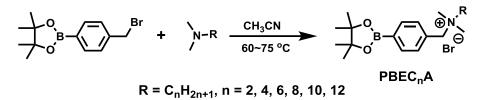
Supporting Information

pH/ROS Dual-Responsive Supramolecular Vesicles Fabricated by Carboxylated Pillar[6]arene-Based Host-Guest Recognition and Phenylboronic Acid Pinacol Ester Derivative *Qi Hao, Yuetong Kang, Jiang-Fei Xu*, and Xi Zhang* Key Lab of Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China

E-mail: xujf@mail.tsinghua.edu.cn

Number of pages: 30

Number of figures: 37


Number of schemes: 2

Number of tables: 1

Table of Contents

1.	Synthesis and characterization of PBEC _n A and C ₁₂ AH2
2.	Isothermal titration calorimetry data of PBEC _n A ($n = 2, 4, 6, 8, 10$)
3.	Thermodynamic data of the PBEC _n A-CP[6] host–guest complexation
4.	The critical aggregation concentration (CAC) of PBEC ₁₂ A
5.	UV-vis spectra of PBEC ₁₂ A before and after adding CP[6]
6.	The CAC of PBEC ₁₂ A-CP[6] (5:1) and PBEC ₁₂ A-CP[6] (10:1)
7.	The original HRTEM images of self-assemblies from PBEC ₁₂ A-CP[6] supramolecular
	complex at different host-guest ratios
8.	¹ H NMR spectra of the host-guest complexation between C ₁₂ AH and CP[6] 30

1. Synthesis and characterization of PBEC_nA and C₁₂AH

Scheme S1. Synthesis of PBEC_nA

Synthesis of PBEC₂A

The synthesis procedure of PBEC₂A is conducted as follows. 4-(Bromomethyl)phenylboronic acid pinacol ester (0.51 g, 1.72 mmol) and N,N-dimethylethylamine (0.11 g, 1.50 mmol) were dissolved in 10 mL of acetonitrile, and the mixture was stirred and heated at 60 °C for 8 h. Next, the mixture was concentrated by rotary evaporator to half volume. Then, the solution was dropwise added to 150 mL of diethyl ether. The formed precipitate was filtered and washed with diethyl ether, then dried in vacuum to obtain the white solid, yielding 77%.

¹H NMR (D₂O, 600 MHz): δ 7.86 (d, *J* = 7.8 Hz, 2H), 7.55 (d, *J* = 7.8 Hz, 2H), 4.48 (s, 2H), 3.39 (q, *J* = 7.2 Hz, 2H), 2.98 (s, 6H), 1.42 (t, *J* = 7.2 Hz, 3H), 1.20 (s, 12H).

¹³C NMR (D₂O, 150 MHz): δ 134.23, 132.35, 129.56, 75.74, 67.21, 60.07, 49.14, 23.85, 7.72. MS (ESI): found *m*/*z* = 290.228, calculated *m*/*z* for ([M – Br]⁺) = 290.229.

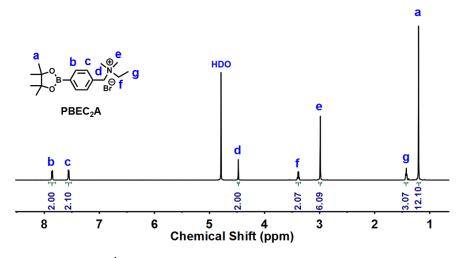
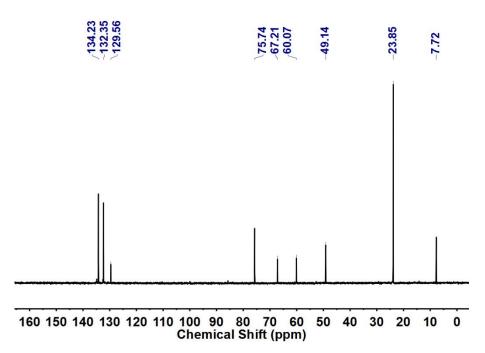
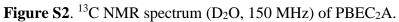




Figure S1. ¹H NMR spectrum (D₂O, 600 MHz) of PBEC₂A.

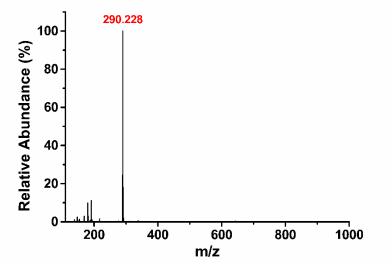


Figure S3. MS(ESI) of PBEC₂A.

Synthesis of PBEC₄A

4-(Bromomethyl)phenylboronic acid pinacol ester (0.45 g, 1.52 mmol) and N,Ndimethylbutylamine (0.12 g, 1.18 mmol) were dissolved in 10 mL of acetonitrile, and the mixture was stirred and heated at 65 °C for 8 h. After evaporation, the residue was re-dissolved in 5 mL of methanol. Then, the mixture was precipitated in 150 mL of diethyl ether and filtrated then dried in vacuum to give white product yielding 91%.

¹H NMR (DMSO-*d*₆, 600 MHz): δ 7.78 (d, *J* = 7.8 Hz, 2H), 7.55 (d, *J* = 7.8 Hz, 2H), 4.53 (s, 2H), 3.25 (m, 2H), 2.94 (s, 6H), 1.77 (m, 2H), 1.30 (m, 14H), 0.95 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (DMSO-*d*₆, 150 MHz): δ 134.70, 132.39, 131.10, 83.96, 65.95, 63.35, 49.19, 24.64, 23.75, 19.24, 13.50.

MS (ESI): found m/z = 318.259, calculated m/z for ([M – Br]⁺) = 318.260.

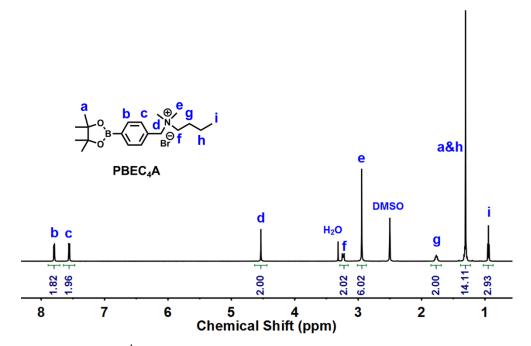


Figure S4. ¹H NMR spectrum (DMSO-*d*₆, 600 MHz) of PBEC₄A.

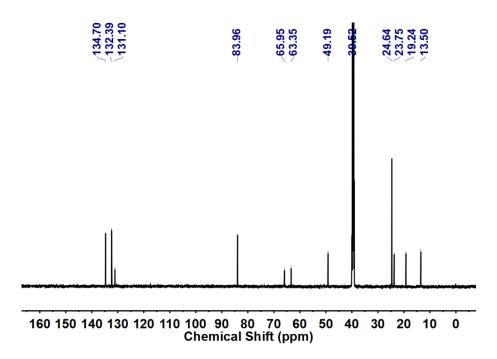


Figure S5. ¹³C NMR spectrum (DMSO-*d*₆, 150 MHz) of PBEC₄A.

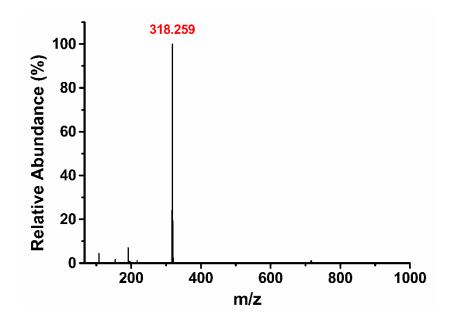


Figure S6. MS(ESI) of PBEC₄ A.

Synthesis of PBEC₆N

4-(Bromomethyl)phenylboronic acid pinacol ester (0.67 g, 2.26 mmol) and N,Ndimethylhexylamine (0.26 g, 2.01 mmol) were dissolved in 10 mL of acetonitrile, and the mixture was stirred and heated at 60 °C overnight. Next, the mixture was concentrated by rotary evaporator to half volume. Then, the mixture was precipitated in 150 mL of diethyl ether and filtrated then dried in vacuum to give white product yielding 90%.

¹H NMR (600 MHz, DMSO-*d*₆): δ 7.78 (d, *J* = 8.4 Hz, 2H), 7.55 (d, *J* = 8.4 Hz, 2H), 4.55 (s, 2H), 3.25 (m, 2H), 2.94 (s, 6H), 1.77 (m, 2H), 1.30 (m, 18H), 0.88 (t, *J* = 7.2 Hz, 3H)

¹³C NMR (150 MHz, DMSO-*d*₆): δ 134.70, 132.38, 131.11, 83.96, 65.95, 63.55, 49.16, 30.65, 25.44, 24.64, 21.82, 13.80.

MS (ESI): found m/z = 346.290, calculated m/z for ([M – Br] +) = 346.291.

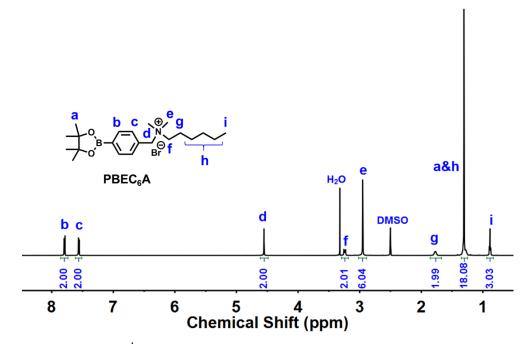


Figure S7. ¹H NMR spectrum (DMSO- d_6 , 600 MHz) of PBEC₆A.

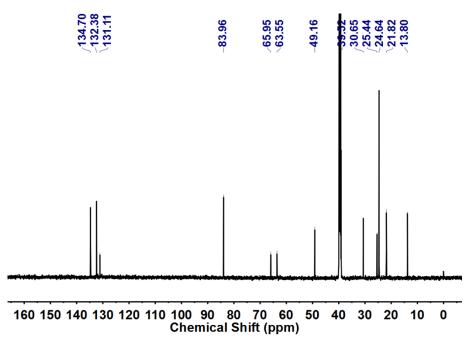


Figure S8. ¹³C NMR spectrum (DMSO-*d*₆, 150 MHz) of PBEC₆A.

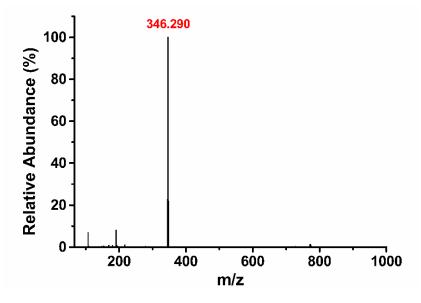


Figure S9. MS(ESI) of PBEC₆ A.

Synthesis of PBEC₈A.

4-(Bromomethyl)phenylboronic acid pinacol ester (0.88 g, 2.96 mmol) and N,Ndimethyloctylamine (0.34 g, 2.16 mmol) were dissolved in 15 mL of acetonitrile, and the mixture was stirred and heated at 70 °C for 8 h. Next, the mixture was concentrated by rotary evaporator and the residue was re-dissolved in 5 mL of chloroform. Then, the mixture was precipitated in 150 mL of petroleum ether and filtrated then dried in vacuum, faint yellow solid product was obtained with a yield of 59%.

¹H NMR (600 MHz, DMSO-*d*₆): δ 7.78 (d, *J* = 7.8 Hz, 2H), 7.56 (d, *J* = 7.8 Hz, 2H), 4.53 (s, 2H), 3.21 (m, 2H), 2.94 (s, 6H), 1.77 (m, 2H), 1.30 (m, 22H), 0.87 (t, *J* = 6.6 Hz, 3H)

¹³C NMR (150 MHz, DMSO-*d*₆): δ 134.70, 132.37, 131.12, 100.10, 83.96, 65.97, 63.54, 49.18, 31.14, 28.41, 25.79, 24.64, 22.03, 13.94.

MS (ESI): found m/z = 374.322, calculated m/z for ([M – Br] +) = 374.322.

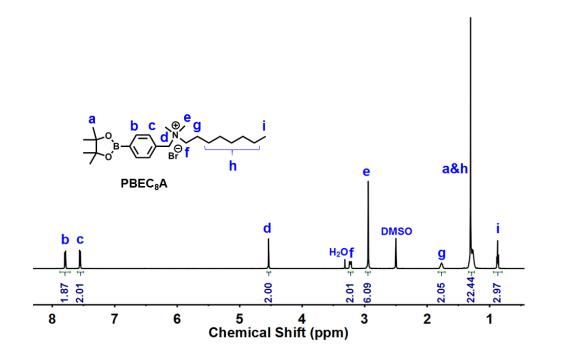


Figure S10. ¹H NMR spectrum (DMSO-*d*₆, 600 MHz) of PBEC₈A.

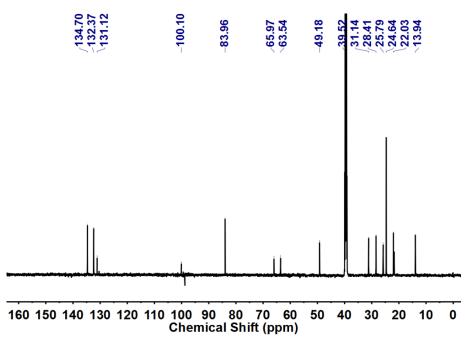


Figure S11. ¹³C NMR spectrum (DMSO-*d*₆, 150 MHz) of PBEC₈A.

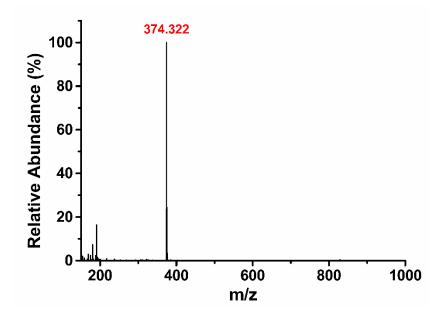


Figure S12. MS(ESI) of PBEC₈ A.

Synthesis of PBEC₁₀A.

4-(Bromomethyl)phenylboronic acid pinacol ester (0.70 g, 2.36 mmol) and N,Ndimethyldecylamine (0.37 g, 2.00 mmol) were dissolved in 10 mL of acetonitrile, and the mixture was stirred and heated at 70 °C overnight. Next, the mixture was concentrated by rotary evaporator and the residue was re-dissolved in 5 mL of chloroform. Then, the mixture was precipitated in 150 mL of petroleum ether and then dried in vacuum, faint yellow solid product was obtained with a yield of 55%.

¹H NMR (600 MHz, DMSO-*d*₆): δ 7.78 (d, *J* = 7.8 Hz, 2H), 7.56 (d, *J* = 7.8 Hz, 2H), 4.54 (s, 2H), 3.21 (m, 2H), 2.94 (s, 6H), 1.76 (m, 2H), 1.30-1.26 (m, 26H), 0.86 (t, *J* = 6.6 Hz, 3H)

¹³C NMR (150 MHz, DMSO-*d*₆): δ 134.68, 132.37, 131.13, 83.94, 65.90, 63.48, 49.17, 31.26, 28.85, 28.75, 28.63, 28.46, 25.77, 24.63, 22.07, 21.75, 13.93.

MS (ESI): found m/z = 402.354, calculated m/z for ([M – Br] +) = 420.354.

Figure S13. ¹H NMR spectrum (DMSO- d_6 , 600 MHz) of PBEC₁₀A.

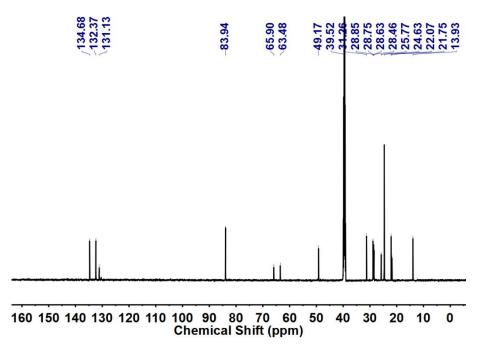


Figure S14. ¹³C NMR spectrum (DMSO-*d*₆, 150 MHz) of PBEC₁₀A.

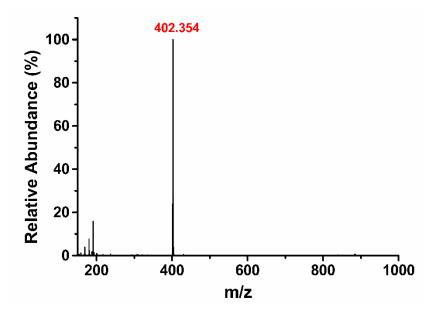
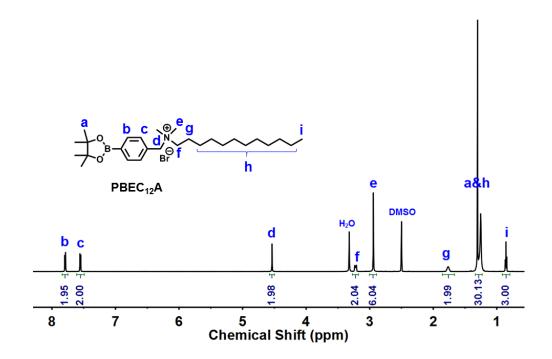


Figure S15. MS(ESI) of PBEC₁₀ A.

Synthesis of PBEC₁₂A.


4-(Bromomethyl)phenylboronic acid pinacol ester (0.77 g, 2.59 mmol) and N,Ndimethyldodecylamine (0.48 g, 2.25 mmol) were dissolved in 10 mL of acetonitrile, and the mixture was stirred and heated at 75 °C overnight. After evaporation, the residue was re-dissolved in 5 mL of chloroform. Then, the mixture was precipitated in 150 mL of petroleum ether and filtrated then dried in vacuum, faint yellow solid product was obtained with a yield of 59%.

¹H NMR (600 MHz, DMSO-*d*₆): δ 7.79 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 4.53 (s, 2H),

3.22 (m, 2H), 2.94 (s, 6H), 1.77 (m, 2H), 1.30 - 1.25 (m, 30H), 0.85 (t, *J* = 6.6 Hz, 3H)

¹³C NMR (150 MHz, DMSO-*d*₆): δ 134.68, 132.36, 131.12, 83.95, 65.91, 63.48, 49.18, 31.27, 28.98, 28.89, 28.74, 28.68, 28.45, 25.77, 24.63, 22.06, 21.75, 13.93.

MS (ESI): found m/z = 430.384, calculated m/z for ([M – Br] ⁺) = 430.385.

Figure S16. ¹H NMR spectrum (DMSO- d_6 , 600 MHz) of PBEC₁₂A.

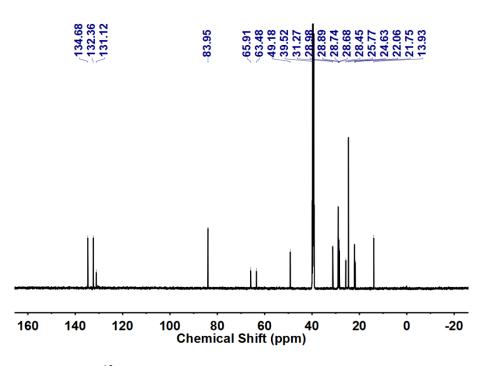


Figure S17. ¹³C NMR spectrum (DMSO-*d*₆, 150 MHz) of PBEC₁₂A.

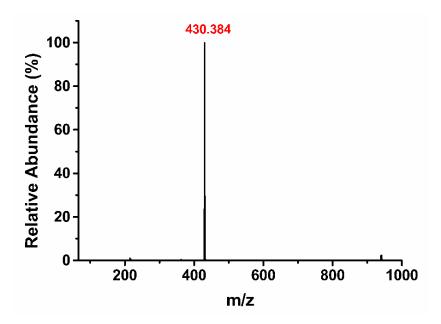
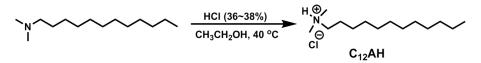



Figure S18. MS(ESI) of PBEC₁₂A.

Synthesis of C₁₂AH

Scheme S2. Synthesis of C₁₂AH

N,N-dimethyldodecylamine (1.64 g, 7.68 mmol) were dissolved in 20 mL of ethanol, then the concentrated hydrochloric acid (1.4 mL, 36~38 %) was dropwise added. The mixture was stirred and heated at 40 °C for 5 h. After evaporation, the residue was re-dissolved in 5 mL of chloroform. Then, the mixture was precipitated in 150 mL of petroleum ether and centrifuged then dried in vacuum, white solid product was obtained with a yield of 29%.

¹H NMR (600 MHz, CDCl₃): δ 12.24 (br, 1H), 2.94 (m, 2H), 2.77 (d, *J* = 4.8 Hz, 6H), 1.81 (m, 2H), 1.30-1.21 (m, 18H), 0.84 (t, *J* = 6.6 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 58.06, 42.83, 31.94, 29.61, 29.51, 29.37, 29.08, 26.71, 24.26, 22.73, 14.18.

MS (ESI): found m/z = 214.253, calculated m/z for ([M – Br]⁺) = 214.253.

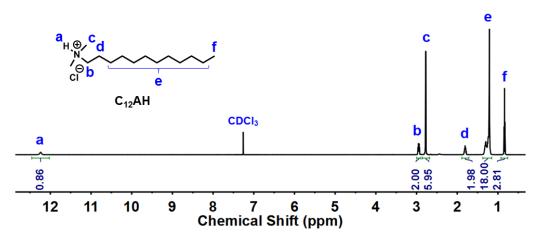


Figure S19. ¹H NMR spectrum (CDCl₃, 600 MHz) of C₁₂AH.

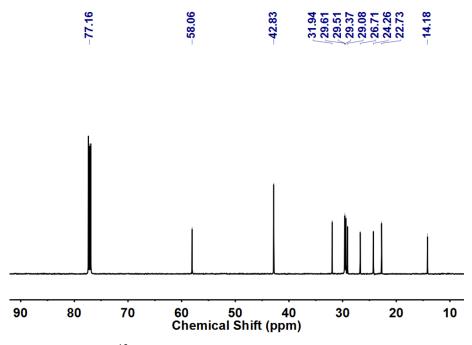


Figure S20. ¹³C NMR spectrum (CDCl₃, 150 MHz) of C₁₂AH.

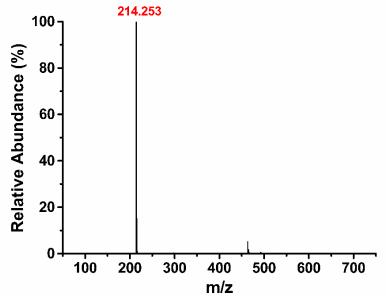
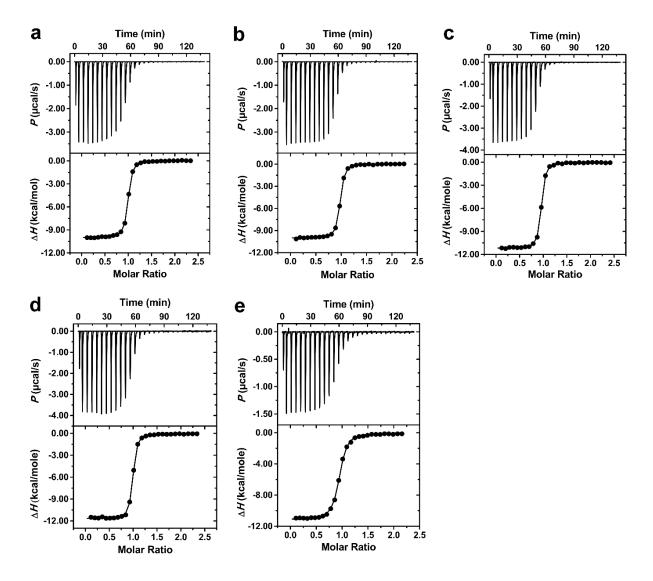



Figure S21. MS(ESI) of C₁₂AH.

2. Isothermal titration calorimetry data of $PBEC_nA$ (n = 2, 4, 6, 8, 10)

The ITC experiments were performed by titrating the guest molecule into the CP[6] host in 20 mM phosphate buffer of pH 7.4 at 37.0 °C. The titration curves of 1:1 complexations between all the guests and CP[6] were shown as following:

Figure S22. ITC data and fitting curves for the titrations of (a) $PBEC_2A$ (1.0 mM) into CP[6] (0.10 mM) (b) $PBEC_4A$ (1.0 mM) into CP[6] (0.10 mM) (c) $PBEC_6A$ (1.0 mM) into CP[6] (0.10 mM) (d) $PBEC_8A$ (1.0 mM) into CP[6] (0.10 mM) (e) $PBEC_{10}A$ (0.4 mM) into CP[6] (0.040 mM).

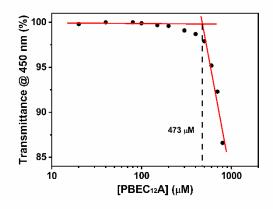
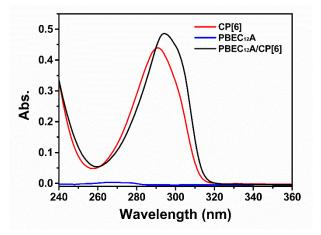

3. Thermodynamic data of the PBEC_nA-CP[6] host-guest complexation

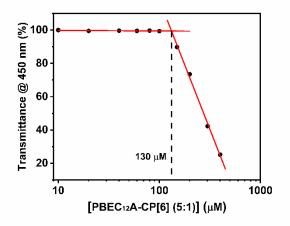
Table S1. Binding constants (K_a) and the relevant thermodynamic parameters for the complexation of PBEC_nA (n = 2, 4, 6, 8, 10, 12) with the host CP[6].^[a]

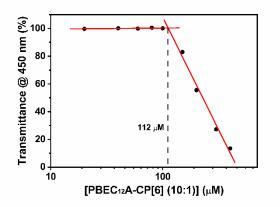
al/mol)
.04
.04
.18
.24
.20
.34


[a] In 20 mM phosphate buffer solution at T = 310 K

4. The critical aggregation concentration (CAC) of PBEC₁₂A

Figure S23. CAC of PBEC₁₂A measured by concentration-dependent optical transmittance method according to the previously published literature.^[1]


5. UV-vis spectra of PBEC₁₂A before and after adding CP[6]


Figure S24. UV/Vis absorption spectra of PBEC₁₂A (100 μ M) and PBEC₁₂A-CP[6] (100 μ M) complex in aqueous solution. (path length was 2.0 mm)

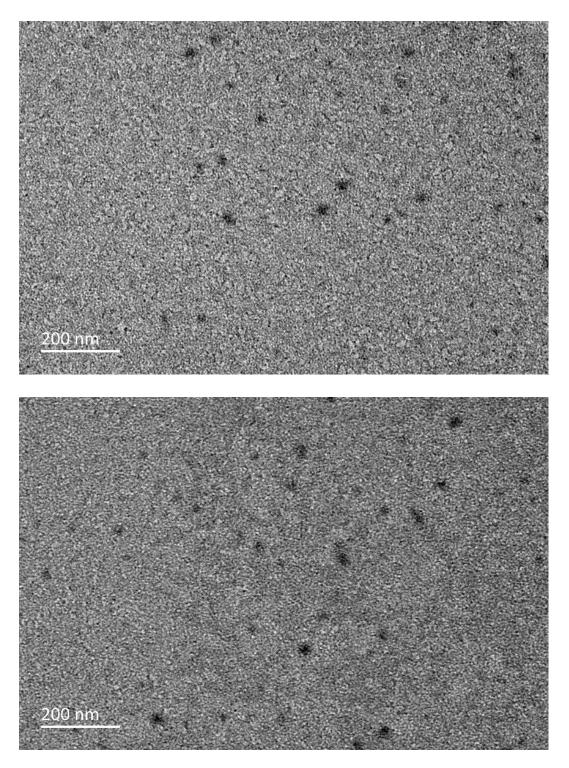
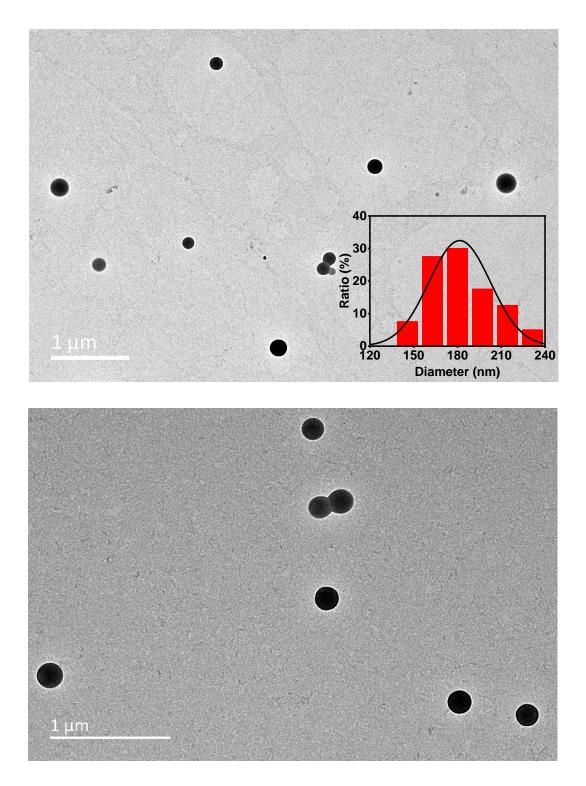
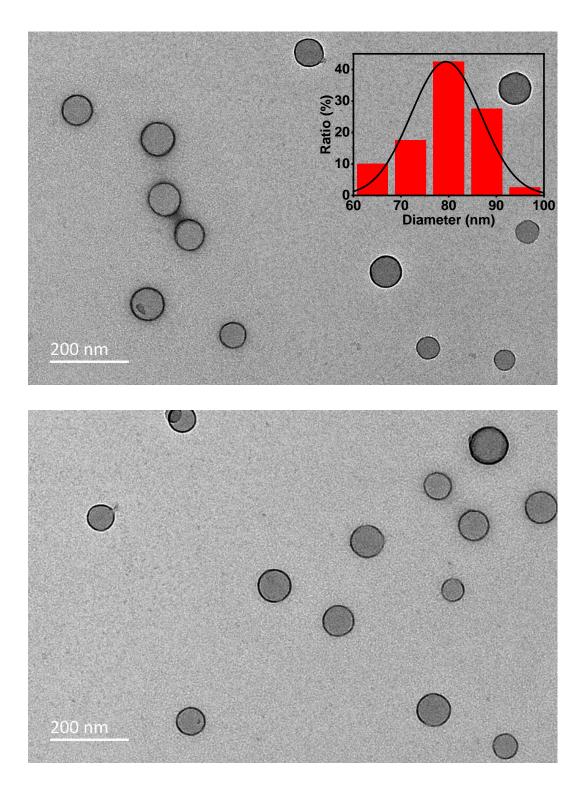
CP[6] displayed a maximum absorption peak at 290 nm, and PBEC₁₂A showed weak absorption in the range of whole spectrum. After addition of 1.0 equiv of PBEC₁₂A, the characteristic absorption of CP[6] slightly increased and the maximum wavelength shifted to 294 nm, which may result from the strong host–guest complexation between CP[6] and PBEC₁₂A.

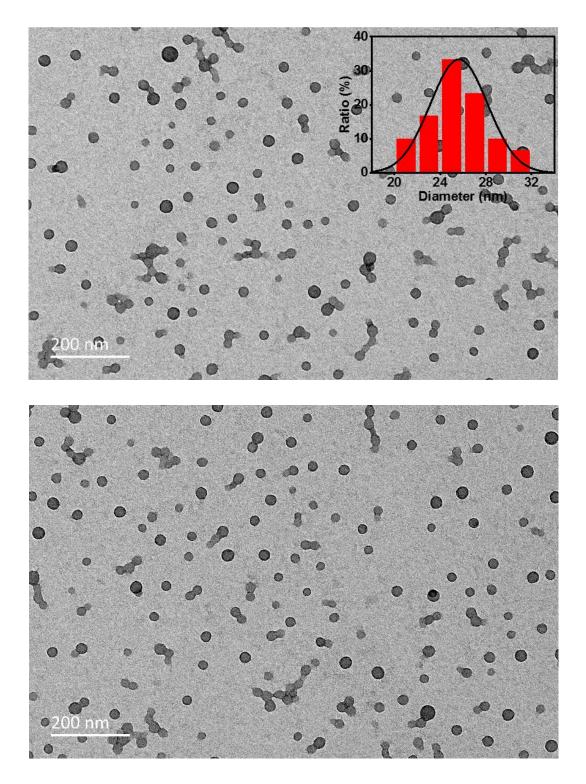
6. The CAC of PBEC₁₂A-CP[6] (5:1) and PBEC₁₂A-CP[6] (10:1)

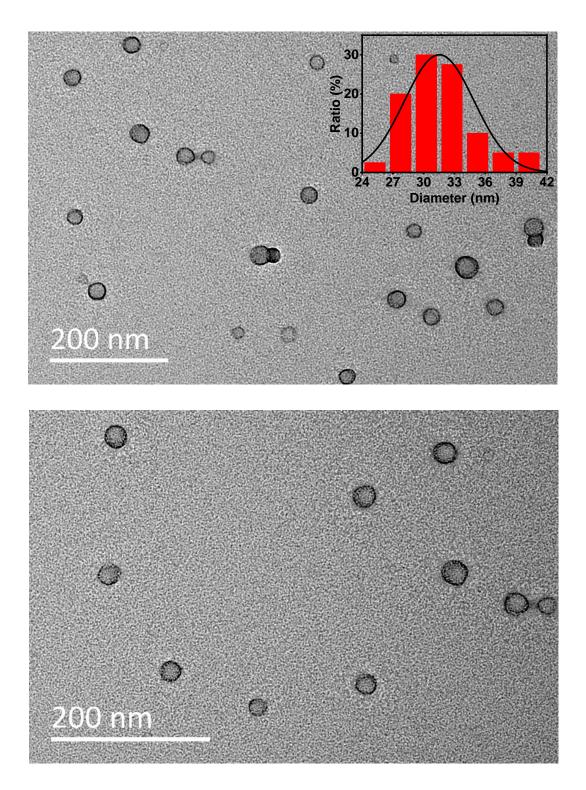
Figure S25. CAC of PBEC₁₂A-CP[6] (5:1) measured by concentration-dependent optical transmittance method.

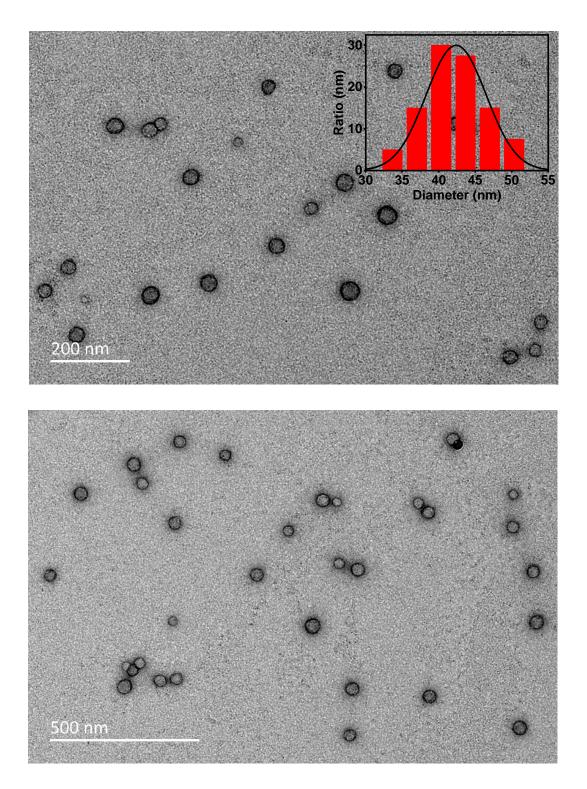
Figure S26. CAC of $PBEC_{12}A$ -CP[6] (10:1) measured by concentration-dependent optical transmittance method.

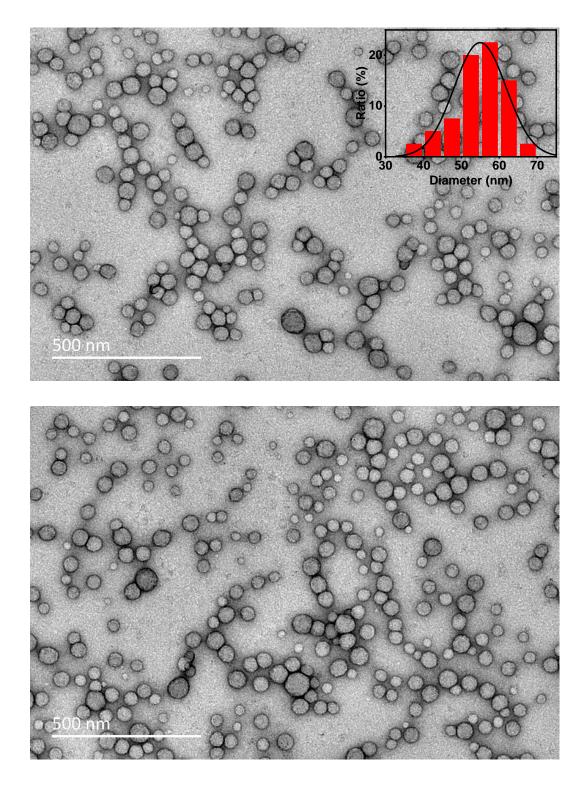
7. The original HRTEM images of self-assemblies from PBEC₁₂A-CP[6] supramolecular complex at different host-guest ratios

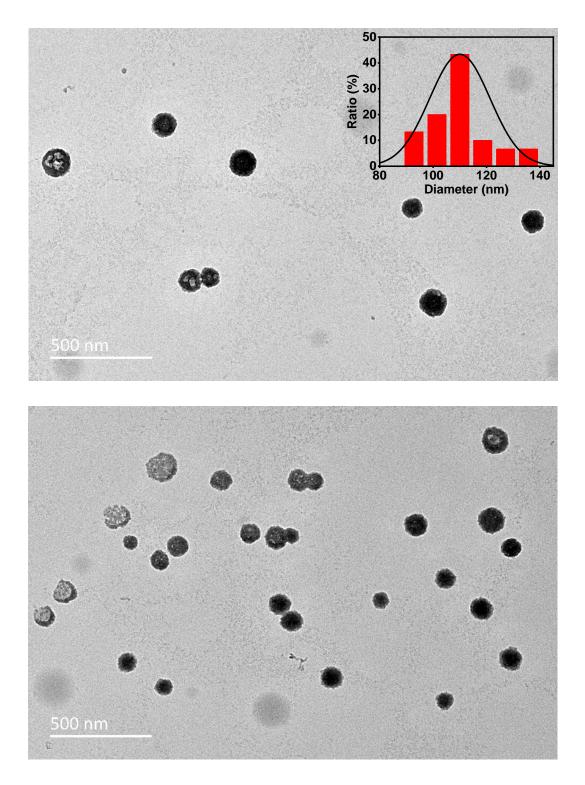




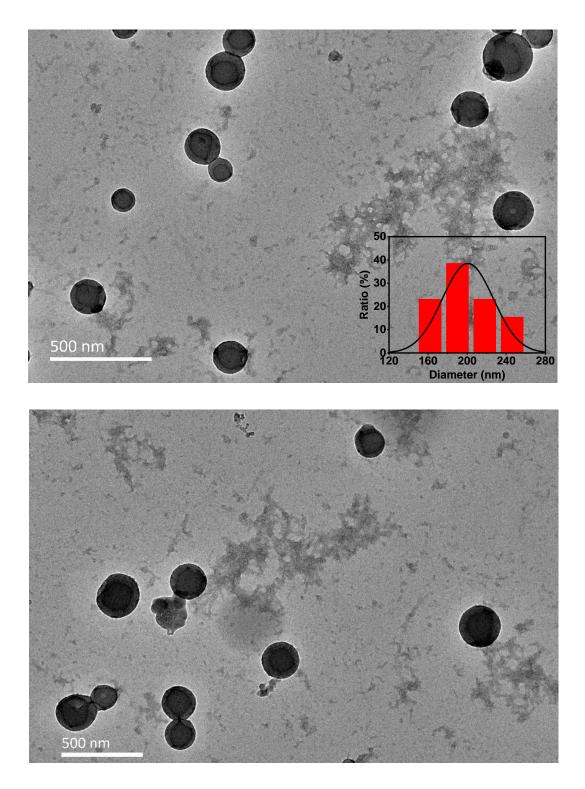

Figure S27. Original HRTEM images showing the self-assembly structures of PBEC₁₂A alone.


Figure S28. Original HRTEM images showing the self-assembly structures of $PBEC_{12}A$ -CP[6] at molar ratio of 20:1. Inset: the histogram analysis of the diameter of vesicles.


Figure S29. Original HRTEM images showing the self-assembly structures of PBEC₁₂A-CP[6] at molar ratio of 16:1. Inset: the histogram analysis of the diameter of vesicles.


Figure S30. Original HRTEM images showing the self-assembly structures of PBEC₁₂A-CP[6] at molar ratio of 12:1. Inset: the histogram analysis of the diameter of vesicles.


Figure S31. Original HRTEM images showing the self-assembly structures of PBEC₁₂A-CP[6] at molar ratio of 10:1. Inset: the histogram analysis of the diameter of vesicles.


Figure S32. Original HRTEM images showing the self-assembly structures of PBEC₁₂A-CP[6] at molar ratio of 5:1. Inset: the histogram analysis of the diameter of vesicles.

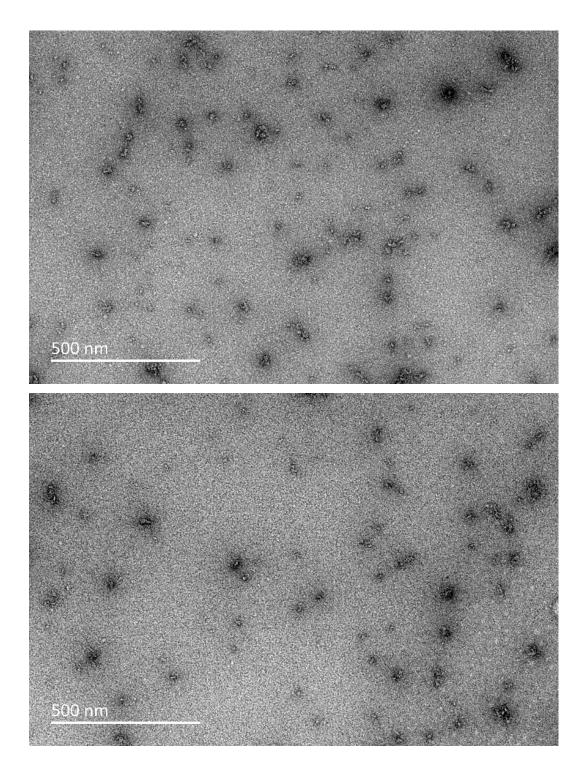

Figure S33. Original HRTEM images showing the self-assembly structures of PBEC₁₂A-CP[6] at molar ratio of 4:1. Inset: the histogram analysis of the diameter of vesicles.

Figure S34. Original HRTEM images showing the self-assembly structures of PBEC₁₂A-CP[6] at molar ratio of 2:1. Inset: the histogram analysis of the diameter of vesicles.

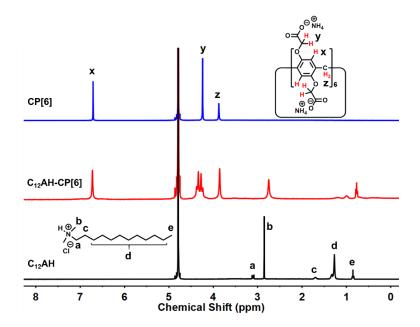


Figure S35. Original HRTEM images showing the self-assembly structures of PBEC₁₂A-CP[6] at molar ratio of 4:3. Inset: the histogram analysis of the diameter of vesicles.

Figure S36. Original HRTEM images showing the self-assembly structures of PBEC₁₂A-CP[6] at molar ratio of 1:1.

8. ¹H NMR spectra of the host-guest complexation between C₁₂AH and CP[6]

Figure S37. ¹H NMR spectra (400 MHz, D₂O) of $C_{12}AH$ (1.0 mM), $C_{12}AH$ in the presence of one equivalent of CP[6] (1.0 mM) and individual CP[6] (1.0 mM) from bottom to top, respectively.

References:

[1] Peng, H. Q.; Liu, B.; Wei, P. F.; Zhang, P. F.; Zhang, H. K.; Zhang, J. F.; Li, K.; Li, Y.; Cheng, Y. H.; Lam, J. W. Y.; Zhang, W. J.; Lee, C. S.; Tang, B. Z. Visualizing the Initial Step of Self-Assembly and the Phase Transition by Stereogenic Amphiphiles with Aggregation-Induced Emission. *ACS Nano* 2019, *13*, 839-846.