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World Health Organization Situation Report
Source: WHO, April 9, 2020 – 2 months later

Figure 1. Epidemic curve of confirmed COVID-19, by date of report and WHO region through 9 April 2020  
  
 
 

 
 
 
 
 

 
 
 

STRATEGIC OBJECTIVES 
 
WHO’s strategic objectives for this response are to: 
 

• Interrupt human-to-human transmission including reducing secondary infections among close contacts 
and health care workers, preventing transmission amplification events, and preventing further 
international spread*;  

• Identify, isolate and care for patients early, including providing optimized care for infected patients; 
• Identify and reduce transmission from the animal source; 
• Address crucial unknowns regarding clinical severity, extent of transmission and infection, treatment 

options, and accelerate the development of diagnostics, therapeutics and vaccines; 
• Communicate critical risk and event information to all communities and counter misinformation; 
• Minimize social and economic impact through multisectoral partnerships. 

 
*This can be achieved through a combination of public health measures, such as rapid identification, diagnosis 
and management of the cases, identification and follow up of the contacts, infection prevention and control in 
health care settings, implementation of health measures for travelers, awareness-raising in the population and 
risk communication. 

 
  

 
 
 
 
 
 

 
Data as received by WHO from national authorities by 10:00 CET, 9 April 2020 
       

Coronavirus disease 2019 (COVID-19) 
Situation Report – 80 

 
 

HIGHLIGHTS 
 
• No new country/territory/area reported cases of COVID-19 in the past 24 

hours. 

• The daily situation report will now report the COVID-19 transmission scenario 
for each country using the definitions published in the updated global 
surveillance guidance published on 20 March (here). Transmission scenarios 
are self-reported by Member States to WHO. The determination of 
transmission scenario is still pending for some Member States. The 
transmission scenarios are: no confirmed cases, sporadic cases, clusters of 
cases, and community transmission. For definitions and more details, see the 
footnote under Table 1 below.  
 

• As millions of Christians, Jews and Muslims celebrate Easter, Passover and 
Ramadan, WHO has released guidance for religious leaders and faith-based 
communities in the context of COVID-19. This is available here. For more on 
this topic, see the ‘Subject in Focus’ below. 

 
• Today marks 100 days since WHO was notified of the first cases of 

“pneumonia with unknown cause” in China. In yesterday’s media briefing, 
Director-General Dr Tedros recalled the work that WHO and its partners have 
been doing over this period and the continuing efforts to stop the pandemic in 
five key areas. Find more details here.   
 
 

 
Figure 1. Countries, territories or areas with reported confirmed cases of COVID-19, 9 April 2020   
 

 

 

SITUATION IN NUMBERS 
total (new) cases in last 24 hours 

 
Globally  
1 436 198 confirmed (82 837)                 
85 521 deaths (6286) 
 
European Region 
759 661 confirmed (39 442) 
61 516 deaths (3877) 
 
Region of the Americas 
454 710 confirmed (37 294)                 
14 774 deaths (2177) 
 
Western Pacific Region 
115 852 confirmed (1185)                 
3944 deaths (22) 
 

Eastern Mediterranean Region 
85 350 confirmed (3357)                 
4459 deaths (145) 
 
South-East Asia Region 
11 576 confirmed (869)                 
468 deaths (42) 
 
African Region 
8337 confirmed (690)    
349 deaths (23) 
 
WHO RISK ASSESSMENT 
Global Level Very High 
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April 14, 400K new cases
and 30K new deaths in 5 days

 
  

 
 
 
 
 

 Data as received by WHO from national authorities by 10:00 CET, 14 April 2020 
       

Coronavirus disease 2019 (COVID-19) 
Situation Report – 85 

 
 

HIGHLIGHTS 
 
• No new country/territory/area reported cases of COVID-19 in the past 24 

hours.  

• The number of confirmed cases reported by countries reflects national 

laboratory testing capacity and strategy, thus the interpretation of the number 

of cases reported should take this into account. 

• WHO has published interim guidance on oxygen sources and distribution 

strategies for COVID-19 treatment. The document describes how to quantify 

oxygen demand, identify oxygen sources that are available, and select 

appropriate surge sources to best respond to COVID-19 patients’ needs, 
especially in low-and-middle income countries. For more details, please see 

here. 

• The Director-General thanked the United Kingdom for its generous 

contribution of £200 million to the global response to COVID-19, an act which 

he described as a ‘demonstration of global solidarity’. His opening remarks at 

yesterday’s press conference are available here. 

 

• A group of scientists, physicians, funders and manufacturers from around the 

world have pledged to collaborate, in coordination with WHO, to help speed 

up the availability of a vaccine against COVID-19. Their statement can be 

found, against here. 

 

 
Figure 1. Countries, territories or areas with reported confirmed cases of COVID-19, 14 April 2020   
 

 
 

 

SITUATION IN NUMBERS 
total (new cases in last 24 hours) 

 
Globally  
1 844 863 confirmed (71 779)                 
117 021 deaths (5369) 
 
European Region 
943 272 confirmed (29 923) 
80 712 deaths (3293) 
 
Region of the Americas 
644 986 confirmed (34 244)                 
25 551 deaths (1792) 
 
Western Pacific Region 
122 805 confirmed (1379)                 
4161 deaths (36) 
 

Eastern Mediterranean Region 
103 638 confirmed (3925)                 
5255 deaths (148) 
 

South-East Asia Region 
18 663 confirmed (1780)                 
829 deaths (63) 
 

African Region 
10 787 confirmed (528)    
501 deaths (37) 
 

WHO RISK ASSESSMENT 
Global Level Very High 
  

 
 
 
 
 
 

 
 

 

 
 

      

 

 

 

  
  
  
          



Today’s Talk

Part 1 – Dynamical Foundations of Epidemics 
strength, speed, and size

Part 2 – Dynamics and Control 
how we got to where we are now

Part 3 – Long-term strategies 
how we might get out, in the absence of pharmaceutical 
interventions
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Basic reproductive number, “R0”
Equal to the average number of new infections per sick person
Indirectly measured

Fatality rate
(directly 

measured)

(R0) 



Source: NY Times, Feb 7, 2020

Fatality rate
(directly 

measured)

Basic reproductive number, “R0”
Equal to the average number of new infections per sick person
Indirectly measured

Early Question Motivating Work:
How certain should we be about estimates of the 

strength – R0 – of a disease at the outset of an outbreak?

(R0) 
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Tentative conclusion: Many values of R0 can be 
compatible with the same observed rate of increase in 
cases – even if projected outbreak sizes are different.



SIR Model - Basics
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S I R

�

TI

Population “Classes”

S – The number of susceptible individuals

I – The number of infectious individuals

R – The number of “removed” individuals 
(through recovery or, possibly, death)

Mechanisms

Infection: Requiring contact 
between a S and a I individual 
at rate b.

Recovery: After a period of 
infectiousness of average 
duration TI.



SIR Model – Initial Dynamics
Depend on Basic Reproductive Number, R0
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The expected number of cases, initially changes like:
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The expected number of cases, initially changes like:

where

İ =
I

TI
(R0 � 1)

R0 ⌘
infections per timez}|{

� ⇥
infectious periodz}|{

TI

SIR Model – Initial Dynamics
Depend on Basic Reproductive Number, R0
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The expected number of cases, initially changes like:

where

such that

• Disease spreads whenever the  average number of new cases 
exceeds unity, i.e: 

• The increase is exponential

İ =
I

TI
(R0 � 1)

R0 ⌘
infections per timez}|{

� ⇥
infectious periodz}|{

TI

R0 > 1

SIR Model – Initial Dynamics
Depend on Basic Reproductive Number, R0
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Estimating, R0, for 2019-nCoV

Basic reproductive
number R0

Mean generation
interval Ḡ (days)

Generation-interval
dispersion 

Study 1 1.5–3.5 10 1 Bedford et al. [4]
Study 2 2.5 (1.5–3.5)⇤ 8.4 unspecified† Imai et al. [5]
Study 3 2.92 (95% CI: 2.28–3.67) 8.4 0.2 Liu et al. [6]
Study 4 3.8 (95% CI: 3.6–4.0) 7.6 0.5 Read et al. [8]
Study 5 2.2 (90% CI: 1.4–3.8) 7–14 0.5 Riou and Althaus [10]
Study 6 5.47 (95% CI: 4.16–7.10)‡ 7.6–8.4 0.2 Zhao et al. [9]
Study 7 2.0–3.1 6–10 0 Majumder and Mandl [7]

Table 1: Reported estimates of the basic reproductive number and the assump-
tions about the generation-interval distributions. Estimates of R0 and their assump-
tions about the shape of the generation interval distributions were collected from 7 studies.
⇤We treat these intervals as a 95% confidence interval in our analysis. †We assume  = 0.5
in our analysis. ‡The authors presented R0 estimates under di↵erent assumptions regarding
the reporting rate; we use their baseline scenario in our analysis to remain consistent with
other studies, which do not account for changes in the reporting rate.

2 Methods

2.1 Description of the studies

We gathered information on estimates of R0 and their assumptions about the underlying
generation-interval distributions from 7 articles that were published online between January
23–26, 2020 (Table 1). Five studies [6–10] were uploaded to pre-print servers (bioRxiv,
medRxiv, and SSRN); one report was posted on the web site of Imperial College London [5];
and one report was posted on nextstrain.org [4]. Their modeling approaches vary widely: a
branching process model [4, 5, 10], a deterministic Susceptible-Exposed-Infected-Recovered
(SEIR) model [8], an exponential growth model [9], a Poisson o↵spring distribution model
[6], and the Incidence Decay and Exponential Adjustment (IDEA) model [7]. Four studies
estimated R0 by directly fitting their models to incidence data [6–9]. The remaining three
studies estimated R0 by comparing the predicted number of cases from their models with
the estimated number of total cases by January 18 (between 1,000 and 9,7000 [15]) Some
of these studies have now been published in peer-reviewed journals [16, 17] or have been
updated with better uncertainty quantification [18].

2.2 Gamma approximation framework for linking r and R0

Early in an outbreak, R0 is di�cult to estimate directly; instead, R0 is often inferred from
the exponential growth rate r, which can be estimated reliably from incidence data [19].
Given an estimate of the exponential growth rate r and an intrinsic generation-interval
distribution g(⌧) [20], the basic reproductive number can be estimated via the Euler-Lotka
equation [13]:

1/R0 =

Z
exp(�r⌧)g(⌧) d⌧. (1)

5

 .CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not peer-reviewed)

The copyright holder for this preprint  . http://dx.doi.org/10.1101/2020.01.30.20019877doi: medRxiv preprint first posted online Feb. 2, 2020 ; 

Many model choices:
Branching process 
SEIR model (like SIR but with an asymptomatic class)
Exponential growth…
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Estimating, R0, for 2019-nCoV
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5

 .CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not peer-reviewed)

The copyright holder for this preprint  . http://dx.doi.org/10.1101/2020.01.30.20019877doi: medRxiv preprint first posted online Feb. 2, 2020 ; 

Many model choices & latent assumptions:
Branching process 
SEIR model (like SIR but with an asymptomatic class)
Exponential growth…

The brief answer is that speed and strength are 
linked.
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The implicit link between speed and strength

exponentially: i.e., substitute i(t)= i(0) exp(t/C) to obtain the exact speed-
strength relationship (Diekmann and Heesterbeek, 2000):

= g C d1/ ( )exp( / ) . (5)
This fundamental relationship dates back to the work of Euler and Lotka
(Lotka, 1907). We will explore the shape of this relationship using para-
meters based on human infectious diseases, and investigate approximations
based on gamma-distributed generation intervals.

3. Approximation framework

3.1. Approximation method, in theory

We do not expect to know the full distribution g(τ) – particularly
while an epidemic is ongoing – so we are interested in approximations
to based on limited information. We follow the approach of Nishiura
et al. (2009) and approximate the generation-interval distribution with
a gamma distribution. We prefer the gamma distribution to other
choices – including the commonly used normal approximation, and its
positively valued cousin the lognormal – for a number of reasons. First,
it has a convenient moment-generating function, and provides a cor-
responding simple form for the r– relationship that can be para-
meterized with only two parameters that have biologically relevant
meanings that can assist in explaining intuition behind the r– re-
lationship. Second, it generalizes the result obtained from simple sus-
ceptible-infectious-recovered (SIR) models, and approximately matches
susceptible-exposed-infectious-recovered (SEIR), in the case where the
latent period and infectious period are similar (see Appendix A). Fi-
nally, restricting the domain of g(τ) to only non-negative values makes
it more biologically realistic than the normal, although other approx-
imations also have this property. While the gamma approximation has
been applied to infer in previous outbreaks (Table 1), its theoretical
and practical importance in explaining the r– relationship has not yet
been explored in depth.

For biological interpretability, we describe the gamma distribution
using the mean Ḡ and the squared coefficient of variation κ (thus κ=1/
a, and =G a¯ , where a and θ are the shape and scale parameters under
the standard parameterization of the gamma distribution). Substituting
the gamma distribution into (5) then yields the gamma-approximated
speed-strength relationship:

+ rG(1 ¯ ) .1/ (6)
We write:

+(1 ) ,gamma 1/ (7)

where = =G C rG¯/ ¯ measures how fast the epidemic is growing (on
the time scale of the mean generation interval) – or, equivalently, the
length of the mean generation interval (in units of the characteristic
time of exponential growth). The longer the generation interval is
compared to C, the higher the estimate of (see Fig. 1). We then ex-
plore the behaviour of the gamma-approximated speed-strength re-
lationship gamma defined above (equivalent to the Tsallis “q-ex-
ponential”, with q=1− κ (Tsallis, 1994)): its shape determines how
the estimate of changes with the estimate of normalized generation
length .

For small , gamma always looks like +1 , regardless of the shape
parameter 1/κ, which determines the curvature: if 1/κ=1, we get a
straight line, for 1/κ=2 the curve is quadratic, and so on (see Fig. 2).
For large values of 1/κ, gamma converges to exp( ).

The limit as κ→ 0 is reasonably easy to interpret. The incidence is
increasing by a factor of exp( ) in the time it takes for an average
disease generation. If κ=0, the generation interval is fixed, so the
average case must cause exactly = exp( ) new cases. If variation in
the generation time (i.e., κ) increases, then some new cases will be
produced before, and some after, the mean generation time. Since we
assume the epidemic is growing exponentially, infections that occur
early on represent a larger proportion of the population, and thus will
have a disproportionate effect: individuals don’t have to produce as
many lifetime infections to sustain the growth rate, and thus we expect< exp( ) (as shown by Wallinga and Lipsitch (2007)).

Fig. 1. Two hypothetical epidemics with the same growth rate (r=0.25/week) and fixed generation intervals. Assuming a short generation interval (fast trans-
mission at the individual level) implies a smaller reproduction number 0 (panel A) when compared to a longer generation interval (slow transmission at the
individual level, panel B).

Fig. 2. The approximate relationship (6) between mean generation time (re-
lative to the characteristic time of exponential growth, = =rG G C¯ ¯ / ) and re-
production number. The curves correspond to different amounts of variation in
the generation-interval distribution.

S.W. Park, et al. (SLGHPLFV�������������²��

��

Contents lists available at ScienceDirect

Epidemics
journal homepage: www.elsevier.com/locate/epidemics

A practical generation-interval-based approach to inferring the strength of
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A B S T R A C T

Infectious disease outbreaks are often characterized by the reproduction number and exponential rate of
growth r. provides information about outbreak control and predicted final size, but estimating is difficult,
while r can often be estimated directly from incidence data. These quantities are linked by the generation
interval – the time between when an individual is infected by an infector, and when that infector was infected. It
is often infeasible to obtain the exact shape of a generation-interval distribution, and to understand how this
shape affects estimates of . We show that estimating generation interval mean and variance provides insight
into the relationship between and r. We use examples based on Ebola, rabies and measles to explore ap-
proximations based on gamma-distributed generation intervals, and find that use of these simple approximations
are often sufficient to capture the r– relationship and provide robust estimates of .

1. Introduction

Infectious disease research often focuses on estimating the re-
production number , i.e., the number of new infections caused on
average by a single infection, and the related basic reproduction
number 0, the value of for a single primary infection in a fully
susceptible population. These reproduction numbers provide informa-
tion about a disease's potential for spread and the difficulty of control.
They are described in terms of an average (Anderson and May, 1991) or
an appropriate sort of weighted average (Diekmann et al., 1990).

The reproduction number has remained a focal point for research
because it provides information about how disease spreads in a popu-
lation, on the scale of disease generations. As it is a unitless quantity, it
does not, however, contain information about time. Hence, another
important quantity is the population-level rate of spread, r. The initial
rate of spread can often be measured robustly early in an epidemic,
since the number of incident cases at time t is expected to follow i(t)≈ i
(0) exp(r t). The rate of growth can also be described using the “char-
acteristic time” of exponential growth C=1/r. This is closely related
to, and simpler mathematically than, the more commonly used dou-
bling time (given by T2= ln(2)C≈ 0.69C).

In disease outbreaks, the rate of spread, r, can be inferred from case-

incidence reports, e.g., by fitting an exponential function to the in-
cidence curve (Mills et al., 2004; Nishiura et al., 2009; Ma et al., 2014).
Estimates of the initial exponential rate of spread, r, can then be com-
bined with a mechanistic model that includes unobserved features of
the infection to estimate the effective reproduction number , i.e., the
number of new infections caused on average by a single infection. In
particular, can be calculated from r and the generation-interval dis-
tribution using the generating function approach popularized by
Wallinga and Lipsitch (2007).

The generation interval is the amount of time between when an
individual is infected by an infector, and the time that the infector was
infected (Svensson, 2007). While r measures the speed of the infection
at the population level, the generation interval measures speed at the
individual level. Generation-interval distributions are typically inferred
from contact tracing, sometimes in combination with clinical data
(Aylward et al., 2014; Lessler et al., 2016; Huber et al., 2016). Gen-
eration-interval distributions can be difficult to ascertain empirically
(Nishiura et al., 2009; Champredon and Dushoff, 2015), and the gen-
eration-function approach depends on an entire distribution. Multiple
studies have explored how generation-interval distributions affect the
r– relationship (summarized in Table 1). However, the use of an entire
distribution makes it difficult to determine which features of the
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This link helps sort through putatively 
large R0 claims (assumptions matter!)
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Figure 1: Comparisons of the reported parameter values with our pooled esti-
mates. We inferred point estimates (black), uniform distributions (orange) or confidence
intervals (purple) for each parameter from each study, and combined them into pooled esti-
mates (red; see text). Open triangle: we assumed  = 0.5 for Study 2 which does not report
generation-interval dispersion.

t(µ = 0, � = 1, ⌫ = 4) assumes a priori that between-study variance is large, while weak
priors (e.g. half-Cauchy(0,5)) can lead to poor mixing.

We run 4 independent Markov Chain Monte Carlo chains each consisting of 500,000
burnin steps and 500,000 sampling steps. Posterior samples are thinned every 1000 steps.
Convergence is assessed by ensuring that the Gelman-Rubin statistic is below 1.01 for all
hyperparameters [24]; trace plots and marginal posterior distribution plots are presented in
Appendix. 95% confidence intervals are calculated by taking 2.5% and 97.5% quantiles from
the marginal posterior distribution for each parameter.

3 Results

Fig. 1 compares the reported values of the exponential growth rate r, mean generation in-
terval Ḡ, and the generation-interval dispersion  from di↵erent studies with the pooled
estimates that we calculate from our multilevel model. We find that there is a large uncer-
tainty associated with the underlying parameters; many models rely on stronger assumptions
that ignore these uncertainties. Surprisingly, no studies take into account how the variation
in generation intervals a↵ects their estimates of R0: all studies assumed fixed values for ,
ranging from 0 to 1.

Fig. 2 shows how propagating uncertainty in di↵erent combinations would a↵ect estimates
and CIs for R0. For illustrative purposes, we use our pooled estimates, which may represent
a reasonable proxy for the state of knowledge as of January 23–26 (Fig. 2A). Comparing
the models that include only some sources of uncertainty to the “all” model, we see that
propagating error from the growth rate (which all but one of the studies reviewed did)
is absolutely crucial: the middle bar (“GI mean”), which lacks growth-rate uncertainty,
is relatively narrow. In this case, propagating error from the mean generation interval
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Figure 3: Sensitivity of the reported R0 estimates with respect to our pooled
estimates of the underlying parameters. We replace the reported parameter values
(growth rate r, GI mean Ḡ, and GI variation ) with our corresponding pooled estimates
(µr, µG, and µ) one at a time and recalculate R0 (growth rate, GI mean, and GI
variation). The pooled estimate of R0 is calculated from the joint posterior distribution
of µr, µG, and µ (all); this corresponds to replacing all reported parameter values with
our pooled estimates, which gives identical results across all studies. Horizontal dashed
lines represent the 95% confidence intervals of our pooled estimate of R0. The reported
R0 estimates (base) have been adjusted to show the approximate 95% confidence interval
using the probability distributions that we defined if they had relied on di↵erent measures
for parameter uncertainties.

4 Discussion

Estimating the basic reproductive number R0 is crucial for predicting the course of an out-
break and planning intervention strategies. Here, we use a gamma approximation [21] to
decompose R0 estimates into three key quantities (r, Ḡ, and ) and apply a multilevel
Bayesian framework to compare estimates of R0 for the novel coronavirus outbreak. Our
results demonstrate the importance of accounting for uncertainties associated with the un-
derlying generation-interval distributions, including uncertainties in the amount of dispersion
in the generation intervals: our analysis of individual studies shows that assuming too nar-
row a generation-interval distribution can make the estimate of R0 overly sensitive to the
estimates of the exponential growth rate r.

11

 .CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not peer-reviewed)

The copyright holder for this preprint  . http://dx.doi.org/10.1101/2020.01.30.20019877doi: medRxiv preprint first posted online Feb. 2, 2020 ; 

Step 1: estimate 
latent uncertainty in 
‘parameters’.

Step 2: incorporate 
different types of 
uncertainty into R0 
estimates by study or 
as part of a ‘pooled’ 
estimate (using a 
Bayesian multi-level 
model)

Take-home: R0 of 2.9 (95% CI 2.1-4.5) 
despite much larger point estimates.

Pooled estimates via a speed-
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In other words, estimates of R0 must depend on the assumptions about the exponential
growth rate r and the shape of the generation-interval distribution g(⌧).

Here, we use the gamma approximation framework [21] to (i) characterize the amount of
uncertainty present in the exponential growth rates and the shape of the generation-interval
distribution and (ii) assess the degree to which these uncertainties a↵ect the estimate of R0.
Assuming that generation intervals follow a gamma distribution with the mean Ḡ and the
squared coe�cient of variation , we have

R0 =
�
1 + rḠ

�1/
. (2)

This equation demonstrates that a generation-interval distribution that has a larger mean
(higher Ḡ) or is less variable (lower ) will give a higher estimate of R0 for the same value
of r.

2.3 Statistical framework

As most studies do not report their estimates of the exponential growth rate, we first re-
calculate the exponential growth rate that correspond to their model assumptions. We do
so by modeling reported distributions of the reproductive number R0, the mean generation
interval Ḡ, and the generation-interval dispersion parameter  with appropriate probability
distributions; we used gamma distributions to model values reported with confidence inter-
vals and uniform distributions to model values reported with ranges. For example, Study 3
estimated R0 = 2.92 (95% CI: 2.28–3.67); we model this estimate as a gamma distribution
with a mean of 2.92 and a shape parameter of 67, which has a 95% probability of containing
a value between 2.28 and 3.67 (see Table 2 for a complete description). For each study i, we
construct a family of parameter sets by drawing 100,000 random samples from the probabil-
ity distributions (Table 2) that represent the estimates of R0i and the assumed values of Ḡi

and i and calculate the exponential growth rate ri via the inverse of Eq. 2:

ri =
Ri

0i � 1

iḠi
. (3)

This allows us to approximate the probability distributions of the estimated exponential
growth rates by each study; uncertainties in the probability distributions that we calculate
for the estimated exponential growth rates will reflect the methods and assumptions that
the studies rely on.

We construct pooled estimates for each parameter (r, Ḡ, and ) using a Bayesian mul-
tilevel modeling approach, which assumes that the parameters across di↵erent studies come
from the same gamma distribution. The pooled estimates, which are represented as proba-
bility distributions rather than point estimates, allow us to average across di↵erent modeling
approaches, while accounting for the uncertainties in the assumptions they make:

ri ⇠ Gamma(mean = µr, shape = µ2
r/�

2
r),

Ḡi ⇠ Gamma(mean = µG, shape = µ2
G/�

2
G),

i ⇠ Gamma(mean = µ, shape = µ2
/�

2
),

(4)
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Today’s Talk

Part 1 – Dynamical Foundations of Epidemics 
strength, speed, and size

Part 2 – Dynamics and Control 
how we got to where we are now

Part 3 – Long-term strategies 
how we might get out, in the absence of pharmaceutical 
interventions



Conditions for epidemic growth
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Where infections per time, b, is a product of:

• Contacts by infectious individuals per unit time

• Probability of contact with a susceptible (S0/N)

• Probability that the contact transmits the disease

R0 ⌘
infections per timez}|{

� ⇥
infectious periodz}|{
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Conditions for epidemic growth also 
suggest opportunities for control

27

Where infections per time, b, is a product of:

• Contacts by infectious individuals per unit time

• Probability of contact with a susceptible (S0/N)

• Probability that the contact transmits the disease

R0 ⌘
infections per timez}|{

� ⇥
infectious periodz}|{

TI

Contact tracing & 
targeted isolation

Quarantine, travel 
control, closures

Process engineering 
& PPE (masks)

Hospitalization & 
treatment
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is due to the smaller size of the country and its older population compared with the US. In total, in an 

unmitigated epidemic, we would predict approximately 510,000 deaths in GB and 2.2 million in the 

US, not accounting for the potential negative effects of health systems being overwhelmed on 

mortality.    

 

Figure 1: Unmitigated epidemic scenarios for GB and the US. (A) Projected deaths per day per 100,000 
population in GB and US. (B) Case epidemic trajectories across the US by state.  

For an uncontrolled epidemic, we predict critical care bed capacity would be exceeded as early as the 

second week in April, with an eventual peak in ICU or critical care bed demand that is over 30 times 

greater than the maximum supply in both countries (Figure 2).  

The aim of mitigation is to reduce the impact of an epidemic by flattening the curve, reducing peak 

incidence and overall deaths (Figure 2).  Since the aim of mitigation is to minimise mortality, the 

interventions need to remain in place for as much of the epidemic period as possible. Introducing such 

interventions too early risks allowing transmission to return once they are lifted (if insufficient herd 

immunity has developed); it is therefore necessary to balance the timing of introduction with the scale 
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The unmitigated problem. This goes back to strength-size.

A strength of R0~2.4 implies ~80% infected (in a ‘mean-field’ scenario).

Population of 330M  x 80% x ~0.8% IFR ~ 2M+ fatalities.



B Y  D E C L A N  B U T L E R

The Ebola outbreak in West Africa has 
infected at least 13,567 people and killed 
4,951, according to figures released on 

31 October by the World Health Organization 
(WHO). Now, in a rare encouraging sign, the 
number of new cases in Liberia seems to be 
flattening after months of exponential growth. 
Scientists say it is too soon to declare that the 
disease is in retreat: case data are often unreli-
able, and Ebola can be quick to resurge. But it 
is clear that mathematical models have failed to 
accurately project the outbreak’s course. 

Researchers are now struggling to under-
stand whether reports of empty beds at  
treatment centres and declining burial num-
bers are signs that fewer people are developing 
Ebola, or whether cases and deaths are going 
unrecorded. In Liberia’s capital, Monrovia, just 

80 of 250 beds were filled at the Médecins Sans 
Frontières (MSF) centre last week. But Fasil 
Tezera, who heads MSF’s Liberia mission, is 
cautious: “The present epidemic is unpredict-
able,” he says.

Epidemiologists normally use mathemati-
cal models to estimate the trajectory of an 
outbreak, and to estimate where and how to 
direct scarce medical resources. But for the 
current crisis, on-the-ground data contra-
dict the projections of published models, says 
Neil Ferguson, an epidemiologist at Imperial  
College London, and a member of the WHO’s 
multidisciplinary Ebola Response Team. 

On 7 October, for example, modeller  
Alessandro Vespignani of Northeastern Uni-
versity in Boston, Massachusetts, and his 
collaborators predicted that Liberia would 
see 6,900–34,400 cases by 24 October, and 
9,400–47,000 by 31 October. But the WHO 

E P I D E M I O L O G Y

Models overestimate 
Ebola cases
Rate of infection in Liberia seems to plateau, raising 
questions over the usefulness of models in an outbreak. 
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The reality of the Ebola outbreak is not reflected by model projections of high case numbers.
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put the number of reported cases in the  
country at just 6,535 as of 25 October. 

Vespignani says that his model was a worst-
case scenario, in which exponential growth of 
cases continued and containment measures 
were ineffective. But he and other modellers are 
also handicapped by incomplete and unreliable 
data on Ebola epidemiology, especially in the 
hardest-hit areas. And they have little empirical 
data on how disease-control measures quanti-
tatively affect Ebola transmission, says ecologist 
Nick Golding, who studies the spatial distri-
bution of disease at the University of Oxford, 
UK. Models “are fitted to pretty poor-quality 
data on case counts, and essentially no data on  
interventions”, he says, making it difficult to 
generate accurate projections.

Two more-complex models published last 
month attempted to tease out the effects of 
various control measures. But their outcomes 
also do not square with the most recent Libe-
ria data (J. A. Lewnard et al. Lancet Infect. Dis. 
http://doi.org/wn9; 2014, and A. Pandey et al. 
Science http://doi.org/wts; 2014). That does 
not surprise Alison Galvani, an epidemiologist 
at Yale University in New Haven, Connecti-
cut, and an author of both studies. “Epidem-
ics are moving targets,” she says, adding that 
her model projections are at best a prelimi-
nary outline for public-health intervention. 
Because the model projections can be easily 
misunderstood, Ferguson says that modellers 
“really need to think carefully about what we 
really know about Ebola transmission and the 
impact of different interventions, and do our 
best to communicate the many uncertainties”.

In the meantime, Bruce Aylward, a WHO 
assistant director-general who is coordinating 
the agency’s Ebola efforts, is “terrified” that any 
plateau in new cases will be misinterpreted as 
meaning that the problem is going away. There 
is still a need to greatly increase the resources 
available to treat infected people and prevent 
new cases, Aylward says. 

But if the slowing rate of infection in Liberia is 
confirmed, it could suggest that even moderate 
levels of public-health intervention can pay off, 
says Golding. For the current Ebola outbreak, 
the average number of new cases spawned by an 
infected individual — 1.2–2.2 — is much lower 
than that of many other communicable diseases, 
such as measles (which can spread to between 
12 and 18 people per case). As Ebola preven-
tion measures push down this figure, the disease 
becomes easier to control; when it dips below 1, 
virus spread stops completely. 

Until the West African outbreak is extin-
guished, there is a real risk that the disease will 
resurge in areas where it has been stamped out 
— or even cover new ground. A stark reminder 
of this came in the past two weeks: a two-year-
old girl with Ebola travelled hundreds of  
kilometres from Guinea to Mali on a bus — 
raising concerns that the many people she 
came into contact with could spark outbreaks 
in Mali. ■
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kilometres from Guinea to Mali on a bus — 
raising concerns that the many people she 
came into contact with could spark outbreaks 
in Mali. ■
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of disruption imposed and the likely period over which the interventions can be maintained. In this 

scenario, interventions can limit transmission to the extent that little herd immunity is acquired – 

leading to the possibility that a second wave of infection is seen once interventions are lifted 

 

Figure 2: Mitigation strategy scenarios for GB showing critical care (ICU) bed requirements. The black line 
shows the unmitigated epidemic. The green line shows a mitigation strategy incorporating closure of schools 
and universities; orange line shows case isolation; yellow line shows case isolation and household quarantine; 
and the blue line shows case isolation, home quarantine and social distancing of those aged over 70. The blue 
shading shows the 3-month period in which these interventions are assumed to remain in place.  

Table 3 shows the predicted relative impact on both deaths and ICU capacity of a range of single and 

combined NPIs interventions applied nationally in GB for a 3-month period based on triggers of 

between 100 and 3000 critical care cases. Conditional on that duration, the most effective 

combination of interventions is predicted to be a combination of case isolation, home quarantine and 

social distancing of those most at risk (the over 70s). Whilst the latter has relatively less impact on 

transmission than other age groups, reducing morbidity and mortality in the highest risk groups 

reduces both demand on critical care and overall mortality.  In combination, this intervention strategy 

is predicted to reduce peak critical care demand by two-thirds and halve the number of deaths. 

However, this “optimal” mitigation scenario would still result in an 8-fold higher peak demand on 

critical care beds over and above the available surge capacity in both GB and the US.  

Stopping mass gatherings is predicted to have relatively little impact (results not shown) because the 

contact-time at such events is relatively small compared to the time spent at home, in schools or 

workplaces and in other community locations such as bars and restaurants.  

Overall, we find that the relative effectiveness of different policies is insensitive to the choice of local 

trigger (absolute numbers of cases compared to per-capita incidence), R0 (in the range 2.0-2.6), and 

varying IFR in the 0.25%-1.0% range.   
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Model Purpose: to explain the need, scope, and 
potential outcome of interventions.

Different measures both reduce and ‘flatten’ the 
curve (i.e., reducing total burden)

Imperial College of London Model







What Evidence Is There 
on the Impact of Interventions?



Measures of Impact of Interventions
Scarpino and colleagues (Science 3/25/20)

’Cordon sanitaire’ lead to rapid drop in 
export of cases, and control of outbreak.

Early in an epidemic, stopping the import of 
cases can make a difference…

But soon – community transmission is the 
dominant factor.

First release: 25 March 2020  www.sciencemag.org  (Page numbers not final at time of first release) 8 
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M. U. G. Kraemer et al., Science 10.1126/science.abb4218 (2020). 



Measures of Impact of Interventions
Imperial College London Report, 3/30/2030 March 2020  Imperial College COVID-19 Response Team 

DOI: https://doi.org/10.25561/77731   Page 7 of 35 

interventions, which shows that our choice of prior distribution is not driving the effects we see in the 
main analysis. 
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Figure 4: Our model includes five covariates for governmental interventions, adjusting for whether 
the intervention was the first one undertaken by the government in response to COVID-19 (red) or 
was subsequent to other interventions (green). Mean relative percentage reduction in 𝑹𝒕 is shown 
with 95% posterior credible intervals. If 100% reduction is achieved, 𝑹𝒕 = 0 and there is no more 
transmission of COVID-19. No effects are significantly different from any others, probably due to the 
fact that many interventions occurred on the same day or within days of each other as shown in 
Figure 1. 

3 Discussion 
During this early phase of control measures against the novel coronavirus in Europe, we analyze trends 
in numbers of deaths to assess the extent to which transmission is being reduced. Representing the 
COVID-19 infection process using a semi-mechanistic, joint, Bayesian hierarchical model, we can 
reproduce trends observed in the data on deaths and can forecast accurately over short time horizons.  

We estimate that there have been many more infections than are currently reported. The high level 
of under-ascertainment of infections that we estimate here is likely due to the focus on testing in 
hospital settings rather than in the community. Despite this, only a small minority of individuals in 
each country have been infected, with an attack rate on average of 4.9% [1.9%-11%] with considerable 
variation between countries (Table 1). Our estimates imply that the populations in Europe are not 
close to herd immunity (~50-75% if R0 is 2-4). Further, with Rt values dropping substantially, the rate 
of acquisition of herd immunity will slow down rapidly. This implies that the virus will be able to spread 
rapidly should interventions be lifted. Such estimates of the attack rate to date urgently need to be 
validated by newly developed antibody tests in representative population surveys, once these become 
available.  

We estimate that major non-pharmaceutical interventions have had a substantial impact on the time-
varying reproduction numbers in countries where there has been time to observe intervention effects 
on trends in deaths (Italy, Spain). If adherence in those countries has changed since that initial period, 
then our forecast of future deaths will be affected accordingly: increasing adherence over time will 
have resulted in fewer deaths and decreasing adherence in more deaths. Similarly, our estimates of 
the impact of interventions in other countries should be viewed with caution if the same interventions 
have achieved different levels of adherence than was initially the case in Italy and Spain.  

Due to the implementation of interventions in rapid succession in many countries, there are not 
enough data to estimate the individual effect size of each intervention, and we discourage attributing 

                 

              

              

             

        

  
                               

             
                       

                         

 
  
  
  

  
  
   
  
  
  
  
  
 

                                    

“[E]stimate that interventions across all 11 
countries will have averted 59,000 deaths 
up to 31 March [95% credible interval 
21,000-120,000]. 

Many more deaths will be averted through 
ensuring that interventions remain in place 
until transmission drops to low levels. “

Flaxman et al.



Measures of Impact of Interventions (4/12/20)
INSERM – Ile De France (Vittoria Colizza & team)

Take-away:
Lockdown interventions have rapidly shifted 
the curve from perilous exponential-like 
growth to severe (2-5% infected).

Di Domenico et al. (EPICX Lab, V. Colizza)

Currently under screening at medRxiv.org 
  

8                                                                          epicx-lab.com               

RESULTS 

Reproduction number, start of the epidemic, population infected. The reproductive number for our model 
is estimated to be !1 =3.0 [2.8-3.2] (95% confidence interval), computed with the next-generation 
approach35 based on the estimated weekly growth rate of hospital admissions in Île-de-France prior to 
lockdown (Figure 4). Once calibrated to the hospital data, the simulated weekly incidence of clinical cases 
for weeks 12 (prior to lockdown) and 13 (after lockdown) are compatible with the regional incidence 
estimations from syndromic and virological surveillance (Figure 4).  

Reported hospitalizations are consistent with an epidemic seeded in the region at the end of January / 
beginning of February 2020. The estimated percentage of population infected in Île-de-France at the end 
of week 14 (March 30 to April 5, 2020) ranges from 1% to 6% considering both values of the probability 
of being asymptomatic (Figure 4, and Appendix for the higher asymptomatic rate scenario). Overall 
infection fatality ratio is estimated to range from 0.8% to 1.3%. 
 

 

Figure 4. Calibration of the model and estimates of weekly incidence and percentage of population infected. (a) Calibration of 
the model on data of daily hospital admissions in Île-de-France prior to lockdown. (b) Simulated weekly incidence of clinical 
cases (mild and severe) compared to estimates of COVID-19 positive cases in the region provided by syndromic and virological 
surveillance (Reseau Sentinelles (RS) data)28. (c) Simulated percentage of population infected over time. Results are shown for 
-* =0.2. Shaded areas correspond to 95%CI. 

 

Lockdown followed by combination of interventions of different degrees of intensity. The changes in 
contact matrices reconstructed to simulate the social distancing measures implemented during lockdown 
reduce the number of contacts by 80% compared to baseline mixing patterns16 (Figure 1). This allows a 
substantial reduction of the reproductive number below 1 (!"# =0.68 [0.62-0.73]). Under these 
conditions, incidence of clinical cases slows down and reduces during lockdown, with the corresponding 
number of occupied ICU beds saturating towards the estimated current capacity in the region before 
slowly decelerating and reducing over time, consistent with observations (Figure 5). Assuming a 90% 
decrease during lockdown predicts faster decrease in bed occupation, which is not consistent with the 
data. With a less stringent reduction (73%), !"#  is around 1 and the trend of occupied beds in ICUs is 
predicted to continue to increase. Observations so far are consistent also with this possibility. 



But there are still deep uncertainties which
make COVID-19 hard to predict and control

Our interest: understanding the timing and impact of 
asymptomatic cases on epidemic potential…



Renewal equation formalism

and assuming exponential growth
with an observed rate r yields:

Speed r : measured
Generation interval : assumed (and 
informed by clinical data)

Leads to an estimate of:

Strength R0

Asymptomatic cases may be a significant driver of 
transmission (and bias estimates of R0 and control) 

3

gs(⌧). Generation intervals, which are defined as the time between when an individual is

infected and when that individual infects another person [8], depend on the natural history

of infection: individuals with subclinical infections may have fast clearance and short gener-

ation intervals, or slow viral reproduction and long generation intervals (cf. [9]). The shape

of the generation-interval distribution characterizes the relationship between the epidemic

growth rate r and the reproduction number [10].

Neglecting births and loss of immunity on the time scale of the outbreak, the dynamics

of susceptibles and incidence are:

Ṡ = �i(t) (1)

i(t) = RaS(t)

Z 1

0

ia(t� ⌧)ga(⌧)d⌧ +RsS(t)

Z 1

0

is(t� ⌧)gs(⌧)d⌧. (2)

The basic reproduction number of this system is:

R0 = pRa + (1� p)Rs, (3)

where p is the proportion of incident cases that are asymptomatic: ia(t) = pi(t). The

corresponding intrinsic generation-interval distribution of an average infected individual is

given by:

g(⌧) = zga(⌧) + (1� z)gs(⌧), (4)

where we define the “intrinsic” proportion of asymptomatic transmission z as the relative

contribution of asymptomatic cases to the basic reproduction number:

z = pRa/R0. (5)

Note that the intrinsic proportion of symptomatic transmission satisfies

1� z = (1� p)Rs/R0. (6)

Yet, this information is not su�cient to disentangle the role of asymptomatic cases, i.e., what

fraction of secondary cases can be ascribed to realized transmission from asymptomatic cases

vs. symptomatic cases?

The intrinsic proportion of asymptomatic transmission z is a useful benchmark, but does

not necessarily reflect the realized proportion of asymptomatic transmission, unless both

4

types of infection have the same generation-interval distribution. The realized proportion of

asymptomatic transmission, q at time t is given by:

q

1� q
=

RaS(t)
R1
0 ia(t� ⌧)ga(⌧)d⌧

RsS(t)
R1
0 is(t� ⌧)gs(⌧)d⌧

. (7)

During the period of exponential growth, we assume S remains nearly constant, and i(t) is

proportional to exp(rt), and simplify by recalling that ia(t) = pi(t), is(t) = (1� p)i(t) such

that:
q

1� q
=

✓
z

1� z

◆
�a
�s
. (8)

Here, �c for each of the two classes is the average “discount” of a new infection – the average

relative contribution of a secondary infection to the epidemic, taking exponential growth

into account:

�c =

Z 1

0

exp(�r⌧)gc(⌧)d⌧. (9)

�c < 1 and grows smaller as the generation interval grows longer. Thus, the realized pro-

portion of asymptomatic infections will be increased (resp., decreased) if transmission is

relatively faster (slower) along the asymptomatic route. The discount � also depends on the

relative variation in the generation-interval distribution, the “dispersion”: more variation in

generation intervals leads to more opportunities for fast spread and thus to higher values of

� (similar to shorter average generation intervals).

To estimate the e↵ects of assumptions about asymptomatic transmission on the impor-

tance of asymptomatic transmission and estimates of the basic reproduction number R0, we

parameterize the generation interval distributions of asymptomatic and symptomatic cases

based on their means, Ḡa and Ḡs, and dispersions, a and s. We assume that genera-

tion intervals are gamma distributed, and we set the dispersion to be equal to the squared

coe�cient of variation (the reciprocal of the gamma shape parameter, see Supplementary

Materials). We assume that epidemic growth rate r and the generation-interval distribu-

tion of symptomatic case are known, using parameter values that are consistent with earlier

COVID-19 models [11]: 1/r = 7 days, Ḡs = 8 days, and s = 0.5. We infer values of q using

Eq. (8) and R0 using the Euler-Lotka equation [12]:

1

R0
=

Z
exp(�r⌧)g(⌧)d⌧. (10)

In Supplementary Materials, we also use an ordinary di↵erential equation model including
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and assuming exponential growth
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Speed r : measured
Generation interval : assumed (and 
informed by clinical data)

Leads to an estimate of:

Strength R0

Asymptomatic cases may be a significant driver of transmission 
(and bias estimates of R0 and control)

Epidemics (in press) – w/SW Park, D. Cornforth & J. Dushoff

Asymptomatic transmission
is a double-edged sword:

(i) Many more cases
(ii)  Cases are not as bad
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gs(⌧). Generation intervals, which are defined as the time between when an individual is

infected and when that individual infects another person [8], depend on the natural history

of infection: individuals with subclinical infections may have fast clearance and short gener-

ation intervals, or slow viral reproduction and long generation intervals (cf. [9]). The shape

of the generation-interval distribution characterizes the relationship between the epidemic

growth rate r and the reproduction number [10].
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Measures of Impact of Interventions
Georgia – Weitz Group Modeling

COVID-19 model 
w/asymptomatic transmission

and GA age demographics 
along with age-stratified risk 
(via Imperial estimates).



Measures of Impact of Interventions
Georgia – Weitz Group Modeling

COVID-19 model 
w/asymptomatic transmission

and GA age demographics 
along with age-stratified risk 
(via Imperial estimates).



Measures of Impact of Interventions
Georgia – Weitz Group Modeling

COVID-19 model 
w/asymptomatic transmission

Key Points:
Reported deaths and hospitalizations show 
effect of large-scale orders (averting far 
worse outcomes)

Case ascertainment rate may be 1/10 to 
1/30 suggesting prevalence ~1%-4% in 
Georgia vs. ‘reported’ prevalence of 0.1%.



Ongoing Work – Moving from State
to County-Level Metapopulation Models

2020−03−28 2020−04−04 2020−04−11 2020−04−18 2020−04−25
projected deaths per day 
SLM no social distancing

0.10
1.00
10.00
47.09

2020−03−28 2020−04−04 2020−04−11 2020−04−18 2020−04−25
projected deaths per day 
CSM no social distancing

0.10
1.00
10.00
47.09

2020−03−28 2020−04−04 2020−04−11 2020−04−18 2020−04−25
projected deaths per day 
SLM transmission at 40%

0.10
1.00
10.00
47.09

2020−03−28 2020−04−04 2020−04−11 2020−04−18 2020−04−25
projected deaths per day 
CSM transmission at 40%

0.10
1.00
10.00
47.09

Figure 5: Projected deaths per day
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Dr. Stephen Beckett (GT, Bio Sci lead) w/Prof. Clio Andris (GT, IC and Design)
Report in progress – to be released at weitzgroup.github.io
See weitzgroup.github.io/cases.html & deaths.html for datasets by county.



Does “My” Country Have an Epidemic?
Hint: Yes. (Lauren Meyers et al., UT-Austin)



Today’s Talk

Part 1 – Dynamical Foundations of Epidemics 
strength, speed, and size

Part 2 – Dynamics and Control 
how we got to where we are now

Part 3 – Long-term strategies 
how we might get out, in the absence of pharmaceutical 
interventions
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Given that mitigation is unlikely to be a viable option without overwhelming healthcare systems, 

suppression is likely necessary in countries able to implement the intensive controls required. Our 

projections show that to be able to reduce R to close to 1 or below, a combination of case isolation, 

social distancing of the entire population and either household quarantine or school and university 

closure are required (Figure 3, Table 4). Measures are assumed to be in place for a 5-month duration. 

Not accounting for the potential adverse effect on ICU capacity due to absenteeism, school and 

university closure is predicted to be more effective in achieving suppression than household 

quarantine. All four interventions combined are predicted to have the largest effect on transmission 

(Table 4). Such an intensive policy is predicted to result in a reduction in critical care requirements 

from a peak approximately 3 weeks after the interventions are introduced and a decline thereafter 

while the intervention policies remain in place. While there are many uncertainties in policy 

effectiveness, such a combined strategy is the most likely one to ensure that critical care bed 

requirements would remain within surge capacity.  

 

Figure 3: Suppression strategy scenarios for GB showing ICU bed requirements. The black line shows the 

unmitigated epidemic. Green shows a suppression strategy incorporating closure of schools and universities, 

case isolation and population-wide social distancing beginning in late March 2020. The orange line shows a 

containment strategy incorporating case isolation, household quarantine and population-wide social 

distancing. The red line is the estimated surge ICU bed capacity in GB.  The blue shading shows the 5-month 

period in which these interventions are assumed to remain in place. (B) shows the same data as in panel (A) 

but zoomed in on the lower levels of the graph. An equivalent figure for the US is shown in the Appendix.  
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“2nd wave” due to 
immunologically 

naieve population



Current “Zero-Sum” Dichotomy:
Infection Control

or Economic Engagement49
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The Perils of ‘Exit’ Scenarios 
and Forecasting
(IHME Model via 
U of Washington)

On March 28 – Predicted
April 15th as Peak

w/~2000 deaths per day
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The Perils of ‘Exit’ Scenarios 
and Forecasting
(IHME Model via 
U of Washington)

But now, the tail extends
and there is no uncertainty

after June 1 (!!)
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Buyer beware:
A curve fitting model based on an ‘ERF’ 
function should be used only for short-term 
predictions and its utility has already passed 
the expiration date.

Hint: the future is not that certain.

The Perils of ‘Exit’ Scenarios 
and Forecasting
(IHME Model via 
U of Washington)

But now, the tail extends
and there is no uncertainty

after June 1 (!!)



Thoughtful Exit Scenarios and Forecasting
(INSERM/EPICX Lab)
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Currently under screening at medRxiv.org 
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     March April May June July Aug Sept Oct Nov Dec Jan Feb 

LD(Apr)              
LD(May)             

LD(June)             

LD(Apr)+Strict   Strict interventions       

LD(Apr)+Mod   Moderate interventions       

LD(Apr)+Mild   Mild interventions       

LD(Apr)+SC,SI   School closure and senior isolation       

Exit 1   +50% CI +50% CI +50% CI +50% CI +50% CI +50% CI +50% CI +50% CI +50% CI +50% CI 

Exit 2   +25% CI +25% CI +25% CI +25% CI +25% CI +25% CI +25% CI +25% CI +25% CI +25% CI 

Exit 3   +75% CI +75% CI +75% CI +75% CI +75% CI +75% CI +75% CI +75% CI +75% CI +75% CI 

Exit 4   +75% CI +50% CI +50% CI +50% CI +50% CI +50% CI +50% CI +50% CI +50% CI +50% CI 

Exit 1 (1m after)    +50% CI +50% CI +50% CI +50% CI +50% CI +50% CI +50% CI +50% CI +50% CI 

Exit 2 (1m after)    +25% CI +25% CI +25% CI +25% CI +25% CI +25% CI +25% CI +25% CI +25% CI 

Exit 3 (1m after)    +75% CI +75% CI +75% CI +75% CI +75% CI +75% CI +75% CI +75% CI +75% CI 

Exit 4 (1m after)    +75% CI +50% CI +50% CI +50% CI +50% CI +50% CI +50% CI +50% CI +50% CI 

Figure 3. Scenarios (color code as in Table 1; CI refers to case isolation).  

 
Evaluation. Each intervention of social distancing is compared to the no intervention scenario in terms of 
final attack rate, peak time, peak incidence, ICU beds demand in the region. The total number of ICU beds 
in Île-de-France has been recently increased to 2,000 units in an effort to sustain the first wave (Figure 1), 
with an expected further increase to 2,50018. In the analysis, we assume a maximum capacity of 2,500 
ICU beds.  

For each scenario, we perform 100 stochastic runs, median curves are displayed together with the 
associated 95% probability ranges.  

Sensitivity analysis. Results reported in the main paper refer to -* =	0.2, those for -* =	0.5 are shown 
in the Appendix. We compare the lockdown based on our reconstructed matrix with (i) a less stringent 
lockdown under the reduction of contacts measured in the UK33, and (ii) a more stringent lockdown under 
the reduction of contacts measured in China34. Exit strategies Exit 1-4  are also tested with a lockdown 
lifted in June, to account for the time that may be needed for preparedness in case-finding, testing, and 
isolation.  
 
 

Currently under screening at medRxiv.org 
  

11                                                                          epicx-lab.com               

while maintaining highly efficient tracing (Exit 3). Alternatively, strict and mild interventions can be 
rotated every month if case isolation capacity is moderately high (Exit 4).  

All these scenarios foresee, however, that schools are closed, and seniors remain isolated.  

The effectiveness of exit strategies is higher if a larger proportion of infected individuals is asymptomatic, 
as a smaller fraction of individuals in the population would have severe symptoms requiring 
hospitalization (Appendix). For example, the strict intervention scenario implemented indefinitely after the 
lockdown lifting in May would lead to a second wave like the one the region currently experiences.  

 

 
Figure 7. Simulated impact of lockdown and exit strategies with large-scale testing and case isolation. (a) Simulated daily new 
number of clinical cases assuming the progressive exit strategies illustrated in Figure 3. (b) Corresponding demand of ICU 
beds. (c) As in (a) with exit strategies implemented 1 month after, i.e. keeping a lockdown till the end of May. (d) 
Corresponding demand of ICU beds.  

 

DISCUSSION 

We use a stochastic age-structured epidemic transmission model calibrated on hospital admission data in 
Île-de-France to evaluate the expected impact of lockdown and exit strategies in controlling COVID-19 
epidemic in the region. Our estimate of the reproductive number prior to lockdown is in line with 
estimates for the epidemic growth in Europe prior to the implementation of interventions10,11 and results 
from a meta-analysis of the literature13,33. We predict it decreased significantly during lockdown with 

Take-away: 
Sustained infection control is needed 
for ~1 year to prevent large-scale 
waves of new cases.



Testing and Tracing as a Means of Prevention 
not just Pathology 
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The Bulk of Interventions
Focus on Reducing New Transmission

by Closures and/or Tracing

but what about all those who have already
been sick and recovered…

could these infections (far from herd immunity)
help reduce collective risk?
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Our ‘Shield Immunity’ Proposal:
Large-Scale Serological Testing

to Reduce Transmission
and Enable Economic Development56
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Weitz et al., medrxiv (in press, to be announced soon)



What is ‘Shield Immunity’?
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What is ‘Shield Immunity’?
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Baseline: Unknown Infection Status 

of Others in the Community
Immune Shielding: Preferentially

Interact with
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Take-away: the scale and type of testing matters

Infectious

Recovered

PCR provides a snapshot, 
i.e., ‘are you shedding virus now’?

Serological testing for antibodies provides a history, 
i.e., ‘have you been infected recently or in the past’?
Recovered implies immune (duration still unknown).



Shield Immunity Dynamics
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Susceptible Recovered

Virus: Pos
Antibodies: Pos/Neg

Virus: Neg
Antibodies: Neg

Virus: Neg
Antibodies: Pos

Shielding

Transmission
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Intervention Serology via Shield Immunity
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Baseline Shield Immunity
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FIG. 1: Simplified schematic of intervention serology via
shield immunity. (Top) Population dynamics of suscepti-
ble, infectious, and recovered in which recovered individuals
reduce contact between susceptible and infectious individuals.
Arrows denote flows between population level-compartments.
(Bottom) Individual view of baseline scenario and shielding
scenario, in which the identification, designation, and deploy-
ment of recovered individuals is critical to enabling S-R and I-
R interactions to replace S-I interactions. Bonds denote inter-
actions between individuals. In the Shield Immunity panel,
the icon in the recovered individuals denotes the identifica-
tion of individuals with protective antibodies, and hence the
enhanced contribution of such individuals to shield immunity
in contrast to the Baseline panel.

of shield immunity. To illustrate the concept of shield
immunity, consider an epidemic model in which individ-
uals tend to substitute their interactions with identified
(or strategically located) recovered individuals. Hence,
rather than mixing at random, we consider a relative
preference of 1 + ↵ that a given individual will interact
with a recovered individual in what would otherwise be
a potentially infectious interaction. This type of inter-
action substitution is equivalent to assuming an e↵ective
contact rate ratio of 1 +↵ for recovered individuals rela-
tive to the rest of the population. The dynamics of the
fraction of susceptible S, infectious I, and recovered R
individuals are:

Ṡ = ��
SI

1 + ↵R
(1)

İ = �
SI

1 + ↵R
� �I (2)

Ṙ = �I (3)

such that when ↵ = 0 we recover the conventional SIR
model. Note that the denominator of 1 + ↵R can be
thought of as S+ I +R+↵R. Given that S+ I +R = 1,
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FIG. 2: Shield immunity dynamics in a SIR model. (Top)
Infectious case dynamics with di↵erent levels of shielding, ↵.
(Bottom) Final state of the system as a function of ↵. In both
panels, � = 0.25 and � = 0.1.

this is equivalent to the term 1 + ↵R. Figure 2 illus-
trates shield immunity impacts on an SIR epidemic with
R0 = 2.5. In this SIR model, shield immunity reduces the
epidemic peak and reduces epidemic duration. In e↵ect,
shielding acts as a negative feedback loop, i.e., given
that the e↵ective reproduction number is Reff (t)/R0 =
S(t)/(1 + ↵R(t)). As a result, interaction substitution
increases as recovered individuals increase in number and
are identified. For example, in the case of ↵ = 20, the
epidemic concludes with less than 20% infected in con-
trast to the final size of approximately 90% in the baseline
scenario without shielding.
In order to explore the robustness of these findings,

we examine ‘flexible’ and ‘fixed’ shielding as alternative
interaction substitution mechanisms (see Methods). A
flexible shielding mechanism represents enhanced time-
varying interaction rates of recovered individuals by a
factor of (1 + ↵) relative to the interaction rate of other
individuals, while keeping the total contact rate equal to
that of the baseline (i.e., explicitly accounting for strict
substitution of interaction). Likewise, a fixed shield-

0 2 5 10 15 20
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0.4

0.6

0.8

1SIR model w/shielding

Recovered individuals have 
preferential interactions 
relative to other individuals.

This dilutes the susceptible 
fraction at levels well below 
the herd immunity threshold.



What could we do if we could identify recovered individuals?
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Intervention Serology and Interaction Substitution: Modeling the
Role of ‘Shield Immunity’ in Reducing COVID-19 Epidemic Spread

J.S. Weitz et al. (Nature Medicine, in review after invited resubmission) 

Figure 2. Heatmap of the relative reduction in total deaths 
compared to baseline in a simulation of COVID-19 spread. 
Critically shielding can work in tandem with social distancing to 
reduce total deaths with potentially large reductions in
the stringency of social distancing.  The shielding parameter
denotes the preference for interactions with recovered individuals
relative to individuals of unknown status. 

Recovered individuals could elevate their interactions 
relative to other individuals – we call this ‘shield strength’.

Combining (less intense) social distancing and shielding 
could have significant population-wide benefits.



What could we do if we could identify recovered individuals?
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Intervention Serology and Interaction Substitution: Modeling the
Role of ‘Shield Immunity’ in Reducing COVID-19 Epidemic Spread

J.S. Weitz et al. (Nature Medicine, in review after invited resubmission) 

Figure 2. Heatmap of the relative reduction in total deaths 
compared to baseline in a simulation of COVID-19 spread. 
Critically shielding can work in tandem with social distancing to 
reduce total deaths with potentially large reductions in
the stringency of social distancing.  The shielding parameter
denotes the preference for interactions with recovered individuals
relative to individuals of unknown status. 

How do we find 
recovered individuals?

Serological testing.

Recovered individuals could elevate their interactions 
relative to other individuals – we call this ‘shield strength’.

Combining (less intense) social distancing and shielding 
could have significant population-wide benefits.



Closing Thoughts

Part 1 – Dynamical Foundations of Epidemics 
COVID-19 has epidemiological features of high R0, relatively fast 
spread, elevated fatality rates, and asymptomatic transmission that 
increase its epidemic potential.



Closing Thoughts

Part 1 – Dynamical Foundations of Epidemics 
COVID-19 has epidemiological features of high R0, relatively fast 
spread, elevated fatality rates, and asymptomatic transmission that 
increase its epidemic potential.

Part 2 – Dynamics and Control 
Interventions have made an enormous impact (averting 
tens/hundreds of thousands of fatalities).  But, even if a peak has 
been averted, we remain immunologically naive.



Closing Thoughts

Part 1 – Dynamical Foundations of Epidemics 
COVID-19 has epidemiological features of high R0, relatively fast 
spread, elevated fatality rates, and asymptomatic transmission that 
increase its epidemic potential.

Part 2 – Dynamics and Control 
Interventions have made an enormous impact (averting 
tens/hundreds of thousands of fatalities).  But, even if a peak has 
been averted, we remain immunologically naive.

Part 3 – Long-term strategies 
Testing (PCR and serology) & contact tracing are needed at scale!
Strategic and coordinated responses – we have a long road ahead, 
we’ll be better off working collectively.



Code:
https://github.com/WeitzGroup/covid_shield_immunity

Preprint (now in press, to be announced soon)
https://www.medrxiv.org/content/10.1101/2020.04.01.20049767v1

Tweet thread:
https://twitter.com/joshuasweitz/status/1245071163744645121?s=20

Extramural Funding for Weitz Group Research
NSF, ARO, NIH, and the Simons Foundation

Susceptible Recovered

Virus: Pos
Antibodies: Pos/Neg

Virus: Neg
Antibodies: Neg

Virus: Neg
Antibodies: Pos

Shielding

Transmission

Infectious
Recovery

Intervention Serology via Shield Immunity

Susceptible Infectious

Recovered

Susceptible Infectious

Recovered

Baseline Shield Immunity

Individual View

Population Dynamics

ShieldingShielding

Georgia Tech Team
Ashley Coenen
Dr. Stephen Beckett
Dr. David Demory
Marian Dominguez-Mirazo
Dr. Joey Leung
Guanlin Li
Andreea Magalie
Daniel Muratore
Rogelio Rodriguez-Gonzalez
Dr. Adriana Sanz
Shashwat Shivam
Conan Zhao

Collaborators
Clio Andris, GT
Daniel Cornforth, GT
Jonathan Dushoff, McMaster 
Ceyhun Eksin, Texas A&M
Benjamin Lopman, Emory 
Alicia Kraal, Emory 
Kristen Nelson, Emory 
Sang Woo Park, Princeton 
Yorai Wardi, GT


