Supporting Information

A Hierarchical Three-dimensional Porous Laser Scribed Graphene Film for Suppressing Polysulfide Shuttling in Lithium-Sulfur Batteries

Eman Alhajji, ^{†,1} Wenxi Wang, ^{†,1} Wenli Zhang, [†] and Husam N. Alshareef*[†]

[†] Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah

University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

* E-mail: <u>husam.alshareef@kaust.edu.sa (H.N.A.)</u>

¹ Authors with equal contributions

Figure S1. (a) parallel sheets of LSG from PI (b) LSG powder (c) a free standing LSG film after being rolled.

Figure S2. SEM images of (a),(b) and (c) LSG powder at different scales and of (d) and (e) of the free standing LSG interlayer; (f) Cross-sectional SEM image of the free standing LSG interlayer.

Figure S3. CV curves of pirstine Li-S battery at (a) different scan rates and (b) different cycles.

Figure S4. XPS mapping of LSG interlayer before cycling, after 100 cycles and after 250 cycles.

Interlayer	Initial Capacity, mAh g^{-1}	Capacity	Cycle	References
Lagan Couit ad	(current density, Arg)		100	This would
Laser Scribea	1165(0.25)	80.4%	100	Inis work
Graphene with CCB	→938			
Fe ₃ O ₄ -Decorated	975 (0.3) →631	64.7%	97	1
Porous Graphene				
Carbonized PAN-	1549 (0.2) → 1057	83.1%	100	2
Nafion nanofibers				
1G0/5CNT	1600 (0.2)→ 670	41.9%	100	3
Functionalized	1100(3)→700	63.6%	Stable from	4
Boron Nitride			100 to	
Nanosheets/Graphen			1000	
e				
GO/M@CNT	813 (0.5)	80.4%	200	5
	electrode, after activation			-
sulfur-nitrogen dual-	1460 (0.25C)	79.5%	250	6
doped graphene	$770 \rightarrow 612(2C)$			
porous nitrogen and	1158.3 (1C) → ~900	77.7%	100	7
phosphorous dual				
doped graphene				
Graphene-embedded	1250 (1C)	72%	100	8
carbon fiber				
rGO-CB composite	1260 remains 895	71.1%	100	9
conductive	1446 → 855 (0.5C)	59.1%	100	10
multiwalled carbon				
nanotube				
freestanding hollow	1318.4(0.2C)	60.1%	100	11
carbon				
nanofiber/reduced				
graphene oxide				

 Table S1. Summary of carbon-based interlayers used in Li-S batteries

REFERENCES

- Liu, Y.; Qin, X.; Zhang, S.; Liang, G.; Kang, F.; Chen, G.; Li, B. Fe ₃ O₄ -Decorated Porous Graphene Interlayer for High-Performance Lithium–Sulfur Batteries. *ACS Appl. Mater. Interfaces* 2018, *10* (31), 26264–26273. https://doi.org/10.1021/acsami.8b07316.
- (2) Singhal, R.; Chung, S.-H.; Manthiram, A.; Kalra, V. A Free-Standing Carbon Nanofiber Interlayer for High-Performance Lithium–Sulfur Batteries. *J. Mater. Chem. A* 2015, *3* (8), 4530–4538. https://doi.org/10.1039/C4TA06511E.
- Huang, J. Q.; Xu, Z. L.; Abouali, S.; Akbari Garakani, M.; Kim, J. K. Porous Graphene Oxide/Carbon Nanotube Hybrid Films as Interlayer for Lithium-Sulfur Batteries. *Carbon N. Y.* 2016, *99*, 624–632. https://doi.org/10.1016/j.carbon.2015.12.081.
- (4) Fan, Y.; Yang, Z.; Hua, W.; Liu, D.; Tao, T.; Rahman, M. M.; Lei, W.; Huang, S.; Chen,
 Y. Functionalized Boron Nitride Nanosheets/Graphene Interlayer for Fast and Long-Life
 Lithium–Sulfur Batteries. *Adv. Energy Mater.* 2017, 7 (13).
 https://doi.org/10.1002/aenm.201602380.
- (5) Kong, W.; Yan, L.; Luo, Y.; Wang, D.; Jiang, K.; Li, Q.; Fan, S.; Wang, J. Ultrathin MnO2/Graphene Oxide/Carbon Nanotube Interlayer as Efficient Polysulfide-Trapping Shield for High-Performance Li–S Batteries. *Adv. Funct. Mater.* 2017, *27* (18). https://doi.org/10.1002/adfm.201606663.
- Wang, L.; Yang, Z.; Nie, H.; Gu, C.; Hua, W.; Xu, X.; Chen, X.; Chen, Y.; Huang, S. A Lightweight Multifunctional Interlayer of Sulfur–Nitrogen Dual-Doped Graphene for Ultrafast, Long-Life Lithium–Sulfur Batteries. J. Mater. Chem. A 2016, 4 (40), 15343–

15352. https://doi.org/10.1039/C6TA07027B.

- Gu, X.; Tong, C. J.; Lai, C.; Qiu, J.; Huang, X.; Yang, W.; Wen, B.; Liu, L. M.; Hou, Y.;
 Zhang, S. A Porous Nitrogen and Phosphorous Dual Doped Graphene Blocking Layer for
 High Performance Li-S Batteries. *J. Mater. Chem. A* 2015, *3* (32), 16670–16678.
 https://doi.org/10.1039/c5ta04255k.
- (8) Chai, L.; Wang, J.; Wang, H.; Zhang, L.; Yu, W.; Mai, L. Porous Carbonized Graphene-Embedded Fungus Film as an Interlayer for Superior Li–S Batteries. *Nano Energy* 2015, 17, 224–232. https://doi.org/10.1016/J.NANOEN.2015.09.001.
- Wang, X.; Wang, Z.; Chen, L. Reduced Graphene Oxide Film as a Shuttle-Inhibiting Interlayer in a Lithium–Sulfur Battery. *J. Power Sources* 2013, *242*, 65–69. https://doi.org/10.1016/j.jpowsour.2013.05.063.
- (10) Su, Y.-S.; Manthiram, A. A New Approach to Improve Cycle Performance of Rechargeable Lithium–Sulfur Batteries by Inserting a Free-Standing MWCNT Interlayer. *Chem. Commun.* 2012, 48 (70), 8817. https://doi.org/10.1039/c2cc33945e.
- (11) Zhang, Z.; Wang, G.; Lai, Y.; Li, J. A Freestanding Hollow Carbon Nanofiber/Reduced Graphene Oxide Interlayer for High-Performance Lithium-Sulfur Batteries. *J. Alloys Compd.* 2016, 663, 501–506. https://doi.org/10.1016/j.jallcom.2015.11.120.