Electronic Supplementary Information

Hydrogenation of α-pinene over platinum nanoparticles reduced and stabilized by sodium lignosulfonate

Xiangyun Chen,[†] Bing Yuan,^{*,†} Fengli Yu,[†] Yuxiang Liu[‡], Congxia Xie^{*,†} and Shitao Yu[‡]

[†]State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.

[‡]College of Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.

**Corresponding author: E-mail: <u>yuanbing@qust.edu.cn</u> (Bing Yuan); <u>xiecongxia@126.com</u> (Congxia Xie).*

Table of contents

Figure S1. UV-Vis spectra of SLS solution.

Figure S2. O 1s core-level spectra (a) and fitted O 1s XPS spectra for $SLS+H_2PtCl_6-$ 0h (b), $SLS+H_2PtCl_6-3h$ (c) and $SLS+H_2PtCl_6-3h^{\#}$ (d).

Figure S3. ¹H NMR spectra of $SLS+H_2PtCl_6-0h$, $SLS+H_2PtCl_6-3h$ and $SLS+H_2PtCl_6-3h^{\#}$.

Figure S4. Side-chain (A, B) and aromatic regions (C, D) in the 2D HSQC NMR spectra: δ_C/δ_H 50-90/2.5-6.0 and δ_C/δ_H 100-135/5.5-8.5, respectively. (A, C) SLS+H₂PtCl₆-3h[#]; (B, D) SLS+H₂PtCl₆-3h^{b*}.

Figure S5. Carbohydrate anomeric regions (δ_C/δ_H 90-105/3.9-5.4) of 2D HSQC NMR spectra of the (A) SLS+H₂PtCl₆-0h, (B) SLS+H₂PtCl₆-3h, (C) SLS+H₂PtCl₆-3h[#] and (D) SLS+H₂PtCl₆-3h^{b*}. Assignments of the carbohydrate signals are listed in Table S3. **Figure S6.** FT-IR spectra of various catalyst samples.

Figure S7. XRD patterns of various catalyst samples.

Figure S8. Capability of phenol (a), anisole (b), 2,6-dimethoxyphenol (c), 4propylphenol (d), methoxyphenol (e) and 2-methoxy-4-propylphenol (f) to reduce H_2PtCl_6 .

Figure S9. TEM image of SLS+H₂PtCl₆-3h (scale bar 100 nm).

Figure S10. TEM images (A) and Particle Size Distribution (PSD) (B) of the Pt NPs catalyst system after 5 runs.

Table S1. Subpeak area fractions of C 1s and O 1s.

Table S2. Assignment of the ¹H-¹³C cross-signals in the 2D HSQC NMR spectra of SLS+H₂PtCl₆-0h, SLS+H₂PtCl₆-3h, SLS+H₂PtCl₆-3h[#] and SLS+H₂PtCl₆-3h^{b*}.

Table S3. Assignment of the associated carbohydrate ${}^{1}H{}^{-13}C$ cross-signals in the 2D HSQC NMR spectra of SLS+H₂PtCl₆-0h, SLS+H₂PtCl₆-3h, SLS+H₂PtCl₆-3h[#] and SLS+H₂PtCl₆-3h^{b*}.

Table S4. Hydrogenation of terpenes catalyzed by SLS-stabilized Pt NPs.

Table S5. Hydrogenation of other alkenes catalyzed by SLS-stabilized Pt NPs.

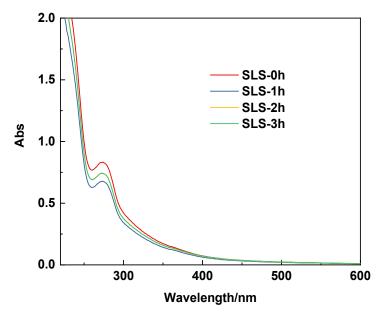


Figure S1. UV-Vis spectra of SLS solution.

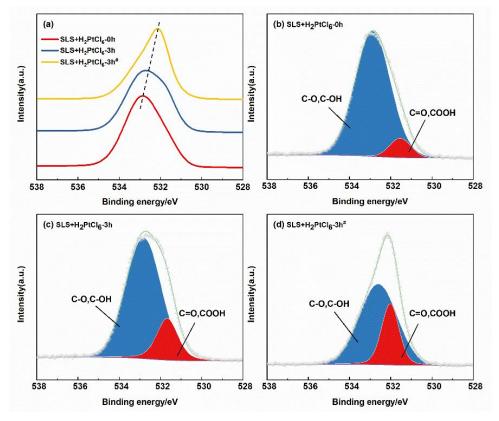


Figure S2. O 1s core-level spectra (a) and fitted O 1s XPS spectra for $SLS+H_2PtCl_6-$ 0h (b), $SLS+H_2PtCl_6-3h$ (c) and $SLS+H_2PtCl_6-3h^{\#}$ (d).

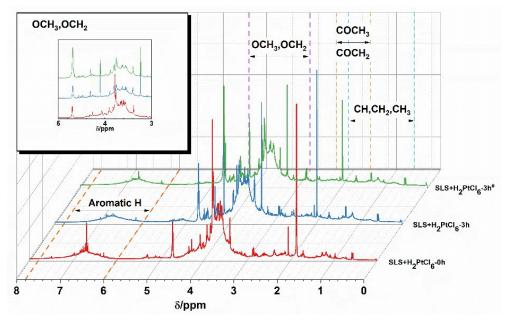
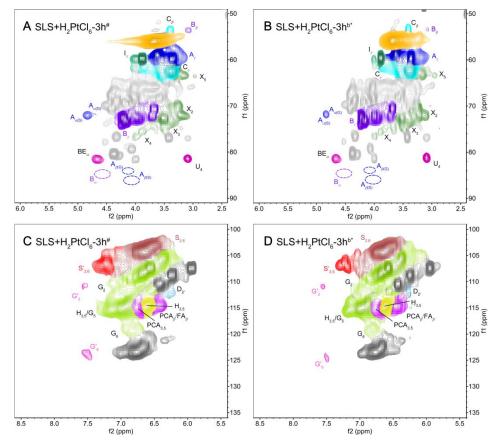




Figure S3. ¹H NMR spectra of SLS+H₂PtCl₆-0h, SLS+H₂PtCl₆-3h and SLS+H₂PtCl₆-3h[#].

Figure S4. Side-chain (A, B) and aromatic regions (C, D) in the 2D HSQC NMR spectra: δ_C/δ_H 50-90/2.5-6.0 and δ_C/δ_H 100-135/5.5-8.5, respectively. (A, C) SLS+H₂PtCl₆-3h[#]; (B, D) SLS+H₂PtCl₆-3h^{b*}.

Figure S5. Carbohydrate anomeric regions (δ_C/δ_H 90-105/3.9-5.4) of 2D HSQC NMR spectra of the (A) SLS+H₂PtCl₆-0h, (B) SLS+H₂PtCl₆-3h, (C) SLS+H₂PtCl₆-3h[#] and (D) SLS+H₂PtCl₆-3h^{b*}. Assignments of the carbohydrate signals are listed in Table S3.

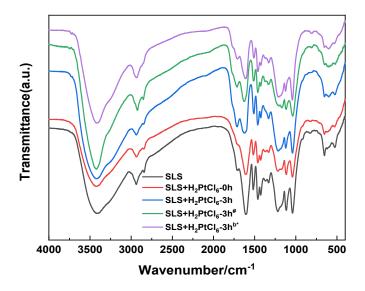


Figure S6. FT-IR spectra of various catalyst samples.

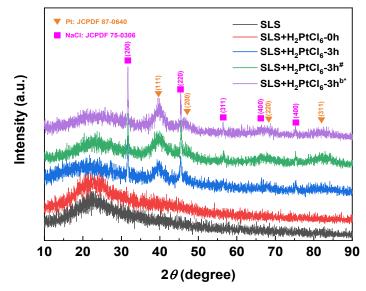
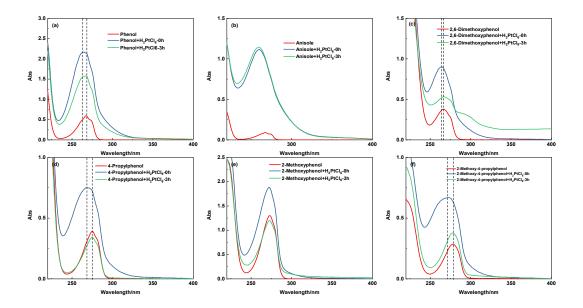



Figure S7. XRD patterns of various catalyst samples.

Figure S8. Capability of phenol (a), anisole (b), 2,6-dimethoxyphenol (c), 4propylphenol (d), methoxyphenol (e) and 2-methoxy-4-propylphenol (f) to reduce H_2PtCl_6 .

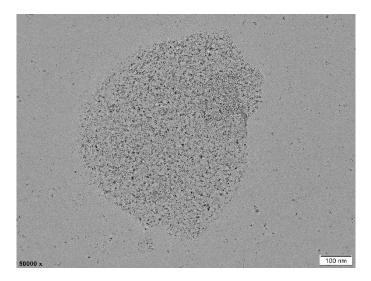
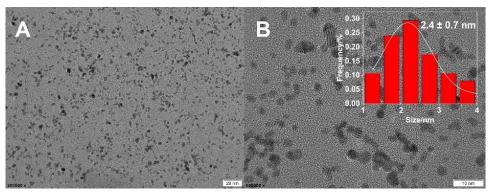



Figure S9. TEM image of SLS+H₂PtCl₆-3h (scale bar 100 nm).

Figure S10. TEM images (A) and Particle Size Distribution (PSD) (B) of the Pt NPs catalyst system after 5 runs.

Sample	Relative Area/% (Binding energy/eV) of C 1s Peaks				Relative Area	/% (Binding	
				C ₃ /C ₂	energy/eV) of O 1s Peaks		O_1/O_2
Description	C ₁ (C-C/C=C)	C ₂ (C-O)	C ₃ (C=O)		O ₁ (C=O)	O ₂ (C-O)	-
	35.39/21.24	39.61	3.76	0.09	8.26	91.74	0.09
SLS+H ₂ PtCl ₆ -0h	(284.7/285.1)	(286.3)	(288.5)		(531.5)	(532.6)	
	43.43/26.06	24.67	5.84	0.24	19.36	80.64	0.24
SLS+H ₂ PtCl ₆ -3h	(284.7/285.1)	(286.4)	(288.8)		(531.7)	(532.8)	
SLS+H ₂ PtCl ₆ -3h [#]	51.71/31.03	12.41	4.85	0.39	28.06	71.94	0.39
	(284.7/285.3)	(286.3)	(288.9)		(532.0)	(532.6)	

Table S1. Subpeak area fractions of C 1s and O 1s.

Lable	$\delta_{ m C}/\delta_{ m H}$	Assignment
OCH ₃	55.6/3.68	C-H in methoxyls
A_{γ}	59.8/3.35 and 3.72	C_{γ} -H _{γ} in γ -hydroxylated β -O-4' substructures
$A_{\alpha(G)}$	71.8/4.68	C_{α} -H _{α} in β -O-4' substructures linked to G-unit
$A_{\alpha(S)}$	72.1/4.85	C_{α} -H _{α} in β -O-4' substructures linked to S-unit
$A_{\beta(G)}$	84.1/4.22	C_{β} -H _{β} in β -O-4' substructures linked to G-unit
$A_{\beta(S)}$	86.2/4.09	C_{β} -H _{β} in β -O-4' substructures linked to S-unit
\mathbf{B}_{a}	85.5/4.61	C_{α} - H_{α} in β - β' resinol substructures
\mathbf{B}_{eta}	53.5/3.08	C_{β} - H_{β} in β - β' resinol substructures
\mathbf{B}_{γ}	71.2/3.72 and 4.20	C_{γ} - H_{γ} in β - β' resinol substructures
C_{α}	87.6/5.40	C_{α} -H _{α} in phenylcoumaran substructures
C_{β}	53.5/3.41	C_{β} -H _{β} in phenylcoumaran substructures
C_{γ}	62.7/3.83	C_{γ} -H _{γ} in phenylcoumaran substructures
D_{α}	81.2/5.10	C_{α} -H _{α} in spirodienone substructures
D_{eta}	59.3/2.77	C_{β} -H _{β} in spirodienone substructures
$\mathrm{D}_{eta'}$	78.5/4.18	C_{β} - $H_{\beta'}$ in spirodienone substructures
$D_{2^{\prime}}$	112.7/6.25	C2'-H2' in spirodienone substructures
$D_{6'}$	121.0/6.09	$C_{6'}$ -H _{6'} in spirodienone substructures
I_{γ}	61.6/4.03	C_{γ} -H _{γ} in cinnamyl alcohol end-groups
S _{2,6}	104.2/6.66	C _{2,6} -H _{2,6} in etherified syringyl units (S)
S _{2,6'}	106.3/7.27	$C_{2,6}$ -H _{2,6} in oxidized (C_{α} =O) syringyl units
G_2'	110.9/6.89	C ₂ -H ₂ in guaiacyl units (G, Non-phenolic G)
G_2	110.5/7.55	C ₂ -H ₂ in oxidized (C _{α} =O) guaiacyl units
G_2	107.4/6.63	C ₂ -H ₂ in guaiacyl units (G, Phenolic G)
G ₅	114.9/6.95	C ₅ -H ₅ in guaiacyl units
G_6	118.9/6.78	C ₆ -H ₆ in guaiacyl units
G'_6	123.9/7.55	C ₆ -H ₆ in oxidized (C _{α} =O) guaiacyl units
PCA_{β}	114.4/6.43	C_{β} - H_{β} in <i>p</i> -coumarate
PCA _{3,5}	115.1/6.86	$C_{3,5}$ - $H_{3,5}$ in <i>p</i> -coumarate
PCA _α	143.7/7.60	C_{α} - H_{α} in <i>p</i> -coumarate
H _{2,6}	127.7/7.13	C _{2,6} -H _{2,6} in p-hydroxybenzoate substructures
FA ₆	122.7/7.17	C ₆ -H ₆ in ferulate

Table S2. Assignment of the ¹H-¹³C cross-signals in the 2D HSQC NMR spectra of SLS+H₂PtCl₆-0h, SLS+H₂PtCl₆-3h, SLS+H₂PtCl₆-3h[#] and SLS+H₂PtCl₆-3h^{b*}.

Lable	$\delta_{ m C}/\delta_{ m H}$	Assignment		
X ₂	72.2/3.13	C_2 -H ₂ in β -D-xylopyranoside		
X_3	73.5/3.42	C_3 - H_3 in β - $_D$ -xylopyranoside		
X_4	75.4/3.87	C_4 -H ₄ in β -D-xylopyranoside		
X_5	63.2/3.18	C_5 - H_5 in β - $_D$ -xylopyranoside		
BE_{α}	81.7/4.68	C_{α} -H _{α} in benzyl ether LCC structures anomeric correlations (C ₁ -H ₁)		
U_4	81.3/3.10	C ₄ -H ₄ in 4-O-methyl-α-D-GlcUA		
$\alpha X_{1(R)}$	92.5/4.91	$(1\rightarrow 4)$ - α -D-xylopyranoside (R)		
$\beta X_{1(R)}$	97.4/4.25	$(1\rightarrow 4)$ - β -D-xylopyranoside (R)		
U_1	97.2/5.20	4-O-methyl-α- _D -GlcUA		
PhGlc ₁	98.2/4.88	phenyl glycoside linkages		
PhGlc ₂	101.8/4.90	phenyl glycoside linkages		
PhGlc ₃	101.7/5.07	phenyl glycoside linkages		
X ₁ /Glc ₁	103.9/4.32	β -D-xylopyranoside/ β -D-glucopyranoside		

Table S3. Assignment of the associated carbohydrate ${}^{1}H{}^{-13}C$ cross-signals in the 2D HSQC NMR spectra of SLS+H₂PtCl₆-0h, SLS+H₂PtCl₆-3h, SLS+H₂PtCl₆-3h[#] and SLS+H₂PtCl₆-3h^{b*}.

Substrates	Structural formulas	Conversion/%	Distribution of products %
<u>.</u>	\mathbf{i}	100	82.12
β-pinene	A	100	17.88
3-carene	\times	100	100
, .		02.24	26.96
α-terpinene		92.24	73.04
		02.79	33.22
γ- terpinene		92.78	66.78
	= -	99.38	53.54
terpinolene			46.46
limonene		09.42	43.16
millionene	<i>></i> → 98.43	96.45	56.84
		4.43	47.19
<i>p</i> -cymene		4.45	52.81
			37.42
caryophyllene		97.14	31.22
			31.36
	X .		5.15
longifolene		100	36.25
			58.59

Table S	4. Hydrogenation	of terpenes	catalyzed by	y SLS-stabilized Pt NF	Ps.
-			-		

Reaction conditions: $n_{(cat.)}$: $n_{(\alpha-pinene)} = 1 : 400, 10 \text{ mmol } \alpha$ -pinene, 1 MPa H₂, 70 °C, 2.0 h.

Substrates	Conversion/%	Products	Selectivity%
	42.43	\frown	100
	0.93	\bigcirc	100
$\langle $	100	\bigcirc	100
\bigcirc	100	\bigcirc	100
	100	\sim	100
$\checkmark \checkmark \checkmark \checkmark \land$	99.84	\sim	100

 Table S5. Hydrogenation of other alkenes catalyzed by SLS-stabilized Pt NPs.

Reaction conditions: $n_{(cat.)}$: $n_{(\alpha-pinene)} = 1 : 400, 10 \text{ mmol } \alpha$ -pinene, 1 MPa H₂, 70 °C, 2.0 h.