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S1. Power Plants Information Datamining  

Python’s Pandas package was used for datamining and analysis in this study. The main sources of data 

for NGCC units are the unit and generator information sheets (“UNT16” and “GEN16”) from the eGRID 

2016 metric data spreadsheet.  

First, on the generator page, NGCC units with a MWh generation record for the year 2016 were 

identified. NGCC units are flagged with generator prime mover types of “CA” for combined cycle steam 

turbine, “CT” for combined cycle combustion turbine (or gas turbine) and “CS” for combined cycle single 

shaft. Generator information, including the plant’s name and state, DOE/EIA facility code (ORISPL), 

generator ID, nameplate capacity in MW, 2016 electricity generation in MWh and age were collected. 

Generation and capacity data for CA and CTs which belong to the same NGCC unit were identified and 

aggregated and a combined dataset for generation and nameplate capacity of all NGCC units including 

670 records was created. 

Then the emission records for these NGCC units including the plant’s name and state, ORISPL, unit ID, 

2016 heat input in GJ and 2016 CO2 emissions in ton were collected to merge the generator and 

emission data records. Similar to the generation records, emission records belonging to each NGCC unit 

were combined and the aggregate heat input and CO2 emissions dataset of all NGCC units with 655 

records was created. 

The generation and emission datasets were processed to match as many records as possible and merged 

by using ORISPL code and other information such as the comparison between the heat input and 

generation values. A final database including generation and emission records for the NGCC fleet was 

created and the efficiency (ƞ) and capacity factor (CF) values for each NGCC units were calculated: 

𝐶𝐹 =
2016 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝑀𝑊ℎ)

𝑁𝑎𝑚𝑒𝑝𝑙𝑎𝑡𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑀𝑊) × 8766 (ℎ)
 

(S1) 

 

ƞ =  
2016 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝑀𝑊ℎ)

2016 𝐻𝑒𝑎𝑡 𝐼𝑛𝑝𝑢𝑡 (𝐺𝐽) × 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 (
𝑀𝑊ℎ

𝐺𝐽 )
 

(S2) 

Missing heat input data and obvious inconsistencies resulted in 513 valid records out of 670. Invalid 

records have either very high or very low net efficiencies or in a few cases, capacity factor values above 

1 or below 0. For this analysis and results in the paper, we only used the valid NGCC records and when 
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results are shown in terms of total percentage, a conversion factor was used to convert the results from 

the valid units to all the units. 

Table S1 summarizes some statistical information about the generated database. Median values are 

calculated by the number of units. Mean values for capacity factor and net efficiency are also calculated 

by the number of units, while the mean for Levelized Cost of Electricity (LCOE) values is an arithmetic 

mean weighted by the MWh electricity generation of each unit. Minimum and maximum net efficiency 

values are our assumptions; datapoints outside of the 35%-52% range are assumed to be invalid. LCOE 

values are only calculated for units considered for retrofit (larger than 25 MW and younger than 25 

years).  

Table S1 Statistical information for 513 valid records in the generated NGCC database 

Parameter Min Median Mean Max 

Nameplate Capacity (MW) 7.7 458 467 1850 

Age (years) 0 14 15.3 51 

Net Efficiency (HHV%) 35% 45.5% 44.5% 52% 

Capacity Factor 0.002 0.47 0.46 0.96 

Number of Gas Turbines in a Unit 1 2 1.9 12 

Number of Steam Turbines in a Unit 1 1 1.1 4 

LCOE pre-retrofit (2017$/MWh) 39.79 57.33 55.06 6,800 

LCOE post-retrofit (2017$/MWh) 54.58 89.45 84.56 17,000 
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S2. Cumulative Generation Versus Capacity Factor 

In this analysis, natural gas-fired generating units are divided into two groups: NGCC and non-NGCC. 

NGCC units are relatively larger and are mainly utilized for intermediate-load and baseload electricity 

demand. Non-NGCC units, on the other hand, are mainly small gas or steam turbines widely used for 

peak load electricity demand. There are about 6 times more non-NGCC units than NGCC units, while 

NGCC units produce 5.5 times more electricity.  

Figure S1 illustrates the cumulative distribution of NGCC and non-NGCC units based on their capacity 

factor. As shown in Figure S1a, most NGCC units operate in the intermediate-load range. Only 20% of 

NGCC units are categorized as peaker (capacity factor < 0.2) and they produce an insignificant 

percentage of NGCC electricity. On the contrary, roughly 80% of non-NGCC units are peakers and they 

generate about 40% of total non-NGCC electricity (Figure S1b). 

 

 

Figure S1 2016 cumulative distribution of (a) NGCC and (b) non-NGCC natural gas units versus capacity factor. Clearly, most of 

non-NGCCs provide electricity only during peak demand hours while most NGCC units are categorized as intermediate-load 

units.
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S3. Use of Machine Learning for Validating All Power Plant Data Records 

Missing heat input values result in invalid net efficiency values for some of the NGCC units. To address 

the issue and investigate the potential error from the invalid datapoints, we used a simple machine 

learning algorithm to estimate the net efficiency of these units. Then used the estimated efficiency 

values and units’ 2016 generation record to calculate their heat input by equation S2. Then an emission 

factor (ton CO2/GJ heat input) was used to calculate CO2 emissions for these units. 

Several machine learning algorithms were used, but we found the K-nearest neighbor regression 

method the most accurate.1 K-nearest neighbor method uses net efficiency value(s) of the 𝐾 nearby 

(similar) NGCC units to estimate the net efficiency of an invalid data record. 𝐾 is an optimum value 

which results in the highest regression accuracy. We used nameplate capacity, capacity factor, and age 

as the determining attributes for net unit efficiency. 

Typically, the valid datapoints are split into two categories, one for training and the other one for testing 

the trained algorithm. We used a range of 𝐾 values from 0 to 100 and 𝐾 = 16 was found to be the 

optimum value resulting in the most accurate regression for the testing set (16 nearest points used in 

the regression algorithm). Figure S2 shows r-squared scores of the training and testing sets for different 

𝐾 values. 

 

Figure S2 R-squared scores for different K values used for training the k-n algorithm and for testing the trained algorithm. The 

optimum K value is determined when the highest R-squared score is achieved for the testing dataset. 
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We used 𝐾 = 16 to estimate the net efficiency as well as heat input and CO2 emissions of the invalid 

datapoints and generated an NGCC database with 668 valid records. Table S2 summarizes the same 

statistical information as in Table S1 (Table S1 is for the 513 originally valid records). Values in 

parenthesis show the percentage change compared to the values in Table S1.  

Table S2 Statistical information for 668 valid records after using the K-nearest regression model 

Parameter Min Median Mean Max 

Nameplate Capacity (MW) 4.7 (-40%) 335 (-27%) 412 (-12%) 1850 (0%) 

Age (years) 0 (0%) 14 (0%) 17.3 (13%) 60 (18%) 

Net Efficiency (HHV%) 35% (0%) 46.2% (1.5%) 44.7% (0.5%) 52% (0%) 

Capacity Factor 0.0 (0%) 0.46 ( -2%) 0.43 (-6.5%) 0.96 (0%) 

LCOE pre-retrofit (2017$/MWh) 39.79 (0%) 57.96 (1.1%) 55.01 (-0.09%) 567,000 

LCOE post-retrofit (2017$/MWh) 54.58 (0%) 90.24 (0.9%)) 84.69 (0.15%) - 

 

As shown, the statistical description for the partially regressed data of all NGCC units and that of the 

originally valid datapoints are sufficiently similar. Therefore, we only used valid datapoints in our 

analysis. Figure S3 illustrates the difference in the results when all datapoints are used after validation 

by the machine learning method. The black curve is the same as in Figure 1b. The curve includes 513 

valid datapoints and with the help of the conversion factor worked out in section S1, extrapolates the 

results from the valid units to all units. The blue curve shows the same analysis including the valid and 

regressed datapoints. As shown, the initial point and the shape of the cost curve does not significantly 

differ. The main difference is the lower ratio of retrofittable emissions to nonretrofittable and residual 

NGCC emissions when all the datapoints are used. This difference, however, is not significant and makes 

the results slightly biased in favor of postcombustion capture. This is because a higher ratio of total 

natural gas emissions is retrofittable when valid data are used for the analysis.  
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Figure S3 Comparison between cost curves plotted with the originally valid datapoints (black curve) and plotted with all data 
including the regressed datapoints with the machine learning algorithm (blue curve).
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S4. Cost Analysis Model for Postcombustion Capture Retrofit Based on IECM 

IECM allows the user to design a power plant with various types of fuel, power block design, cooling 

systems, and environmental control systems and provides outstanding flexibility for changing financing 

and cost parameters as well as design parameters for each section of the power plant.2 The model has a 

systematic approach for calculating the cost, performance and mass balance around different fossil fuel 

power plants and emission control systems.  

While IECM does not offer a cost analysis for a retrofitted NGCC unit, it provides information about the 

capital and operating cost of an amine system designed for that unit. The IECM software is also useful in 

quantifying the retrofit-induced changes in the power block and cooling system of an NGCC unit. We 

extracted this information and built a cost model around a known NGCC unit that calculates the cost of 

retrofit by postcombustion capture. The cost model was used to calculate the cost of retrofit for each 

existing US NGCC unit with valid data in our database.  

IECM 11.2 only offers two models of NGCC gas turbine with fixed MW outputs, General Electric 7FB and 

7FA. We chose the more efficient 7FB model which also has a higher capacity. The model only allows 

discrete values for the total capacity of an NGCC unit since the capacity of the steam turbine is fixed and 

only 1 to 5 gas turbines can be added to a unit. Therefore, cost information for only five different 

nameplate capacity values is available in the IECM (i.e., 295 MW, 590 MW, 885 MW, 1180 MW, and 

1475 MW). The US NGCC units in our database, however, have a spectrum of nameplate capacities. We 

extracted the cost information for the five capacity values and used this information to interpolate the 

cost information of US NGCC units. Our cost model is mainly based on the total nameplate capacity and 

not the exact number of combustion and steam turbines.  

In using the model, whenever a financial or technical/operational variable was not known, we used the 

default value in the IECM. We used the “Typical New Plant” option which includes an NGCC unit with a 

wet cooling tower as a default. Due to lack of unit-specific data, the cost of land was excluded from the 

analysis, but the introduced error is very small (the cost of land makes difference on the order of a few 

cents in $/MWh value of LCOE). We changed the natural gas composition to match the average US 

natural gas higher heating value (HHV) extracted from the eGRID database (22,442 Btu/lb Natural Gas).3 

Table S3 shows the natural gas composition used in our cost model. 



S9 

 

Table S3 Natural gas composition 

Natural Gas Component Volumetric Percentage 

Methane 87% 

Ethane 9% 

Propane  1.5% 

Carbon Dioxide  1% 

Nitrogen 1.5% 

Total 100% 

 

The units’ retirement age and economic book life (amortization duration) were assumed to be 30 years. 

The book life for postcombustion units is assumed to be the remaining life of the NGCC unit and it 

cannot be lower than 5 years. In other words, only NGCC units younger than 25 years old are considered 

for retrofit. The relationship between the age and amortization level of an NGCC unit was assumed as 

shown in Figure S4.2,4  

 

Figure S4 Relationship between age and amortization level of an NGCC unit in the cost model. 

The Fixed Charge Factor (FCF), which is the fraction of the capital cost that must be recovered every 

year, is a function of a unit’s remaining lifetime as well as the discount rate and the rate of return on 

different bonds and stocks and taxes. We used IECM default values to calculate the FCF for each unit.2,5  
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Capital and O&M costs for different unit sizes are extracted from IECM. Based on a zero net present 

value, the LCOE can be calculated for each unit:5 

𝐿𝐶𝑂𝐸 =
𝑁𝐴𝑀𝐸𝑃𝐶𝐴𝑃 × 𝐶𝐴𝑃 × 𝐹𝐶𝐹 + 𝐹𝑂&𝑀

𝐺𝐸𝑁𝑁𝑇𝐴𝑁
+  𝑉𝑂&𝑀 

(S3) 

Where NAMEPCAP is unit’s capacity (MW), CAP is the capital cost ($/MW), FCF is in (fraction/year), FO&M 

is fixed O&M cost ($/MW/year), GENNTAN is the amount of electricity generated in one year (MWh) 

and VO&M is variable O&M cost ($/MWh). Fuel cost is embedded in the variable O&M.  

 

Retrofit-induced changes: 

The IECM model and literature suggest an energy penalty equivalent to roughly 7-percentage point loss 

in a unit’s efficiency after the retrofit.2,6 This decreases the maximum available generation capacity 

(MW), while the amount of CO2 produced per MWh of electricity increases. We used a 10-percentage 

point net efficiency loss since retrofitting an existing unit is typically harder than building a new unit with 

postcombustion capture.  

Since the amount of CO2 produced per MWh of electricity increases, after postcombustion capture, the 

amount of CO2 released to the atmosphere is more than 10% of the CO2 emission per MWh of electricity 

for the reference unit before the retrofit. This net CO2 removal efficiency is typically around 88% since 

the postcombustion unit captures 90% of the already increased CO2 production, not the initial CO2 

production. As mentioned in the main body of the article, the horizontal axes in Figures 1b and 4 do not 

take the additional CO2 into account and the percentage values are relative to the initial CO2 emissions 

of the reference units.  

After the retrofit, the unit’s new capital and operating costs were used in equation S3 to calculate the 

LCOE of the retrofitted unit. The additional capital cost after retrofit is not only due to the amine 

scrubber equipment but also due to the additional cooling capacity that is required. Fixed and variable 

O&M costs for a retrofitted unit were also estimated by comparison between a unit with and without 

postcombustion capture for each cost component.  The capital cost of an amine scrubbing unit was 

multiplied by 1.15 to account for retrofit difficulties.7 Capital and operating costs due to transportation 

and storage are not included in this analysis. 
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When LCOE and the rate of CO2 emission for the reference and retrofitted units are calculated, the cost 

of avoided CO2 (COC) can be determined by equation 1.  
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S5. Postcombustion Cost Model Sanity Check 

To assess the reliability of the retrofit cost analysis model, we used two similar NGCC retrofit cost 

analysis studies.8,9 We recalculated LCOE values before and after retrofit using the unit characteristics in 

these studies. As summarized in Table S4, the recalculated LCOE values and the difference between 

LCOE before and after retrofit are close to the published values. Based on equation 1, the difference 

between LCOEretrofit and LCOEref is the key parameter in determining the cost of avoided CO2. Therefore, 

the recalculated COC values are also close to the values in these studies. This validates the reliability of 

our retrofit cost model.  

Table S4 Comparison between the retrofit cost analysis model in this study and models in the literature 

Nameplate 
Capacity 

(MW) 
Net Eff 

Capacity 
Factor 

Fixed 
Charge 
Factor 

NG Price 
($/MMBtu) 

T&S 
Cost 

LCOE ref 
($/MWh) 

LCOE retrofit 
($/MWh) 

LCOE diff 
($/MWh) 

COC 
($/ton) Ref 

Lit Recalc Lit Recalc Lit Recalc Lit Recalc 

383 56.2% 0.85 0.13 6.35 10 53.9 52.1 76.6 76.3 22.7 24.2 78.8 83.7 

8 171.3 52.7% 0.85 0.13 6.35 10 57.9 58.1 87.9 89.2 30.0 31.1 88.4 101.2 

77.9 48.1% 0.85 0.13 6.35 10 63.9 67.3 102.7 108.5 38.8 41.2 105 123 

970 45.6% 0.59 - 13.77 - 104 123 151 159 47.0 36 128 101.4 
9 

780 43.6% 0.68 - 13.77 - 106 126 152 162 46.0 36 119 97 

 

We used our default Fixed Charge Factor values for the last two recalculations. The relatively larger 

difference between COC values is due to different assumptions for the rate of emissions (ROEs) in 

different studies. 



S13 

 

S6. Sensitivity to Natural Gas Price 

We assumed a constant price of $4/MMBtu for natural gas. The estimated LCOE values are sensitive to 

the natural gas price, however, the cost of CO2 capture, especially when analyzed for all NGCC units is 

not significantly sensitive to the natural gas price. Figure S5 illustrates the same results shown in Figure 

1a with two natural gas prices, $2 and $8 per MMBtu. 

 

Figure S5 Cumulative distribution of the cost of CO2 capture for the NGCC units considered for retrofit. The sensitivity of the 

results relative to the cost of natural gas is investigated with two natural gas prices. 

As shown, the percentage of units with COC below $100/ton and below $550/ton is not strongly 

dependent on the price of natural gas.  
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S7. Incorporating Learning into the LCOE 

Reduction in the COC through Learning-by-doing is reflected by a reduction in the cost of electricity for a 

retrofitted unit (smaller LCOEretrofit) and lowering the retrofit energy penalty (smaller ROEretrofit). This can 

be shown by considering the equation used for COC calculations:    

𝐶𝑂𝐶 ($/𝑡𝑜𝑛 𝐶𝑂2)  =
𝐿𝐶𝑂𝐸𝑟𝑒𝑡𝑟𝑜𝑓𝑖𝑡 −  𝐿𝐶𝑂𝐸𝑟𝑒𝑓 ($/𝑀𝑊ℎ)

𝑅𝑂𝐸𝑟𝑒𝑓 − 𝑅𝑂𝐸𝑟𝑒𝑡𝑟𝑜𝑓𝑖𝑡  (𝑡𝑜𝑛 𝐶𝑂2/𝑀𝑊ℎ)
 

(1) 

Learning affects the capital and O&M costs of the postcombustion capture and as a result, each unit will 

have a lower post-retrofit LCOE compared to the post-retrofit LCOE when learning is not considered. All 

cost components in equation S3 are affected by learning when postcombustion capture is implemented 

in scale. Capital, fixed O&M and variable O&M costs of amine scrubbing units have different learning 

rates which are extracted from the work by van den Broek et al.12 and summarized in Table 2 of the 

article. Due to the similarities between capital and fixed O&M costs, we assumed FO&M has the same 

learning rate range as capital cost. We also assumed learning starts after retrofitting the first (cheapest) 

3 GW of NGCC capacity and ends after retrofitting 100 GW of cumulative NGCC capacity. This means the 

first doubling in the learning equation (equation 2) happens when 6 GW of the NGCC capacity will have 

been retrofitted.  

𝑌 =  𝑎 𝜀log2 𝑋 =  𝑎 𝑋log2 𝜀 (2) 

When learning rates are known, the cost of each component after learning can be determined by 

equation 2 at any cumulative implementation level (parameter 𝑋). The problem in the case of 

postcombustion capture is that initial cost components (Cap, FO&M, and VO&M) at the beginning of 

learning (parameter 𝑎 in equation 2) are not unique values and are different for each NGCC unit. To 

address this issue, we had to calculate the mean and standard deviation of each cost component over all 

the NGCC units considered for postcombustion capture. Then we used two constant values for each cost 

component, 1.5 standard deviations above and below the mean for that component. The table below, 

which is a part of Table 2 of this article summarizes these values. It also shows the final value of each 

component when the learning endpoint (100 GW) is achieved.  
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Table S5 Approximations for postcombustion cost components used in the learning calculations 

Cost Component 
Initial Value 

(3 GW Cumulative Capacity) 

Final Value 

(100 GW Cumulative Capacity) 

𝐶𝑎𝑝 ($/𝑘𝑊) $550-$1090 $214-$792 

𝐹𝑂&𝑀 ($/kW/year) $5.2-$52.7 $2.0-$39 

𝑉𝑂&𝑀 ($/𝑀𝑊ℎ) $2.4-$4.8 $0.45-$2.93 

Energy Penalty 10%-point 7.1%-9.1% 

 

In other words, we used the six cost values as proxies to simplify our model and provided an 

approximate cost range for each unit’s postcombustion capture retrofit. To test the accuracy of the 

chosen proxy values, we used them to estimate a lower and an upper limit for the cost of 

postcombustion capture for each unit without learning. Namely, we tested them with the accurate 

postcombustion results calculated with the cost model and shown in Figure 1b. Figure S6 illustrates this 

comparison. The black curve shows the cost of postcombustion capture for the NGCC units (no learning 

effect included) versus the level of decarbonization as shown in Figure 1b. The shaded area around the 

curve shows the lower and upper limit estimates with the cost components in Table S5. The cost 

components are used in equation S3 to estimate the post-retrofit LCOE and then used in equation 1 to 

estimate a lower and an upper approximation for the cost of CO2.  

 

Figure S6 Comparison between the accurate calculation of COC and approximation with the proxy cost component values. 
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As shown in Figure S6, the upper and lower limit COCs are accurate approximations for the real cost of 

capture. Therefore, we expect the cost of postcombustion captures, with the impact of learning-by-

doing, will fall between the upper and lower limit costs approximations.  

The three lower cost values in addition to the three higher learning rates (quicker cost reduction) were 

used for a lower limit cost of CO2 scenario and the three higher cost values with the lower learning rates 

(slower cost reduction) were used for an upper limit cost of CO2 scenario. The learning results are shown 

in Figure 4. 
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S8. An Alternative Approach to Incorporate Learning in the Cost of Retrofit 

As discussed in section S7, the unit-specific cost component values before learning (Cap, FO&M, and VO&M) 

make it difficult to project the impact of learning by equation 2. Here we propose an alternative 

approach to address this issue. By dividing equation 2 by parameter 𝑎 (the initial cost before learning), 

we can reorganize this equation: 

𝑌/𝑎 =  𝜀log2 𝑋 =  𝑋log2 𝜀 (S4) 

On the left side of equation S4, we have the ratio of a cost component after learning to its initial value 

with no learning. In the case of learning-by-doing, this ratio will be smaller than 1.0 and gets smaller 

when more experience is achieved (higher 𝑋).  In this new approach, we recalculate the 𝑌/𝑎 ratio after 

retrofitting each unit when more experience is accumulated. To calculate the cost of retrofit after 

learning for each unit, we simply multiply this ratio by the unique cost component of that unit: 

𝐶𝑜𝑠𝑡 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑎𝑓𝑡𝑒𝑟 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 = (𝑌/𝑎)  × 𝐶𝑜𝑠𝑡 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑏𝑒𝑓𝑜𝑟𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 (S5) 

Equation S5 is used for each cost component of each unit to project the retrofit cost reduction after 

learning. Similar to the previous method, when cost components after learning are calculated, equations 

S3 and 1 are used to calculate the cost of CO2. The 𝑌/𝑎 ratio starts at 1.0 for the first 3 GW per-learning 

phase and its final values for different cost components are summarized in Table S6.  

Table S6 Values of Y/a learning ratio for different cost components at learning endpoint 

Cost Component Learning Rate 
Final  𝑌/𝑎 Ratio 

(100 GW Cumulative Capacity) 

𝐶𝑎𝑝 & 𝐹𝑂&𝑀  6%-17% 0.38-0.72 

𝑉𝑂&𝑀 10%-30% 0.18-0.60 

Energy Penalty 2%-7% 0.70-0.91 

 

Figure S7 illustrates the probable range of the postcombustion capture cost with learning. The 

difference between the two learning implementation methods can be noticed by comparing this figure 

with Figure 4a. Even though the average curves in the figures are almost identical, the authors prefer 

the method discussed in section S7 and Figure 4a for further analysis since they provide a larger range of 

uncertainty.  
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Figure S7 Cost of CO2 plotted against decarbonization level considering the impact of learning-by-doing for postcombustion 
capture retrofit. In this figure, we used an alternative method to project the cost reduction due to learning (compare with Figure 

4a).
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