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BACKGROUND GENETOX CLASSIFICATION ANALYSIS
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the GeneTox call. This used the classification scheme of Williams et al., 2019 [1]. QSAR tools Toxicity Estimation Software .. < 057 o051 o045 PEE & umber of tools in the model --------
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DNA alerts for Ames, CA) were used to make in silico predictions for genotoxicity. A new cutoff-based scheme was derived genotoxic and ~19% chemicals with inconclusive Ames data were classified as genotoxic. Number of Assays per Chemicl = 12 Al A2 A3 A1 s

for GeneTox classifications and ensemble models were developed to predict genotoxicity. The (in silico) predictions were Zig“’e 3: D‘St”bU:iO” OfI”U”‘ber of assay
ata points per chemical.

compared against Williams et al., 2019 and newly derived genetox classifications.
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DATA PREPARATION

Algorithm: Each tool has a binary (genotoxic or non-genotoxic) prediction. A

combination of tools is considered as a unique tool leading to 64 (2°) unique tool =====---
combinations. The posterior probability of a chemical being genotoxic or non- --------

genotoxic is calculated using the Bayes Theorem [2].
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| | - - L
£ o—9o o o o & o o ¢ L . _ . :
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Toxicity Estimation Software Tool (TEST) QSAR Ames IR [ = 2 Sk oo s XY s
GeneTox Call: CutOff_50%

Lazy structure—activity relationships QSAR T2 Salmonella typhimurium =07 S umma ry
(Lazar) Lazar (n =2478) 74.54 64.21 79.71 71.96 0.43
OECD Toolbox Alerts A1-A5 A1l: DNA alerts for AMES by OASIS TEST (n = 2158) 76.74 70.97 79.27 75.12 0.48 * Williams et al., 2019 scheme for chemical classification as genotoxic or non-genotoxic is conservative in nature as compared to

A2: Alerts for CA and MNT by OASIS OECD A1 (n = 2673) 74.93 85 16 79 78 78.97 0.40 experimental activity cut-off based classification scheme.

A3: Protein binding alerts for Chromosomal aberration by OASIS * The individual QSAR tools and alerts have similar predictivity with balanced accuracies ranging from 64-80% with the tools performing

g T o g OECD A2 (n = 2673) 74.26 81.72 72.6 77.16 0.39 . . . e .

v seNICIty (AT Y better if they are validated against the cut-off based classification scheme as opposed to Williams et al., 2019 scheme.

AS: in vivo mutagenicity (Micronucleus) alerts by ISS OECD A3 (n = 2673) 64.95 58.47 65.93 62.20 0.14 * The ensemble models using various combination of tools result in improved overall predictions with slightly improved predictions if

Table 1: Summary of in silico tools used to make genotoxicity predictions. OECD A4 (n = 2673) 74.00 65.70 78.67 72.19 0.44 they are validated against the experimental activity cut-off based classification scheme as opposed to the Williams et al., 2019
OECD A5 (n = 2673) 60.23 47.96 79.00 63.48 0.24 scheme.
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