
Supplemental Material610

S1 UK Biobank data processing611

1. Genotype and phenotype data from the UK Biobank release [8] were extracted (488,377 individuals,612

784,256 variants) and filtered as follows:613

(a) Genotype data were extracted from the chrom*.cal files using the UK Biobank gconv tool614

(b) Phenotype data were taken from our application-specific csv file for application 22419615

2. Only individuals who self-identified as white British were included in the study cohort (57,275 individ-616

uals removed)617

3. All monomorphic variants were removed (19,189 variants removed)618

4. Individuals identified by the UK Biobank to have high heterozygosity, excessive relatedness, or aneu-619

ploidy were removed (1,550 individuals removed)620

5. Variants with a minor allele frequency less than 2.5% were not included (253,939 variants removed)621

6. Only variants found to be Hardy-Weinberg Equilibrium (Fisher’s exact test p-value > 10�6) using622

plink 2.0 [36] were included (40,433 variants removed)623

7. Variants with missingness greater than 1% were removed (60,523 variants removed)624

8. Individuals with greater than 5% genotype missingness were removed (38 individuals removed)625

9. Individuals who were third-degree relatives or closer were removed using the following process: One626

individual was removed at random from any pair of individuals with a kinship coe�cient greater than627

0.0442, calculated using KING (version 2.0; [106])628

S2 WINGS applied to seven continuous and 81 binary phenotypes in the UK629

Biobank630

Figure S1 displays results from simultaneously applying WINGS to seven continuous and 81 binary pheno-631

types. The binary phenotypes and continuous phenotypes cluster separately, with the exception of nucleated632

red blood cells (NRB). We note that the NRB phenotype is only partially continuous in that there is a633

continuous spectrum of nucleated red blood cells for unhealthy individuals, but all healthy individuals will634

have a zero value. Thus, it is not surprising that NRB phenotype does not belong to a prioritized cluster.635

Ignoring the NRB phenotype, the cluster of continuous phenotypes (represented in purple on the top of636

the dendrogram in Figure S1) remains completely disjoint from the case-control phenotypes until there is637

only a single cluster containing all phenotypes. We observe that the [BMI, WHR] cluster has 3,634 shared638

significant genes (p-value < 2.83⇥ 10�6); the [PLC, MCV, MPV] cluster has 1,746 shared significant genes;639

and, the full continuous cluster with phenotypes [BMI, WHR, PLC, MCV, MCV, Height] has 541 shared640

significant genes. This is unsurprising as complex continuous phenotypes have been shown to be highly641

polygenic [3, 107, 108].642

S3 Robustness to clustering criterion643

In this paper, we present WINGS, a thresholded clustering algorithm based on Ward Hierarchical Clustering.644

While the Ward linkage criterion works well to cluster phenotypes, WINGS can easily be adapted to use other645

linkage criteria. To test the robustness of WINGS with respect to the choice of linkage criterion, we applied646

our method using single linkage, average linkage, and complete linkage clustering to the 81 phenotypes we647

analyzed from the UK Biobank in the main text (see [34] for more information on single linkage, average648

linkage, and complete linkage clustering). We used the same branch length thresholding algorithm described649

in Section 2.2 with each linkage criterion to identify prioritized clusters, and the clustering algorithms were650

all applied to the -log10-transformed PEGASUS gene scores.651
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The dendrograms and sorted branch length plots for these results are demonstrated in Figures S2-S7. For652

reference, the Ward-based WINGS results are presented in Figure 3 and Figure S11. In partial agreement653

with the Ward-based WINGS results, single linkage clustering paired with the branch length thresholding654

algorithm prioritizes the polyp cluster and kidney cluster, as well as two-phenotype subsets of the metabolic655

cluster (I20, I25) and immunological 2 cluster (G35, M06) (Figures S2-S3). The prioritized clusters identified656

via complete linkage clustering are in better agreement with our Ward-based WINGS results (Figures S4-S5).657

Specifically, complete linkage clustering paired with the branch length thresholding algorithm prioritizes the658

liver cluster, kidney cluster, polyp cluster, and alzheimer’s/dementia cluster, where each of these clusters659

contains the same phenotypes as the corresponding Ward-based prioritized clusters. Moreover, combinations660

of the metabolic cluster and immunological clusters are prioritized using complete linkage clustering. Lastly,661

the average linkage prioritized clusters contain a two-phenotype subset of the metabolic cluster (I20, I25)662

and combination of phenotypes from the immunological 1 and immunological 2 clusters (Figures S6-S7).663

While the prioritized clusters vary depending on the linkage criterion, there is significant overlap between664

these clusters. Moreover, the dissimilarity scores (from [92]) between the corresponding trees are relatively665

low; the dissimilarity index between the Ward tree in Figure 3 and the single linkage Tree in Figure S2 is666

Z = 0.1892, the dissimilarity index between the Ward tree in Figure 3 and the complete linkage Tree in667

Figure S4 is Z = 0.1497, and the dissimilarity index between the Ward tree in Figure 3 and the average668

linkage Tree in Figure S6 is Z = 0.1412.669

We reiterate that previous work on comparing di↵erent agglomerative hierarchical clustering algorithms670

suggests that Ward clustering performs the best when applied to high dimensional, noisy data and is therefore671

particularly useful for its application to the high dimensional gene score matrices studied in this work (as672

long as cluster sizes are assumed to be approximately equal) [40, 41]. Future studies will be dedicated to fully673

understanding the di↵erences between the prioritized clusters identified by WINGS, single linkage clustering,674

average linkage clustering, and complete linkage clustering.675

S4 Analysis of 26 case-control phenotypes676

Here we present results from applying WINGS to 26 binary chronic illness phenotypes in the UK Biobank.677

Figure S9 displays the branch length outputs of WINGS (see Methods, section 2) applied to the -log10678

transformed PEGASUS gene scores computed using cases and controls from the UK Biobank for 26 binary679

chronic illness phenotypes that were also studied by Shi et al. [2] and Pickrell et al. [11].680

The prioritized -log10 clusters identified by WINGS in Figure S9 can be annotated as metabolic [E11, I25,681

E78], immunological [K900, J45, K51, L40, M06, G35, M05, M07], and Alzheimer’s/dementia [G30, F01]682

(see Table S1 for common disease names, as well as the shared significant genes in a cluster). The prioritized683

clusters identified when WINGS is applied to these 26 -log10 transformed phenotypes in the UK Biobank684

are similar to the prioritized clusters identified from WINGS applied to 81 case-control -log10 transformed685

phenotypes in the UK Biobank (see Figure 3 in the main text).686

Figure S8 displays the dendrogram output of WINGS applied to the -log10-transformed PEGASUS gene687

scores for these 26 binary chronic illness phenotypes in the UK Biobank. The dendrogram displays the688

hierarchical nature of the immunological cluster (orange branches in Figure S8), and it demonstrates the689

proximity of the [G30, F01] cluster to other phenotypes.690
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Table S1: Phenotypes analyzed in this study sorted by International Classication of Disease (ICD10) codes.
* denotes that the phenotype was included in the initial analysis of 26 case-control phenotypes that were
also studied by Pickrell et al. [11] and Shi et al. [2]

Disease ICD10 Code Number of Cases Heritability
Iron deficiency anemia D50 6284 0.0041

Other anemias D64 9522 0.0026
Other coagulation defects D68 809 0.0067

Neutropenia D70 2636 0.0019
*Sarcoidosis D86 449 0.0052

Other hypothyroidism E03 11691 0.0384
Type 1 diabetes mellitus E10 2373 0.0071
*Type 2 diabetes mellitus E11 15080 0.0526

Other disorders of pancreatic internal secretion E16 764 0.0003
Overweight and obesity E66 8950 0.0267

*Disorders of lipoprotein metabolism and other lipidemias E78 29778 0.0498
Disorders of mineral metabolism E83 1758 0.001

*Vascular dementia F01 156 0.0017
Alcohol related disorders F10 4313 0.0105

*Schizophrenia F20 425 0.0011
*Bipolar disorder F31 791 0.0042

*Major depressive disorder F32 9714 0.0143
Other anxiety disorders F41 4881 0.0067
*Parkinson’s disease G20 972 0.005
*Alzheimer’s disease G30 331 0.0008
*Multiple sclerosis G35 1124 0.0029

Epilepsy and recurrent seizures G40 3071 0.0049
*Migraine G43 2263 0.0013

Sleep disorders G47 4410 0.0089
Age-realted cataract H25 6814 0.0078

Glaucoma H40 3729 0.013
Hypertension I10 64135 0.0932

Hypertensive chronic kidney disease I12 1274 0.004
Angina pectoris I20 15063 0.0393

Acute myocradial infarction I21 6655 0.022
*Chronic ischemic heart disease I25 20958 0.0466

Cardiomyopathy I42 1035 0.0037
Heart failure I50 4423 0.0121
Atherosclerosis I70 1025 0.0047

Varicose veins of lower extremities I83 8988 0.0277
Hypotension I95 4072 0.0037

Other and unspecified disorders of nose and nasal sinuses J34 5393 0.0012
Emphysema J43 1388 0.0103

Other chronic obstructive pulmonary disease J44 6833 0.0223
*Asthma J45 21758 0.043

Gastro-esophageal reflux disease K21 19132 0.0188
Gastric ulcer K25 3467 0.005
Duodenal ulcer K26 2517 0.0028

Functional dyspepsia K30 9696 0.0054
*Crohn’s disease K50 1436 0.0068
*Ulcerative colitis K51 2661 0.0079

Diverticular disease of large intestine without perforation or abscess K573 19462 0.0321
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Irritable bowel syndrome K58 4563 0.0089
Rectal polyp K621 5210 0.0075
Polyp of colon K635 9306 0.0105

Fibrosis and cirrhosis of liver K74 676 0.0026
Other diseases of liver K76 2791 0.0035

Other diseases of gallbladder K82 1482 0.0011
Other diseases of pancreas K86 896 0.0014

*Celiac disease K900 1522 0.0051
Gastrointestinal hemorrhage K922 4387 0.0008

*Psoriasis L40 1836 0.0047
*Lupus erythematosus L93 105 0.0033

*Rheumatoid arthritis with rheumatoid factor M05 465 0.0063
*Other rheumatoid arthritis M06 3581 0.0072

Gout M10 2661 0.0132
Other arthritis M13 9500 0.0109

Osteoarthritis of hip M16 9876 0.0208
Osteoarthritis of knee M17 16612 0.031

Other and unspecified osteoarthritis M19 13548 0.0156
Scoliosis M41 838 0.0037

Other disorders of muscle M62 746 0.0042
Synovitis and tenosynovitis M65 4311 0.0081

Fibroblastic disorders M72 3267 0.0231
Osteoporosis M81 4884 0.0115

Chronic kidney disease N18 3714 0.0055
Other disorders of kidney and ureter N28 1996 0.0052
Other disorders of urinary system N39 15870 0.0112

Benign prostatic hyperplasia N40 9471 0.0108
Inflammatory diseases of prostate N41 1334 0.004

Endometriosis N80 3235 0.0094
Abnormalities of heart beat R00 7018 0.0016
*Allergy status to penicillin Z880 13436 0.0132

*Allergy status to narcotic agent status Z885 983 0.0011
*Allergy status to analgesic agent status Z886 3586 0.0033

*Allergy status to serum and vaccine status Z887 157 0.0014

691
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Table S2: For each prioritized cluster identified in our analysis of the UK Biobank (Figures 3 and S11), we
list shared significant genes that have been previously associated with at least one phenotype in that cluster
and that shared significant genes have a PEGASUS gene-level association p-value that is significant after
Bonferroni correction for 17,651 autosomal genes for all phenotypes in the prioritized cluster of interest.
Starred gene names indicate that a gene occurs in at least one significantly enriched pathway in our gene
set enrichment analysis (see PEGASUS-WINGS GitHub repository for all pathways passing FDR < 0.05
for each prioritized cluster). In the first column, the number in parenthesis corresponds to the number of
phenotypes in that cluster; the second column (N) corresponds to the number of shared significant genes
(PEGASUS
p-value < 2.83⇥ 10�6).

Cluster label N Genes from column (2)
associated in GWAS Catalog for

� 1 phenotype in cluster

GWAS Catalog associated phenotype and
relevant references for
gene in column (3)

Metabolic (8) 2
NCR3 IgG Glycolysation [52]

Diabetes mellitus [53]

Immunological 1 (3) 181

C6orf10 Psoriasis [54]
HCP5 Psoriasis [54, 55, 56]

HLA-DQA1* Celiac disease [59, 60]
MICA* Psoriasis [54]
NOTCH4 Celiac disease [61]
POU5F1 Psoriasis [57]

Immunological 2 (6) 96

APOM Rheumatoid arthritis [69]
BRD2 Asthma [67]
BTNL2 Asthma [68]
CDSN Asthma [68]
CFB* Asthma [52]
HCP5 Asthma [68, 66]

HLA-DOA* Asthma [67]
HLA-DQA1* Asthma [62]

Rheumatoid arthritis [63]
Type 1 diabetes [64]

HLA-DQB1* Asthma [65]
Hypothyroidism [11]

HLA-DRA* Asthma [66]
Rheumatoid arthritis [63]

HLA-DRB5* Rheumatoid arthritis [70]
MICA* Type 1 diabetes [55]
MICB* Asthma [66]
NCR3* Type 1 diabetes [52]

NOTCH4* Asthma [67]
PBX2 Asthma [67]

PSORS1C1 Asthma [68]
TAP2* Type 1 diabetes [52]

Polyp (2) 43

UTP23 Colorectal cancers [74]
GREM1 Colorectal cancers [75]
SCG5 Colorectal cancers [76]

SMAD7* Colorectal cancers [77]
CABLES2 Colorectal cancers [78]
LAMA5* Colorectal cancers [79]
PREX1 Colorectal cancers [80]

Alzheimer’s/Dementia (2) 8

PALM2 Frontotemporal dementia [81]
APOC1 Alzheimer’s disease [82]
APOC2 Alzheimer’s disease [82]
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APOC4 Alzheimer’s disease [82]
APOE Alzheimer’s disease [83]

CLPTM1 Alzheimer’s disease [84]
PVRL2 Alzheimer’s disease [85]

TOMM40 Alzheimer’s disease [86]
Kidney (2) 9 OVOL1 Urate levels [88]

Liver (2) 25
GATAD2A Nonalcoholic fatty liver disease [89]
PNPLA3 Nonalcoholic fatty liver disease [90]
SAMM50 Nonalcoholic fatty liver disease [91]
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Phenotypes
in Simulation

Shared Genetic Architecture

A: Power B: Precision C: F1
0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

25 99.91 100 100 100 78.76 80.92 85.32 87.67 0.87 0.87 0.86 0.86
50 99.97 100 100 100 71.22 76.06 79.18 84.27 0.74 0.75 0.74 0.73
75 99.94 100 100 100 67.62 73.09 76.45 82.14 0.66 0.66 0.67 0.66
100 99.97 100 100 100 65.05 72.52 76.61 81.81 0.64 0.64 0.62 0.62

Table S3: WINGS performance on simulated data generated using the empirical distribution of PASCAL [24]
sum gene scores for Crohn’s disease (17,582 genes). Power (A), precision (B), and F1 score (C) of WINGS
across a range of phenotypes included as well as shared genetic architecture. ”Shared genetic architecture”
denotes the percentage of the 175 significant genes in each phenotype that are shared across all phenotypes
in a cluster. Every entry in the table represents 1,000 simulations under the corresponding parameters.
Power and precision are defined explicitly in Table 2. F1 score is twice the product of precision and recall
divided by the sum of precision and recall; in this context, recall is the percentage of ground truth clusters
prioritized by WINGS.
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Figure S1: WINGS dendrogram from 81 case-control phenotypes and seven continuous pheno-
types in the UK Biobank separates continuous and binary phenotypes. We show the dendrogram
output of Ward hierarchical clustering applied to the -log10 transformed PEGASUS scores of the empirical
continuous and binary phenotypes. The branches are color coded by the largest prioritized clusters identified
by the branch length thresholding algorithm. The continuous phenotypes (except for the nucleated red blood
cells (NRB) phenotype) cluster together on the top of the dendrogram (in purple), remaining disjoint from
the remaining binary phenotypes until there is a single cluster.
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Figure S2: Single linkage clustering applied to -log10 transformed PEGASUS p-values of 81
phenotypes from the UK Biobank. We show the dendrogram corresponding to the output of single
linkage hierarchical clustering applied to the -log10 transformed PEGASUS scores of the 81 phenotypes
from the UK Biobank. The branches are color coded by the largest prioritized clusters identified by the
branch length thresholding algorithm. The dissimilarity index (from [92]) between this tree and Figure 3 is
Z = 0.1892.
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Figure S3: Single linkage clustering applied to -log10 transformed PEGASUS p-values of 81
phenotypes from the UK Biobank. We show the sorted branch lengths corresponding to the output of
single linkage hierarchical clustering applied to the -log10 transformed PEGASUS scores of the 81 phenotypes
from the UK Biobank. The dashed red horizontal line on the right figure corresponds to the branch length
threshold, where the prioritized clusters are those lying above the dashed line.

31



Figure S4: Complete linkage clustering applied to -log10 transformed PEGASUS p-values of 81
phenotypes from the UK Biobank. We show the dendrogram corresponding to the output of complete
linkage hierarchical clustering applied to the -log10 transformed PEGASUS scores of the 81 phenotypes
from the UK Biobank. The branches are color coded by the largest prioritized clusters identified by the
branch length thresholding algorithm. The dissimilarity index (from [92]) between this tree and Figure 3 is
Z = 0.1497.
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Figure S5: Complete linkage clustering applied to -log10 transformed PEGASUS p-values of 81
phenotypes from the UK Biobank. We show the sorted branch lengths corresponding to the output
of complete linkage hierarchical clustering applied to the -log10 transformed PEGASUS scores of the 81
phenotypes from the UK Biobank. The dashed red horizontal line on the right figure corresponds to the
branch length threshold, where the prioritized clusters are those lying above the dashed line.
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Figure S6: Average linkage clustering applied to -log10 transformed PEGASUS p-values of 81
phenotypes from the UK Biobank. We show the dendrogram corresponding to the output of average
linkage hierarchical clustering applied to the -log10 transformed PEGASUS scores of the 81 phenotypes
from the UK Biobank. The branches are color coded by the largest prioritized clusters identified by the
branch length thresholding algorithm. The dissimilarity index (from [92]) between this tree and Figure 3 is
Z = 0.1412.
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Figure S7: Average linkage clustering applied to -log10 transformed PEGASUS p-values of 81
phenotypes from the UK Biobank. We show the sorted branch lengths corresponding to the output
of average linkage hierarchical clustering applied to the -log10 transformed PEGASUS scores of the 81
phenotypes from the UK Biobank. The dashed red horizontal line on the right figure corresponds to the
branch length threshold, where the prioritized clusters are those lying above the dashed line.

35



Figure S8: WINGS dendrogram applied to -log10 transformed PEGASUS scores for 26 binary
chronic illness phenotypes from the UK Biobank. We show the dendrogram output of WINGS applied
to the -log10 transformed PEGASUS scores of the 26 binary chronic illness phenotypes from the UK Biobank
data. The color coded branches correspond to prioritized clusters identified by WINGS. The corresponding
sorted branch lengths are presented in Figure S9(B) in the paper.
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Figure S9: WINGS sorted branch lengths applied to 26 binary chronic illness phenotypes from
the UK Biobank on the -log10 scale. We show the sorted branch lengths corresponding to the branches
in the dendrogram output of WINGS applied to -log10-transformed PEGASUS gene scores for 26 case-control
phenotypes in the UK Biobank. The dashed red horizontal line corresponds to the branch length threshold,
where the identified prioritized clusters are those lying above the dashed line (boxed). Here, the x-axis shows
the ICD10 codes; see Table S1 for the corresponding common disease names.
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Figure S10: Average number of prioritized clusters identified in 1,000 permutations, where each
permutation shu✏es gene scores for each of the 81 phenotypes analyzed in the UK Biobank.
For each cluster size shown, the number of prioritized clusters identified in the empirical matrix of gene
scores (red dots) for the same phenotypes exceeds those observed in this permutation test. We note that we
set the cluster size threshold to eight in our empirical analyses.
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Figure S11: WINGS sorted branch lengths from 81 case-control phenotypes in the UK Biobank
reveals clusters of phenotypes with shared significant genetic architecture. We show the sorted
branch lengths corresponding to the dendrogram branches generated by WINGS when applied to the -log10
transformed PEGASUS gene scores from 81 case-control phenotypes in the UK Biobank. The dashed red
horizontal line corresponds to the branch length threshold, where the prioritized clusters are those lying
above the dashed line. The corresponding dendrogram is presented in Figure 3.
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Figure S12: WINGS dendrogram from a simulation on the -log10 scale. We show the dendrogram
output of Ward hierarchical clustering applied to the -log10 transformed PEGASUS scores of a simulation
with 75 phenotypes and 75% shared genes. The branches are color coded by the largest prioritized clus-
ters identified by the branch length thresholding algorithm. The corresponding sorted branch lengths are
presented in Figure 2 in the paper.
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Figure S13: Position of 81 case-control phenotypes resulting from a disPCA analysis. Each point
in the plot represents a single phenotype. The Euclidean distances between the points were used to apply
WINGS and form the dendrogram displayed in Figure 4. The points are colored corresponding to their
prioritized cluster status in Figure 3. The disPCA analysis does not result in those phenotype clusters
identified by WINGS being easily di↵erentiable.
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Figure S14: WINGS dendrogram from 81 case-control phenotypes using both genes and inter-
genic regions as features. We analyzed a matrix of PEGASUS p-values for 17,651 genes with a +/-
50kb bu↵er region and 2,960 intergenic regions on the -log10 scale using both genes and intergenic regions
as features. Compared to the dendrogram shown in Figure 3, the topology of the tree is preserved and the
resulting dissimilarity index (from [92]) between these two trees is Z = 0.1091. The corresponding sorted
branch length diagram is presented in Figure S15.
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Figure S15: WINGS sorted branch lengths from 81 case-control phenotypes using both genes
and intergenic regions as features. We show the sorted branch lengths corresponding to the dendrogram
branches generated by WINGS when applied to a matrix of PEGASUS p-values for 17,651 genes with a +/-
50kb bu↵er region and 2,960 intergenic regions on the -log10 scale using both genes and intergenic regions as
features. The dashed red horizontal line corresponds to the branch length threshold, where the prioritized
clusters are those lying above the dashed line. The corresponding dendrogram is presented in Figure S14.
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Figure S16: WINGS dendrogram from 81 case-control phenotypes using imputed data. We
analyzed a matrix of PEGASUS p-values on the -log10 scale using the imputed data. The dissimilarity index
(from [92]) between this tree and Figure 3 is Z = 0.1379. The corresponding sorted branch length diagram
is presented in Figure S17.
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Figure S17: WINGS sorted branch lengths from 81 case-control phenotypes using imputed data.
We show the sorted branch lengths corresponding to the dendrogram branches generated by WINGS when
applied to the -log10 transformed PEGASUS gene scores from 81 case-control phenotypes in the UK Biobank
with the imputed data. The dashed red horizontal line corresponds to the branch length threshold, where
the prioritized clusters are those lying above the dashed line. The corresponding dendrogram is presented
in Figure S16.
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Figure S18: WINGS dendrogram from 81 case-control phenotypes in the UK Biobank using
gene scores with no upstream or downstream bu↵er region. We analyzed a matrix of PEGASUS p-
values on the -log10 scale using gene scores with no upstream or downstream bu↵er region. The dissimilarity
index (from [92]) between this tree and Figure 3 is Z = 0.1240. The corresponding sorted branch length
diagram is presented in Figure S19.
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Figure S19: WINGS sorted branch lengths from 81 case-control phenotypes in the UK Biobank
using gene scores with no upstream or downstream bu↵er region. We show the sorted branch
lengths corresponding to the dendrogram branches generated by WINGS when applied to the -log10 trans-
formed PEGASUS gene scores with no upstream or downstream butter region from 81 case-control pheno-
types in the UK Biobank. The dashed red horizontal line corresponds to the branch length threshold, where
the prioritized clusters are those lying above the dashed line. The corresponding dendrogram is presented
in Figure S18.
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Figure S20: WINGS dendrogram from 81 case-control phenotypes in the UK Biobank after
partitioning the genome into independent haplotype blocks. We analyzed a matrix of PEGASUS
p-values on the -log10 scale using all independent haplotype blocks as features (33,686). The dissimilarity
index (from [92]) between this tree and Figure 3 is Z = 0.1276. The corresponding sorted branch length
diagram is presented in Figure S21.
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Figure S21: WINGS sorted branch lengths from 81 case-control phenotypes in the UK Biobank
using haplotype blocks as regions. We show the sorted branch lengths corresponding to the dendrogram
branches generated by WINGS when applied to the -log10 transformed PEGASUS gene scores from 81 case-
control phenotypes in the UK Biobank for 33,686 independent haplotype regions. The dashed red horizontal
line corresponds to the branch length threshold, where the prioritized clusters are those lying above the
dashed line. The corresponding dendrogram is presented in Figure S20.
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Robust relationship inference in genome-wide association studies. Bioinformatics, 26(22):2867–2873,1012

2010.1013

[107] Jian Yang, Beben Benyamin, Brian P McEvoy, Scott Gordon, Anjali K Henders, Dale R Nyholt,1014

Pamela A Madden, Andrew C Heath, Nicholas G Martin, Grant W Montgomery, et al. Common snps1015

explain a large proportion of the heritability for human height. Nature genetics, 42(7):565, 2010.1016

[108] Andrew R Wood, Tonu Esko, Jian Yang, Sailaja Vedantam, Tune H Pers, Stefan Gustafsson, Audrey Y1017

Chu, Karol Estrada, Jian’an Luan, Zoltán Kutalik, et al. Defining the role of common variation in the1018

genomic and biological architecture of adult human height. Nature genetics, 46(11):1173, 2014.1019

57


