

Welcome to PFTC5!

Vigdis Vandvik @vvandvik @PFTCourses

UNIVERSITY OF BERGEN

Eunice N. Foote (1819-1888)

"The receiver containing this gas became itself much heated—very sensibly more so than the other—and on being removed [from the Sun], it was many times as long in cooling." Looking to the history of the Earth, Foote theorized that "An atmosphere of that gas would give to our earth a high temperature; and if, as some suppose, at one period of its history, the air had mixed with it a larger proportion than at present, an increased temperature from its own action, as well as from increased weight, must have necessarily resulted."

he question was introduced by Wm. Partridge, of Binghamton, who took the position, that density of the atmosphere, and not the angularity of the sun's rays, was the principal reason why it was warmer in valleys than on the tops of mountains. His views were opposed by other correspondents, but none of them supported their opinions with practical experiments to decide the question ; this we are happy to say has been done by a lady. A paper was read before the late meeting of the Scientific Association, by Prof. Henry for Mrs. Eunice Foot, detailing her experiments to determine the effects of the sun's rays on different gases. These were made with an air pump and two glass receivers of the same size-four inches in diameter, and thirty in length. The air was exhausted from one and condensed in the other, and they were both placed in the sun light, side by side, with a thermometer in each. In a short period of time, the temperature in the receiver containing the condensed air, rose thirty degrees higher than the other; thus proving conclusively that the greater density of air on low levels is at least one cause of greater heat in valleys than on mountains. Experiments were also tried with moist air, and its temperature was elevated above dry air. Hydrogen gas was placed in one receiver and oxygen in the other, when the temperature of the former rose to 104°, but the latter to 106° Fah.; while, in carbonic acid-a more dense gas than either -it rose to 126°. It is believed and taught by geologists that during the period preceding the carboniferous era,-when the coal bed materials were forming-that the atmosphere of the earth contained immense quantities of carbonic acid, and that there was a very elevated temperature of atmosphere in existence, in comparison with that of the present day. Those who believe that this earth was once a fiery ball, attribute this ancient great atmospheric heat to the elevated temperature of the earth ; but Mrs. Foot's experiments attribute it to a more rational cause, and leave the Plutonists but a small foundation to stand upon for their theory.

(Scientific American, 1856)

Caveat: **Output** Climate is <u>not</u> nature's main problem...

IPBES 2019

* Since prehistory

How do we study climate change impacts?

We are starting to feel the heat

ITEX – the coming of age of climate change experiments

- Challenge: "why are botanists not trying to monitor climate change using plant response the way we use permafrost and ground temperature?"...
 "explore the idea that *plant phenology might be used to monitor climate warming*"
- Whole organism focus: questions from arctic residents about the fate of organisms, such as fish and berries, upon which they depend. They did not deny the importance of the total system questions but *they though that the scientists were ignoring the organisms*.
- Technology: Small open top chambers to passively warm tundra plants and to measure their response.
- **Timeline**: Initial ideas 1987, workshop proposal, funded, ITEX launched 1990.

Ecology Letters, (2012) 15: 164-175

doi: 10.1111/j.1461-0248.2011.01716.x

REVIEW AND SYNTHESES

Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time

1.421.211.242

Macroecology - top-down approaches *** to organismal form and function zoom in

Global distribution and bioclimatic characterization of alpine biomes Biscardo Tostolin **T** Eabio Attorno. Boria limónoz Alfaro

Riccardo Testolin 🗙, Fabio Attorre, Borja Jiménez-Alfaro

First published:28 February 2020 | https://doi.org/10.1111/ecog.05012

Why traits?

Traits to generalize across regions *** and systems, establish causality, link effects and responses, upscale...

(Lavorel & Garnier "Holy grail" 2002)

Why this focus on data documentation?

It's not enough for data to be open: they also need to be

#spidergate

To make your data useful beyond **•••**

(Halbritter et al. MEE 2020) > 500 page of detailed methods descriptions!!

Why course *and* full-scale data campaign?

So: What should be the final course product?

"The cycle" (Julia Kemppinen, Suomen Luonto photo competition finalist!)

Research-based education – what is it, and why do it?

- Subject content based on the latest development in the field
- Learning methods are based on what educational research says about effective learing
- Use research as learning method, learn how to 'research' in the process
- Student researchers education embedded in 'real' research
- Course taught by a researcher

Why include science communication?

World Economic Forum (Davos): Top 5 risks to global economy

Top 5 Global Risks in Terms of Likel	ihood
--------------------------------------	-------

	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
1st	Infrastructure breakdown	Blow up in asset prices	Asset price collapse	Asset price collapse	Storms and cyclones	Income disparity	Income disparity	Income disparity	Interstate conflict	Involuntary migration	Extreme weather	Extreme weather	Extreme weather	Extreme weather
2nd	Chronic diseases	Middle East instability	China economic slowdown	China economic slowdown	Flooding	Fiscal imbalances	Fiscal imbalances	Extreme weather	Extreme weather	Extreme weather	Involuntary migration	Natural disasters	Climate action failure	Climate action failure
3rd	Oil price shock	Failed and failing states	Chronic diseases	Chronic disease	Corruption	Greenhouse gas emissions	Greenhouse gas emissions	Unemployment	Failure of national govemance	Climate action failure	Natural disasters	Cyberattacks	Natural disasters	Natural disasters
4th	China hard landing	Oil price shock	Global governance gaps	Fiscal crises	Biodiversity loss	Cyberattacks	Water crises	Climate action failure	State collapse or crisis	Interstøte conflict	Terroriat attacks	Data fraud or theft	Data fraud or theft	Biodiversity loss
5th	Blow up in asset prices	Chronic diseases	Deglobalization (emerging)	Global governance gaps	Climate change	Water crises	Population ageing	Cyberattacks	Unemployment	Natural catastrophes	Data fraud or theft	Climate action failure	Cyberattacks	Human-made environmental disaster

Top 5 Global Risks in Terms of Impact

	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
1st	Blow up in asset prices	Blow up in asset prices	Asset price collapse	Asset price collapse	Fiscal crises	Financial failure	Financial failure	Fiscal crises	Water crises	Climate action failure	Weapons of mass destruction	Weapons of mass destruction	Weapons of mass destruction	Climate action failure
2nd	Deglobalization	Deglobalization (developed)	Deglobalization (developed)	Deglobalization (developed)	Climate change	Water crises	Water crises	Climate action failure	Infectious diseases	Weapons of mass destruction	Extreme weather	Extreme weather	Climate action failure	Weapons of mass destruction
3rd	Interstate and civil wars	China hard landing	Oil and gas price spike	Oil price spikes	Geopolitical conflict	Food crises	Fiscal imbalances	Water crises	Weapons of mass destruction	Water crises	Water crises	Natural disasters	Extreme weather	Biodiversity loss
4th	Pandemics	Oil price shock	Chronic diseases	Chronic disease	Asset price collapse	Fis cal imbalances	Weapons of mass destruction	Unemployment	Interstate conflict	Involuntary migration	Natural disasters	Climate action failure	Water crises	Extreme weather
5th	Oil price shock	Pandemics	Fiscal crises	Fiscal crises	Energy price volatility	Energy price volatility	Climate action failure	Infrastructure breakdown	Climate action failure	Energy price shock	Climate action failure	Water crises	Natural disasters	Water crises
	200 ⁻	7			Economic	Environme	ental 🧧 Geo	political	Societal	Technological				2020

ZUZ

The Plan!

Plant Functional Traits Courses

Collect research-grade trait+ data along elevational gradients

- [vegetation], leaf traits, ecosystem C fluxes, photosynthesis, imagery,

Tag onto existing studies, experiments

augment these with detailed trait-related data

Learn the ropes while doing real science!

PFTC1 & 2: What did we learn?

- We can collect loads of cool data in a short time!
 - 193 taxa (100 new)
 - 6671 leaves
 - 36.743 trait datapoints (+600%)
 - C fluxes, photosynthesis,
- Managing the fieldwork, data, people is harder, and more important, than we first realized...

Data documentation!!*

*we are now writing up the PFTC data as 'data papers' – you'll be participating for Peru!

PFTC 3 & 5: Wayquecha, Peru

- What are trait responses to altitude and fire?
- ..trait *effects* on C fluxes and photosynthesis?
- ..role of *intraspecific* trait variability?
- Can these effects and responses be detected from drone imagery?
- Exploring a 'natural' fire experiment...

Time	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	
	9. March	10. March	11. March	12. March	13. March	14. March	15. March	
6:30 - 7:30	Breakfast	Breakfast	Breakfast	Breakfast	Breakfast	Breakfast	Breakfast	
8:00-10:00	Vigdis / Brian Course outline Sehoya: Interviews and science communication	Group work	Travel to <u>Wayqecha</u>	Field/lab	Field/lab	Field/lab	Field/lab	
10:00-12:00 Starting with coffee break	Groups meet, discuss plans, communication	Students interview locals/tourists, incl lunch	Get rooms, introduction to Wayqecha Canopy walk	Field/lab	Field/lab	Field/lab	Field/lab	
12:00-13:00	Lunch		Lunch	Lunch	Lunch	Lunch	Lunch	
13:00-15:00	Students and teachers: One slide (3 min!)	Groups present their goals; Travel info	Set up lab and trait-wheel	Field/lab	Field/lab	Field/lab	Field/lab	
15:00-17:00 Starting with coffee break	presentation of scientific interests Brian, all: Science discussion	William: Intro to the study system and ABERG gradient Ragnhild / Aud / Dagmar: Previous PFTC findings	Aud: Traits data collection and curation Vigdis: Open science and data documentation	Field/lab	Field/lab	Field/lab	Field/lab	
19:00-20:00	Dinner	Dinner	Dinner	Dinner	Dinner	Dinner	Dinner	
20:30-21:00			Show and tell		Show and tell		Show and t	

1 + 1 + 1 + 1	1 · · · · ·	- 2 3 -	4	5	6	7	8
20:30-21:00			Show and tell		Show and tell		Show and tell
Time	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
	16. March	17. March	18. March	19. March	20. March	21. March	22. March
6:30 - 7:30	Breakfast	Breakfast	Breakfast	Breakfast	Breakfast	Breakfast	Breakfast
8:00-10:00	Field/lab	Field/lab	Travel to Pisac	Data analysis/ writing	Data analysis/ writing		Participants leave
10:00-12:00	Field/lab	Field/lab		Interview locals/ tourists	Data analysis/ writing	Drive back to Cusco	
12:00-13:00	Lunch	Lunch	Lunch	Lunch	Lunch	Lunch	
13:00-16:00	Field/lab	Interview rangers, local people	Brian M: Coding workshop	Data analysis/ writing	Students present results		
16:00-18:00	Field/lab	Pack and clean	Data analysis/ writing	Dagmar: Presentation & visualization workshop	Sehoya: Results of the Sci Comm		
19:00-20:00	Dinner	Dinner - the pig	Dinner	Dinner	Dinner	Dinner	
19:00-20:30				Show and tell			

UNIVERSITY OF BERGEN

Andrew Hendry @EcoEvoEvoEco

F**k replication. F**k controls Prioritize field experiments even if they have low replication & imperfect controls ecoevoevoeco.blogspot.ca/2017/01/fk-rep ...

(full disclosure – I do have an inordinate fondness of field experiments)