

Acknowledgements

Colorado School of Mines

Collaborators At the NCNR:

- Paul Kienzle Refl1D
- Chuck Majkrzak

At Colorado School of Mines:

- John Fischer UG Research Fellow
- Corey Randall Masters Student
- Center for High Performance Computing
- Undergraduate researchers (SURF) at NCNR:
- Andrew Baker (U. Delaware / Los Alamos National Lab)
- Pavan Bhargava (UC Berkeley)

Financial Support

- National Research Council Postdoctoral Associateship Program
- NIST Summer Undergraduate Research Fellowship program: Center for High Resolution Neutron Scattering (NSF/NIST partnership)
- DOE Early Career Award #DE-SC0018109 Program Manager: Dr. Pappannan Thiyagarajan

Fuel Cell Interfaces

Colorado School of Mines

Load

F

Finite thickness effects in PEMFC Catalyst Layer Nafion

Colorado School of Mines

- Decreasing water uptake for films $\leq 60 \text{ nm}$
- Increasing uptake at very low thickness.
- Increasing stiffness, confinement.

Eastman, et al., Macromolecules, 2012

Kusoglu, et al., Adv. Func. Mat., 2014

Finite thickness effects in PEMFC Catalyst Layer Nafion

Colorado School of Mines

Kongkanand, J. Phys. Chem. C, 2011

Modestino, et al., Macromol, 2013

Finite thickness effects in PEMFC Catalyst Layer Nafion

Colorado School of Mines

Relative Humidity (%)

Paul, McCreery, Karan, J. Electrochem Soc., 2014

Neutron Reflectometry (NR)

Colorado School of Mines

- $t \begin{bmatrix} k_i & k_f \\ \theta & \theta \\ Film \\ Substrate \end{bmatrix}$
- Specular NR measures Reflected Intensity vs.

grazing angle θ or $\mathbf{Q}_{\mathbf{z}}$

- Oscillations with period 2π / layer thickness
- •NR Provides Depth Profile of the SLD
- •SLD related to Composition by volume fractions V_i

 $SLD(z) = \Sigma_j SLD_j V_j$

Dura, et al., *Macromolecules*, 2009

Lamellar phase segregation at **Nafion-support Interfaces**

Observed phase segregation of Nafion constituents (sulfonic acid side chains and fluorocarbon backbones) at hydrophillic interface.

Consistent with:

- Global stoichiometry of Nafion 1100
- Nafion molecule length scales
- Known Nafion/water chemical interactions

Roughly consistent with NR data.

nm

DeCaluwe, et al., Soft Matter, 2014

C Thickness Effects on Nation Interface Structure and Water Uptake

Colorado School of Mines

• 10 films, *t*_{Naf} = 5 nm—154 nm

$$t_{\text{Naf}} = \sum_{j} t_{j} V_{\text{Naf},j}$$

- Samples named according to equivalent Nafion thickness: tXX = t_{Naf} = XX nm
- NR measured at RH = 92% RH *T* = 29.6 C

DeCaluwe, et al., *Nano Energy*, 2018

Increasing Water Uptake With Increasing Film Thickness

Contemporation Conductivity Predictions

Colorado School of Mines

- Compare predictions to exp data (Paul, et al., *J. Electrochem. Soc.*, 2014).
- Adopting standard $\sigma_{io} \lambda$ relationships significantly over-predicts σ_{io} .
- Best model incorporates lamellar structure, linear gradient in ion mobility
- Mobility is lower, closer to the substrate.

Scaling Factors: At SiO_2 : 0.22 At outer layer: 0.51 Outer Layer: 0.67

Possible real structure

- Nafion structure at Pt/Carbon interface significantly impacts catalyst layer degradation:
 - -Nafion acidity varies
 - -Delamination
 - -Pt dissolution, C corrosion
- Affect transport to/from the Pt -To/from the bulk membrane.

Figure 1. Possible roles of functional polymers in **TEM** of the logest of the logest and Li-O₂ batteries (Functional polymers can increase active surface area, but rely on stable interfaces and facile stransport to and from surfaces. This study proposes improved understanding of stability and transport to and from surfaces.

Toward Process-Structure-Property: PEMFC Catalyst Layer Model

Colorado School of Mines

Flooded agglomerate model used, simply as a convenient framework to explore property covariation and trends.

CANTERA used for all thermo-kinetic calculations.

Assumptions:

- 1. Effective conductivities σ_{parallel} and σ_{normal} used as limiting cases.
- 2. Diffusion coefficients D_{O2} , D_{H2} scale linearly with V_{water} .
- 3. Agglomerates fully saturated by H_2O
- 4. No gas transport limitations.
- 5. No membrane effects.

Figure 1. Possible roles of functional polymer Functional polymers can increase active surface transport to and from surfaces. This study proper

Fixed Porosity ($\phi_g = 0.10$)

Colorado School of Mines

• $m_{\rm Pt}$ decreases significantly with increasing $t_{\rm Naf}$.

Proton conductivity below ~2 S/m impacts catalyst utilization.

Limiting for large agglomerates (O₂ diffusion into agglomerate is difficult).

→ Complex interrelationship between properties and micro/nano-structure.

Thickness [nm]	σ _{normal} [S/m]	σ _{parallel} [S/m]	V _{water} (relative to bulk)
5.9	1.21	4.12	0.83
8.9	2.85	5.54	0.92
51.1	4.53	5.01	0.70
162.0	6.92	8.04	1.01

200 nm Agglomerates

500 nm Agglomerates

Varying "coating" thickness

Thick coatings impede intraagglomerate O₂ diffusion (duh).

For large agglomerates, micro/nanostructure (volume fraction, tortuosity) impedes intra-agglomerate O₂ diffusion.

For thin coatings, proton conductivity becomes limiting in large agglomerates.

Thickness [nm]	σ _{normal} [S/m]	σ _{parallel} [S/m]	V _{water} (relative to bulk)
5.9	1.21	4.12	0.83
8.9	2.85	5.54	0.92
51.1	4.53	5.01	0.70
162.0	6.92	8.04	1.01

200 nm Agglomerates

- Depth profiling Improvements
- Realistic Materials
- Realistic Microstructures
- Non-equilibrated structures

Correlating multiple measurements

Multi-scale simulation Improvements

- Depth profiling Improvements
- Realistic Materials
- Realistic Microstructures
- Non-equilibrated structures

Correlating multiple measurements

Multi-scale simulation Improvements

Nafion on Pt

Nafion on Carbon

- Depth profiling Improvements
- Realistic Materials
- "Realistic" Microstructures
- Non-equilibrated structures

Correlating multiple measurements

Multi-scale simulation Improvements

- Depth profiling Improvements
- Realistic Materials
- "Realistic" Microstructures
- Non-equilibrated structures

Correlating multiple measurements

Multi-scale simulation Improvements

"Flow-Through NR"

Colorado School of Mines

Non-equilibrated samples with trans-membrane fluxes.

Species gradients Interfacial layers and structures

- Depth profiling Improvements
- Realistic Materials
- "Realistic" Microstructures
- Non-equilibrated structures

Correlating multiple measurements

Multi-scale simulation Improvements

Rocky Mountain Environmental XPS

Colorado School of Mines

- Range of systems
 (model ←→ actual)
- Pressures up to 50 mbar
- Electric biasing (non-equilibrium)
- Temperature control
- ARPES moderate depth profiling
- Lab-based system: suitable for examining polymer interfaces.

Operating as a user facility (soon)

See Steven DeCaluwe or Svitlana Pylypenko

Multi-scale modeling

Colorado School of Mines

Babu, et al, J. Electrochem Soc., 2017

Kamarajugadda & Mazumder, *J. Power Sources*, 2012

Thank You