Supporting Information
 pH/ROS Dual-Responsive Supramolecular Vesicles Fabricated by
 Carboxylated Pillar[6]arene-Based Host-Guest Recognition and
 Phenylboronic Acid Pinacol Ester Derivative

Qi Hao, Yuetong Kang, Jiang-Fei Xu*, and Xi Zhang
Key Lab of Optoelectronics \& Molecular Engineering, Department of Chemistry, Tsinghua
University, Beijing 100084, China
E-mail: xujf@mail.tsinghua.edu.cn
Number of pages: 30
Number of figures: 37
Number of schemes: 2
Number of tables: 1

Table of Contents

1. Synthesis and characterization of $\mathrm{PBEC}_{n} \mathrm{~A}$ and $\mathrm{C}_{12} \mathrm{AH}$... 2
2. Isothermal titration calorimetry data of $\operatorname{PBEC}_{n} \mathrm{~A}(n=2,4,6,8,10) \ldots . ~ 16 ~$
3. Thermodynamic data of the $\mathrm{PBEC}_{n} \mathrm{~A}-\mathrm{CP}[6]$ host-guest complexation................................ 17
4. The critical aggregation concentration (CAC) of $\mathrm{PBEC}_{12} \mathrm{~A}$... 18
5. UV-vis spectra of $\mathrm{PBEC}_{12} \mathrm{~A}$ before and after adding CP[6] ... 18
6. The CAC of $\mathrm{PBEC}_{12} \mathrm{~A}-\mathrm{CP}[6]$ (5:1) and $\mathrm{PBEC}_{12} \mathrm{~A}-\mathrm{CP}[6]$ (10:1) .. 19
7. The original HRTEM images of self-assemblies from $\mathrm{PBEC}_{12} \mathrm{~A}-\mathrm{CP}[6]$ supramolecular complex at different host-guest ratios ... 20
8. ${ }^{1} \mathrm{H}$ NMR spectra of the host-guest complexation between $\mathrm{C}_{12} \mathrm{AH}$ and $\mathrm{CP}[6]$ 30

1. Synthesis and characterization of $\mathrm{PBEC}_{n} \mathrm{~A}$ and $\mathrm{C}_{12} \mathrm{AH}$

Scheme S1. Synthesis of $\mathrm{PBEC}_{n} \mathrm{~A}$

Synthesis of PBEC2A

The synthesis procedure of $\mathrm{PBEC}_{2} \mathrm{~A}$ is conducted as follows. 4-(Bromomethyl)phenylboronic acid pinacol ester $(0.51 \mathrm{~g}, 1.72 \mathrm{mmol})$ and N, N-dimethylethylamine $(0.11 \mathrm{~g}, 1.50 \mathrm{mmol})$ were dissolved in 10 mL of acetonitrile, and the mixture was stirred and heated at $60^{\circ} \mathrm{C}$ for 8 h . Next, the mixture was concentrated by rotary evaporator to half volume. Then, the solution was dropwise added to 150 mL of diethyl ether. The formed precipitate was filtered and washed with diethyl ether, then dried in vacuum to obtain the white solid, yielding 77%.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 600 \mathrm{MHz}$): $\delta 7.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 3.39$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{~s}, 6 \mathrm{H}), 1.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 150 \mathrm{MHz}$): $\delta 134.23,132.35,129.56,75.74,67.21,60.07,49.14,23.85,7.72$.
MS (ESI) : found $m / z=290.228$, calculated m / z for $\left([\mathrm{M}-\mathrm{Br}]^{+}\right)=290.229$.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{D}_{2} \mathrm{O}, 600 \mathrm{MHz}\right)$ of $\mathrm{PBEC}_{2} \mathrm{~A}$.

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{D}_{2} \mathrm{O}, 150 \mathrm{MHz}\right)$ of $\mathrm{PBEC}_{2} \mathrm{~A}$.

Figure S3. MS(ESI) of $\mathrm{PBEC}_{2} \mathrm{~A}$.

Synthesis of PBEC4A

4-(Bromomethyl)phenylboronic acid pinacol ester ($0.45 \mathrm{~g}, 1.52 \mathrm{mmol}$) and N, N dimethylbutylamine ($0.12 \mathrm{~g}, 1.18 \mathrm{mmol}$) were dissolved in 10 mL of acetonitrile, and the mixture was stirred and heated at $65^{\circ} \mathrm{C}$ for 8 h . After evaporation, the residue was re-dissolved in 5 mL of methanol. Then, the mixture was precipitated in 150 mL of diethyl ether and filtrated then dried in vacuum to give white product yielding 91%.
${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 600 \mathrm{MHz}\right): \delta 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H})$, $3.25(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 6 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~m}, 14 \mathrm{H}), 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 150 \mathrm{MHz}$): $\delta 134.70,132.39$, 131.10, 83.96, 65.95, 63.35, 49.19, 24.64, 23.75, 19.24, 13.50.

MS (ESI): found $m / z=318.259$, calculated m / z for $\left([\mathrm{M}-\mathrm{Br}]^{+}\right)=318.260$.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO- $d_{6}, 600 \mathrm{MHz}$) of $\mathrm{PBEC}_{4} \mathrm{~A}$.

Figure S5. ${ }^{13} \mathrm{C}$ NMR spectrum (DMSO- $d_{6}, 150 \mathrm{MHz}$) of $\mathrm{PBEC}_{4} \mathrm{~A}$.

Figure S6. MS(ESI) of $\mathrm{PBEC}_{4} \mathrm{~A}$.

Synthesis of PBEC6N

4-(Bromomethyl)phenylboronic acid pinacol ester ($0.67 \mathrm{~g}, 2.26 \mathrm{mmol}$) and N, N dimethylhexylamine ($0.26 \mathrm{~g}, 2.01 \mathrm{mmol}$) were dissolved in 10 mL of acetonitrile, and the mixture was stirred and heated at $60^{\circ} \mathrm{C}$ overnight. Next, the mixture was concentrated by rotary evaporator to half volume. Then, the mixture was precipitated in 150 mL of diethyl ether and filtrated then dried in vacuum to give white product yielding 90%.
${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}): $\delta 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H})$, 3.25 (m, 2H), 2.94 ($\mathrm{s}, 6 \mathrm{H}$), 1.77 (m, 2H), 1.30 (m, 18H), 0.88 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- d_{6}): $\delta 134.70,132.38,131.11,83.96,65.95,63.55,49.16,30.65$, 25.44, 24.64, 21.82, 13.80.

MS (ESI): found $m / z=346.290$, calculated m / z for $\left([M-B r]^{+}\right)=346.291$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO- $d_{6}, 600 \mathrm{MHz}$) of $\mathrm{PBEC}_{6} \mathrm{~A}$.

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum (DMSO- $d_{6}, 150 \mathrm{MHz}$) of $\mathrm{PBEC}_{6} \mathrm{~A}$.

Figure S9. MS(ESI) of $\mathrm{PBEC}_{6} \mathrm{~A}$.

Synthesis of PBEC8A.

4-(Bromomethyl)phenylboronic acid pinacol ester ($0.88 \mathrm{~g}, 2.96 \mathrm{mmol}$) and N, N dimethyloctylamine ($0.34 \mathrm{~g}, 2.16 \mathrm{mmol}$) were dissolved in 15 mL of acetonitrile, and the mixture was stirred and heated at $70^{\circ} \mathrm{C}$ for 8 h . Next, the mixture was concentrated by rotary evaporator and the residue was re-dissolved in 5 mL of chloroform. Then, the mixture was precipitated in 150 mL of petroleum ether and filtrated then dried in vacuum, faint yellow solid product was obtained with a yield of 59%.
${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}): $\delta 7.78$ (d, $\left.J=7.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H})$,
$3.21(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 6 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~m}, 22 \mathrm{H}), 0.87(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- d_{6}): δ 134.70, 132.37, 131.12, 100.10, 83.96, 65.97, 63.54, 49.18, 31.14, 28.41, 25.79, 24.64, 22.03, 13.94.

MS (ESI): found $m / z=374.322$, calculated m / z for $\left([\mathrm{M}-\mathrm{Br}]^{+}\right)=374.322$.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO- $d_{6}, 600 \mathrm{MHz}$) of $\mathrm{PBEC}_{8} \mathrm{~A}$.

Figure S11. ${ }^{13} \mathrm{C}$ NMR spectrum (DMSO- $d_{6}, 150 \mathrm{MHz}$) of $\mathrm{PBEC}_{8} \mathrm{~A}$.

Figure S12. MS(ESI) of $\mathrm{PBEC}_{8} \mathrm{~A}$.

Synthesis of PBEC 10 A .

4-(Bromomethyl)phenylboronic acid pinacol ester ($0.70 \mathrm{~g}, 2.36 \mathrm{mmol}$) and N, N dimethyldecylamine ($0.37 \mathrm{~g}, 2.00 \mathrm{mmol}$) were dissolved in 10 mL of acetonitrile, and the mixture was stirred and heated at $70^{\circ} \mathrm{C}$ overnight. Next, the mixture was concentrated by rotary evaporator and the residue was re-dissolved in 5 mL of chloroform. Then, the mixture was precipitated in 150 mL of petroleum ether and then dried in vacuum, faint yellow solid product was obtained with a yield of 55%.
${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}): $\delta 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H})$,
$3.21(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 6 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.26(\mathrm{~m}, 26 \mathrm{H}), 0.86(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- d_{6}): $\delta 134.68,132.37,131.13,83.94,65.90,63.48,49.17,31.26$, 28.85, 28.75, 28.63, 28.46, 25.77, 24.63, 22.07, 21.75, 13.93.

MS $(E S I)$: found $m / z=402.354$, calculated m / z for $\left([M-B r]^{+}\right)=420.354$.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO- $d_{6}, 600 \mathrm{MHz}$) of $\mathrm{PBEC}_{10} \mathrm{~A}$.

Figure S14. ${ }^{13} \mathrm{C}$ NMR spectrum (DMSO- $d_{6}, 150 \mathrm{MHz}$) of $\mathrm{PBEC}_{10} \mathrm{~A}$.

Figure S15. MS(ESI) of $\mathrm{PBEC}_{10} \mathrm{~A}$.

Synthesis of PBEC12A.

4-(Bromomethyl)phenylboronic acid pinacol ester ($0.77 \mathrm{~g}, 2.59 \mathrm{mmol}$) and N, N dimethyldodecylamine ($0.48 \mathrm{~g}, 2.25 \mathrm{mmol}$) were dissolved in 10 mL of acetonitrile, and the mixture was stirred and heated at $75^{\circ} \mathrm{C}$ overnight. After evaporation, the residue was re-dissolved in 5 mL of chloroform. Then, the mixture was precipitated in 150 mL of petroleum ether and filtrated then dried in vacuum, faint yellow solid product was obtained with a yield of 59%.
${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}): $\delta 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H})$, $3.22(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 6 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.25(\mathrm{~m}, 30 \mathrm{H}), 0.85(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}): $\delta 134.68$, 132.36, 131.12, 83.95, 65.91, 63.48, 49.18, 31.27, 28.98, 28.89, 28.74, 28.68, 28.45, 25.77, 24.63, 22.06, 21.75, 13.93.

MS $(E S I)$: found $m / z=430.384$, calculated m / z for $\left([M-B r]^{+}\right)=430.385$.

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO- $d_{6}, 600 \mathrm{MHz}$) of $\mathrm{PBEC}_{12} \mathrm{~A}$.

Figure S17. ${ }^{13} \mathrm{C}$ NMR spectrum (DMSO- $d_{6}, 150 \mathrm{MHz}$) of $\mathrm{PBEC}_{12} \mathrm{~A}$.

Figure S18. MS(ESI) of $\mathrm{PBEC}_{12} \mathrm{~A}$.

Synthesis of $\mathbf{C}_{12} A H$

Scheme S2. Synthesis of $\mathrm{C}_{12} \mathrm{AH}$
N,N-dimethyldodecylamine ($1.64 \mathrm{~g}, 7.68 \mathrm{mmol}$) were dissolved in 20 mL of ethanol, then the concentrated hydrochloric acid ($1.4 \mathrm{~mL}, 36 \sim 38 \%$) was dropwise added. The mixture was stirred and heated at $40^{\circ} \mathrm{C}$ for 5 h . After evaporation, the residue was re-dissolved in 5 mL of chloroform. Then, the mixture was precipitated in 150 mL of petroleum ether and centrifuged then dried in vacuum, white solid product was obtained with a yield of 29%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 12.24(\mathrm{br}, 1 \mathrm{H}), 2.94(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.81(\mathrm{~m}$, $2 \mathrm{H}), 1.30-1.21(\mathrm{~m}, 18 \mathrm{H}), 0.84(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 58.06,42.83,31.94,29.61,29.51,29.37,29.08,26.71,24.26$, 22.73, 14.18.

MS (ESI) : found $m / z=214.253$, calculated m / z for $\left([\mathrm{M}-\mathrm{Br}]^{+}\right)=214.253$.

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ of $\mathrm{C}_{12} \mathrm{AH}$.

Figure S20. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$ of $\mathrm{C}_{12} \mathrm{AH}$.

Figure S21. MS(ESI) of $\mathrm{C}_{12} \mathrm{AH}$.

2. Isothermal titration calorimetry data of $\operatorname{PBEC}_{n} A(n=2,4,6,8,10)$

The ITC experiments were performed by titrating the guest molecule into the CP[6] host in 20 mM phosphate buffer of pH 7.4 at $37.0^{\circ} \mathrm{C}$. The titration curves of $1: 1$ complexations between all the guests and CP[6] were shown as following:

Figure S22. ITC data and fitting curves for the titrations of (a) $\mathrm{PBEC}_{2} \mathrm{~A}(1.0 \mathrm{mM})$ into CP[6] (0.10 $\mathrm{mM})(\mathrm{b}) \mathrm{PBEC}_{4} \mathrm{~A}(1.0 \mathrm{mM})$ into $\mathrm{CP}[6](0.10 \mathrm{mM})(\mathrm{c}) \mathrm{PBEC}_{6} \mathrm{~A}(1.0 \mathrm{mM})$ into $\mathrm{CP}[6](0.10 \mathrm{mM})$ (d) $\mathrm{PBEC}_{8} \mathrm{~A}(1.0 \mathrm{mM})$ into $\mathrm{CP}[6](0.10 \mathrm{mM})$ (e) $\mathrm{PBEC}_{10} \mathrm{~A}(0.4 \mathrm{mM})$ into CP[6] (0.040 mM).

3. Thermodynamic data of the $\mathrm{PBEC}_{n} \mathrm{~A}-\mathrm{CP}[6]$ host-guest complexation

Table S1. Binding constants (K_{a}) and the relevant thermodynamic parameters for the complexation of $\mathrm{PBEC}_{n} \mathrm{~A}(\mathrm{n}=2,4,6,8,10,12)$ with the host $\mathrm{CP}[6] .{ }^{[a]}$

Guest	$\boldsymbol{K}_{\mathbf{a}}\left(\mathbf{1 0}^{\mathbf{6}} \mathbf{M}^{-\mathbf{1}}\right)$	$\Delta \boldsymbol{H}(\mathbf{k c a l} / \mathbf{m o l})$	$\boldsymbol{T} \Delta \boldsymbol{S}(\mathbf{k c a l} / \mathbf{m o l})$
$\mathrm{PBEC}_{2} \mathrm{~A}$	6.20 ± 0.22	-9.995 ± 0.015	-0.04
PBEC $_{4} \mathrm{~A}$	6.80 ± 0.25	-10.010 ± 0.015	-0.04
PBEC $_{6} \mathrm{~A}$	7.10 ± 0.35	-11.190 ± 0.023	-0.18
$\mathrm{PBEC}_{8} \mathrm{~A}$	6.77 ± 0.46	-11.670 ± 0.034	-0.24
$\mathrm{PBEC}_{10} \mathrm{~A}$	4.59 ± 0.27	-11.160 ± 0.045	-0.20
$\mathrm{PBEC}_{12} \mathrm{~A}$	3.44 ± 0.16	-12.110 ± 0.044	-0.34

[a] In 20 mM phosphate buffer solution at $T=310 \mathrm{~K}$

4. The critical aggregation concentration (CAC) of $\mathrm{PBEC}_{12} \mathrm{~A}$

Figure S23. CAC of $\mathrm{PBEC}_{12} \mathrm{~A}$ measured by concentration-dependent optical transmittance method according to the previously published literature. ${ }^{[1]}$

5. UV-vis spectra of $\mathrm{PBEC}_{12} \mathrm{~A}$ before and after adding CP[6]

Figure S24. UV/Vis absorption spectra of $\operatorname{PBEC}_{12} \mathrm{~A}(100 \mu \mathrm{M})$ and $\mathrm{PBEC}_{12} \mathrm{~A}-\mathrm{CP}[6](100 \mu \mathrm{M})$ complex in aqueous solution. (path length was 2.0 mm)
$\mathrm{CP}[6]$ displayed a maximum absorption peak at 290 nm , and $\mathrm{PBEC}_{12} \mathrm{~A}$ showed weak absorption in the range of whole spectrum. After addition of 1.0 equiv of $\mathrm{PBEC}_{12} \mathrm{~A}$, the characteristic absorption of CP[6] slightly increased and the maximum wavelength shifted to 294 nm , which may result from the strong host-guest complexation between $\mathrm{CP}[6]$ and $\mathrm{PBEC}_{12} \mathrm{~A}$.

6. The CAC of PBEC12A-CP[6] (5:1) and PBEC ${ }_{12} \mathrm{~A}-\mathrm{CP}[6](10: 1)$

Figure S25. CAC of $\mathrm{PBEC}_{12} \mathrm{~A}-\mathrm{CP}[6]$ (5:1) measured by concentration-dependent optical transmittance method.

Figure S26. CAC of $\mathrm{PBEC}_{12} \mathrm{~A}-\mathrm{CP}[6]$ (10:1) measured by concentration-dependent optical transmittance method.
7. The original HRTEM images of self-assemblies from $\mathrm{PBEC}_{12} \mathrm{~A}-\mathrm{CP}[6]$ supramolecular complex at different host-guest ratios

Figure S27. Original HRTEM images showing the self-assembly structures of $\mathrm{PBEC}_{12} \mathrm{~A}$ alone.

Figure S28. Original HRTEM images showing the self-assembly structures of PBEC ${ }_{12} \mathrm{~A}-\mathrm{CP}[6]$ at molar ratio of 20:1. Inset: the histogram analysis of the diameter of vesicles.

Figure S29. Original HRTEM images showing the self-assembly structures of $\mathrm{PBEC}_{12} \mathrm{~A}-\mathrm{CP}[6]$ at molar ratio of 16:1. Inset: the histogram analysis of the diameter of vesicles.

Figure S30. Original HRTEM images showing the self-assembly structures of PBEC ${ }_{12} \mathrm{~A}-\mathrm{CP}[6]$ at molar ratio of $12: 1$. Inset: the histogram analysis of the diameter of vesicles.

Figure S31. Original HRTEM images showing the self-assembly structures of $\mathrm{PBEC}_{12} \mathrm{~A}-\mathrm{CP}[6]$ at molar ratio of 10:1. Inset: the histogram analysis of the diameter of vesicles.

Figure S32. Original HRTEM images showing the self-assembly structures of $\mathrm{PBEC}_{12} \mathrm{~A}-\mathrm{CP}[6]$ at molar ratio of 5:1. Inset: the histogram analysis of the diameter of vesicles.

Figure S33. Original HRTEM images showing the self-assembly structures of $\mathrm{PBEC}_{12} \mathrm{~A}-\mathrm{CP}[6]$ at molar ratio of 4:1. Inset: the histogram analysis of the diameter of vesicles.

Figure S34. Original HRTEM images showing the self-assembly structures of $\mathrm{PBEC}_{12} \mathrm{~A}-\mathrm{CP}[6]$ at molar ratio of $2: 1$. Inset: the histogram analysis of the diameter of vesicles.

Figure S35. Original HRTEM images showing the self-assembly structures of $\mathrm{PBEC}_{12} \mathrm{~A}-\mathrm{CP}[6]$ at molar ratio of 4:3. Inset: the histogram analysis of the diameter of vesicles.

Figure S36. Original HRTEM images showing the self-assembly structures of $\mathrm{PBEC}_{12} \mathrm{~A}-\mathrm{CP}[6]$ at molar ratio of $1: 1$.

8. ${ }^{1} \mathrm{H}$ NMR spectra of the host-guest complexation between $\mathrm{C}_{12} \mathrm{AH}$ and CP[6]

Figure S37. ${ }^{1} \mathrm{H}$ NMR spectra $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ of $\mathrm{C}_{12} \mathrm{AH}(1.0 \mathrm{mM}), \mathrm{C}_{12} \mathrm{AH}$ in the presence of one equivalent of $\mathrm{CP}[6](1.0 \mathrm{mM})$ and individual $\mathrm{CP}[6](1.0 \mathrm{mM})$ from bottom to top, respectively.

References:

[1] Peng, H. Q.; Liu, B.; Wei, P. F.; Zhang, P. F.; Zhang, H. K.; Zhang, J. F.; Li, K.; Li, Y.; Cheng, Y. H.; Lam, J. W. Y.; Zhang, W. J.; Lee, C. S.; Tang, B. Z. Visualizing the Initial Step of SelfAssembly and the Phase Transition by Stereogenic Amphiphiles with Aggregation-Induced Emission. ACS Nano 2019, 13, 839-846.

