLSQP Constrained Yes 8105 26499.0
SLSQP Penalized No 4794 9.6 ∗ 1012
Nelder-Mead Penalized No 13135 6.8 ∗ 1013
Scipy GA Constrained No - 4.4 ∗ 1015

Overall, most of the optimizers generated desir-
able results. However, this model is still limited.
This simple prototype model of NHES gives opti-



mum for the selected load data. But in reality, the
grid demand is not merely a repeated set of data.
Instead, it is more dynamic and stochastic. And
this might be improved in the future with further
modifications.

V. CONCLUSIONS AND FUTURE WORK

The model presented in this project has been
simplified, and is a generalization of how nuclear
hybrid energy systems might run. There is still
much work to be done in order to form a physical
model that is more realistic and thus more helpful
in developing a real-world design. Specifically,
some elements that should be studied include
implementing model predictive control methods
for real-time applications, further examining the
dynamics of power grid economics, and combining
an optimal system design with dispatch optimiza-
tions such as the ones that have been run here.

Additional work should also be done with the
formation of the optimization model. As this prob-
lem was studied, it became clear that not all op-
timizers are effective with this kind of time-based
problem. The results of this project show that
the most efficient and effective methods are con-
strained sequential quadratic programming (SQP)
optimizers. Interior point optimizers were not suc-
cessfully benchmarked, but they would potentially
yield similar results. There are many reasons why
some optimizers perform more poorly than others,
and the formulation of the problem usually deter-
mines whether an optimizer is successful or not. In
this project some scaling of design variables and
constraints was used, but inconsistently. In future
work, it will be essential to determine the effect of
scaling on all inputs, outputs, and constraints.

Other techniques that might be advantageous to
study in this problem include methods of optimiza-
tion under uncertainty and surrogate-based opti-
mization. The load on an NHES always involves
some degree of uncertainty. Using load data that
has been collected previously, it would be bene-
ficial to quantify that uncertainty and include it
in the optimization model. If an optimal surrogate
model can be developed, surrogate-based optimiza-
tion could be useful to simplify calculations and
obtain better gradients. This will be most effective
as the complexity of the problem increases with
more realistic elements and parameters.
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