Supporting Information

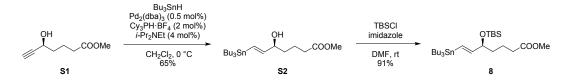
Design and Synthesis of Benzene Congeners of Resolvin E2, a Proresolving Lipid Mediator, as Its Stable Equivalents

Yuto Murakami,[†] Hayato Fukuda,^{*,†,§} Ryuta Muromoto,[†] Koki Hirashima,[†] Kohei Ishimura,[†] Koichi Fujiwara,[†] Jun Ishihara,[§] Tadashi Matsuda,[†] Mizuki Watanabe,[†] Satoshi Shuto^{*,†,‡}

[†]Faculty of Pharmaceutical Sciences and [‡]Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060–0812, Japan

§Graduate School of Biomedical Sciences, Nagasaki University, Bunkyo-machi, Nagasaki 852-8521, Japan

hfukuda@nagasaki-u.ac.jp shu@pharm.hokudai.ac.jp


Table of Contents

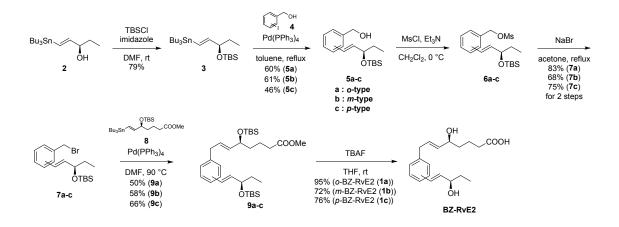
Synthetic Procedures	2
Murine peritonitis evaluation	9
Metabolic Stability	10
References	11
Figure S1	12

General Procedures

NMR spectra were measured on JEOL ECX400P (400 MHz), JEOL EXP400 (400 MHz) and JEOL ECA500 (500 MHz). Chemical shifts were reported in the δ scale relative to tetramethylsilane (TMS) as 0.00 ppm for ¹H (CDCl₃) and residual CHCl₃ (7.26 ppm for ¹H and 77.16 ppm for ¹³C), CH₃OH (3.31 ppm for ¹H and 49.0 ppm for ¹³C) as internal reference. Mass spectra (MS) were measured on JEOL JMS-HX110, JEOL JMS-T100GCV, JEOL JMS-T100LCP, JEOL JMS-700TZ (ESI). Optical rotation was measured on JASCO DIP-1030. Silica gel column chromatography and flash column chromatography was carried out with Wakogel 60N (Wako Pure Chemical Industries, Ltd., neutral, 63-212 µm) and silica gel 60N (Kanto Chemical Co., Inc., spherical, neutral, 40-50 µm), respectively. All reactions were carried out under an argon atmosphere using flame-dried or oven-dried glassware, unless otherwise noted, and monitored with analytical TLC (Merck Ltd., TLC Silica gel 60 F₂₅₄).

Experimental Procedures

Methyl (S,E)-5-hydroxy-7-(tributylstannyl)hept-6-enoate (S2)


To a stirred solution of Cy₃PH·BF₄ (88.0 mg, 0.24 mmol) and *i*-Pr₂NEt (84 μ L, 0.48 mmol) in CH₂Cl₂ (60 mL) was added Pd₂(dba)₃ (55 mg, 60 μ mol) at room temperature. The resulting solution was stirred at the same temperature for 10 min. After **S1**¹ (1.87 g, 12.0 mmol, >99% ee) and Bu₃SnH (3.9 mL, 14.4 mmol) in CH₂Cl₂ was added to the reaction mixture at 0 °C, the mixture was stirred at the same temperature overnight and concentrated. The residue was purified by silica gel column chromatography (K₂CO₃ - SiO₂ = 1 : 9, AcOEt - hexane = 1 : 8) to give **S2** (3.5 g, 7.83 mmol, 65%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 6.15 (dd, J = 19.2, 1.0 Hz, 1H), 5.99 (dd, J = 19.2, 5.2 Hz, 1H), 4.08 (m, 1H), 3.67 (s, 3H), 2.36 (t, J = 7.6 Hz, 1H), 1.81-0.80 (m, 27H). Data for **S2** agreed with previous data².

Methyl (S,E)-5-((tert-butyldimethylsilyl)oxy)-7-(tributylstannyl)hept-6-enoate (8)

To a stirred solution of **S2** (3.5 g, 7.83 mmol) in DMF (52 mL) was added imidazole (2.13 g, 31.3 mmol) and TBSC1 (2.36 g, 15.7 mmol) at room temperature. The mixture was stirred at the same temperature for 12 h and quenched by addition of H₂O and extracted with AcOEt/hexane (1 : 4). The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by flash silica gel column chromatography (K₂CO₃ - SiO₂ = 1 : 9, AcOEt - hexane = 1 : 8) to give **8** (4.0 g, 7.12 mmol, 91%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 6.04 (d, J = 19.2 Hz, 1H), 5.89 (dd, J = 19.2, 6.0 Hz, 1H), 4.04 (dt, J = 6.0, 6.0 Hz, 1H), 3.66 (s, 3H), 2.32 (t, J = 7.4 Hz, 1H), 1.72-1.25 (m, 16H), 0.96-0.78 (m, 25H), 0.04 (s, 3H), 0.02 (s, 3H). Data for **8** agreed with previous data³.

(R,E)-1-(Tributylstannyl)pent-1-en-3-ol (3)

To a stirred solution of 2^4 (2.0 g, 5.4 mmol, 95% ee) in DMF (52 mL) was added imidazole (1.47 g, 21.6 mmol) and TBSCl (1.62 g, 10.8 mmol) at room temperature. The mixture was stirred at the same temperature for 12 h and quenched by addition of H₂O and extracted with AcOEt/hexane (1 : 4). The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by flash silica gel column chromatography (K₂CO₃ - SiO₂ = 1 : 9, AcOEt - hexane = 1 : 10) to give **3** (2.1 g, 4.28 mmol, 79%) as a colorless oil.

[α]¹⁵_D +19.2 (*c* 1.00, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 6.01 (dd, J = 19.3, 0.8 Hz, 1H), 5.91 (dd, J = 19.3, 5.5 Hz, 1H), 3.96 (dt, J = 5.5, 5.5 Hz, 1H), 1.54-1.40 (m, 8H), 1.30 (tq, J = 7.5, 7.5 Hz, 6H), 0.94-0.81 (m, 27H), 0.05 (s, 3H), 0.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.8, 126.6, 78.2, 31.0, 29.3, 27.4, 26.1, 18.5, 13.9, 10.0, 9.6; LRMS (ESI) *m/z* 513.25 [(M+Na)⁺]; HRMS (EI) calcd for C₁₉H₄₁OSSn: 433.1949 [(M–Bu)⁺], found: 433.1951.

(R,E)-(2-(3-((Tert-butyldimethylsilyl)oxy)pent-1-en-1-yl)phenyl)methanol (5a)

To a stirred solution of **3** (510 mg, 1.04 mmol) and *o*-iodobenzyl alcohol (**4a**) (268 mg, 1.14 mmol) in toluene (10 mL) was added Pd(PPh₃)₄ (60 mg, 50 µmol) at room temperature. The mixture was refluxed overnight, quenched by addition of sat. NH₄Cl aq. and extracted with AcOEt. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by flash silica gel column chromatography (K₂CO₃ - SiO₂ = 1 : 9, AcOEt - hexane = 1 : 4) to give **5a** (191 mg, 0.623 mmol, 60%) as a yellow oil.

[α]²⁴_D +31.6 (*c* 1.00, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.47 (m, 1H), 7.37 (m, 1H), 7.30-7.23 (m, 2H), 6.81 (d, *J* = 15.6 Hz, 1H), 6.11 (dd, *J* = 16.0, 6.0 Hz, 1H), 4.75 (d, *J* = 3.6 Hz, 2H), 4.23 (dt, *J* = 6.4, 5.2 Hz, 1H), 1.65-1.55 (m, 3H), 0.93 (s, 9H), 0.93 (t, *J* = 7.4 Hz, 3H), 0.10 (s, 3H), 0.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.6, 136.3, 136.2, 128.3, 128.2, 127.6, 126.4, 125.7, 74.8, 63.6, 31.3, 26.0, 18.4, 9.8, -4.2, -4.6; LRMS (ESI) *m/z* 329.15 [(M+Na)⁺]; HRMS (ESI) calcd for $C_{18}H_{30}NaO_2Sii$: 329.1913 [(M+Na)⁺], found: 329.1922.

(R,E)-(3-((Tert-butyldimethylsilyl)oxy)pent-1-en-1-yl)phenyl)methanol (5b)

Similar to the synthesis of **5a**, **5b** was prepared from 3-iodobenzyl alcohol (**4b**) in 61% yield. [α]²³_D +37.7 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.30 (m, 3H), 7.22 (s, 1H), 6.50 (d, *J* = 16.0 Hz, 1H), 6.20 (dd, *J* = 16.0, 6.4 Hz, 1H), 4.69 (s, 2H), 4.20 (dt, *J* = 6.0, 6.0 Hz, 1H), 1.70-1.56 (m, 3H), 1.08-0.76 (m, 12H), 0.08 (s, 3H), 0.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 141.3, 137.7, 133.9, 128.9, 128.9, 126.0, 125.8, 125.0, 74.8, 65.5, 31.4, 26.1, 18.5, 9.8, -4.1, -4.6; LRMS (ESI) *m*/*z* 329.15 [(M+Na)⁺]; HRMS (ESI) calcd for calcd for C₁₈H₃₀NaO₂Si: 329.1913 [(M+Na)⁺], found: 329.1910.

(*R*,*E*)-(4-(3-((*Tert*-butyldimethylsilyl)oxy)pent-1-en-1-yl)phenyl)methanol (5c)

Similar to the synthesis of **5a**, **5c** was prepared from 4-iodobenzyl alcohol (**4c**) in 46% yield. $[\alpha]^{25}_{D}$ +44.3 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 6.49 (d, *J* = 16.0 Hz, 1H), 6.17 (dd, *J* = 16.0, 6.4 Hz, 1H), 4.68 (d, *J* = 4.0 Hz, 2H), 4.20 (dt, *J* = 6.0, 6.0 Hz, 1H), 1.64-1.56 (m, 2H), 0.92 (s, 9H), 0.92 (t, *J* = 7.6 Hz, 3H), 0.08 (s, 3H), 0.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.0, 136.9, 133.6, 128.7, 127.4, 126.7, 74.9, 65.3, 31.4, 26.1, 18.5, 9.8, -4.1, -4.6; LRMS (ESI) *m/z* 329.10 [(M+Na)⁺]; HRMS (ESI) calcd for C₁₈H₃₀NaO₂Si: 329.1913 [(M+Na)⁺], found: 329.1915.

(R,E)-((1-(2-(Bromomethyl)phenyl)pent-1-en-3-yl)oxy)(tert-butyl)dimethylsilane (7a)

To a stirred solution of **5a** (6.0 mg, 20 μ mol) and Et₃N (3.0 μ L, 22 μ mol) in CH₂Cl₂ (0.2 mL) was added MsCl (2.0 μ L, 22 μ mol) at 0 °C. The mixture was stirred at the same temperature for 1 h, quenched by addition of brine and extracted with AcOEt. The combined organic extracts were dried (Na₂SO₄) and concentrated to give crude **6a**.

To a stirred solution of crude **6a** in acetone (0.2 mL) was added NaBr (6.0 mg, 58 μ mol) at room temperature. The mixture was refluxed for 12 h, quenched by addition of brine and extracted with AcOEt. The combined organic extracts were dried (Na₂SO₄) and concentrated. The residue was purified by silica gel column chromatography (AcOEt - hexane = 1 : 20) to give **7a** (6.0 mg, 16 μ mol, 83% for 2 steps) as a colorless oil.

[α]²¹_D +20.6 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.0 Hz 1H), 7.30 (m, 2H), 7.21 (m, 1H), 6.86 (d J = 15.6 Hz, 1H), 6.16 (dd, J = 16.0, 6.0 Hz, 1H), 4.55 (d, J = 2.8 Hz, 2H), 4.27 (dt, J = 6.0, 6.0 Hz, 1H), 1.62 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H), 0.95 (s, 9H), 0.11 (s, 3H), 0.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.2, 136.8, 134.7, 130.4, 129.2, 127.7, 126.9, 125.3, 74.6, 31.9, 31.3, 26.1, 18.4, 9.7, -4.1, -4.6; LRMS (ESI) *m/z* 369.35 [(M+H)⁺]; HRMS (EI) calcd for calcd for C₁₆H₂₄BrOSi: 339.0780 [(M–Et)⁺], found: 339.0779.

(R,E)-((1-(3-(Bromomethyl)phenyl)pent-1-en-3-yl)oxy)(tert-butyl)dimethylsilane (7b)

Similar to the synthesis of 7a, 7b was prepared from 5b in 68% yield.

 $[\alpha]^{23}_{D}$ +32.9 (*c* 1.25, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 1H), 7.31-7.20 (m, 3H), 6.48 (d, *J* = 16.4 Hz, 1H), 6.20 (dd, *J* = 16.0, 6.0 Hz, 1H), 4.49 (s, 2H), 4.20 (dt, *J* = 6.0, 6.0 Hz, 1H), 1.59 (m, 2H), 0.95-0.89 (m, 12H), 0.08 (s, 3H), 0.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.5, 138.4, 134.6, 129.5, 128.8, 128.3, 127.4, 126.9, 75.0, 34.0, 31.7, 26.4, 18.8, 10.1, -3.8, -4.3; LRMS (ESI) *m/z* 369.15 [(M+H)⁺]; HRMS (EI) calcd for calcd for C₁₈H₂₉BrOSi: 368.1171 (M⁺), found: 368.1173.

(R,E)-((1-(4-(Bromomethyl)phenyl)pent-1-en-3-yl)oxy)(tert-butyl)dimethylsilane (7c)

Similar to the synthesis of 7a, 7c was prepared from 5c in 75% yield.

 $[\alpha]^{23}_{D}$ +43.1 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃), δ 7.43 (s, 4H), 6.48 (dd, *J* = 16.0, 1.6 Hz, 1H), 6.19 (dd, *J* = 16.0, 6.4 Hz, 1H), 4.50 (s, 2H), 4.20 (m, 1H), 1.63-1.55 (m, 2H), 0.92 (m, 12H), 0.08 (s, 3H), 0.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.7, 136.8, 134.4, 129.4, 128.4, 126.9, 74.8, 33.7, 31.3, 26.1, 18.5, 9.8, -4.2, -4.6; LRMS (ESI) *m/z* 391.20 [(M+Na)⁺]; HRMS (EI) calcd for calcd for C₁₈H₂₉BrOSi: 368.1171 (M⁺), found: 368.1167.

Methyl (*S*,*E*)-5-((*tert*-butyldimethylsilyl)oxy)-8-(2-((*R*,*E*)-3-((*tert*-butyldimethylsilyl)oxy) pent-1-en-1-yl)phenyl)oct-6-enoate (9a)

To a stirred solution of **7a** (60 mg, 0.162 mmol) and **8** (148 mg, 0.243 mmol) in DMF (1.8 mL) was added Pd(PPh₃)₄ (9.0 mg, 8.0 µmol) at room temperature. The mixture was at 90 °C overnight, quenched by addition of brine and extracted with Et₂O. The combined organic extracts were dried (Na₂SO₄) and concentrated. The residue was purified by silica gel column chromatography (K₂CO₃ - SiO₂ = 1 : 9, AcOEt - hexane = 1 : 8) and EPCLC (conditions; Yamazen Ultra Pack Si-40A, hexane:AcOEt = 97:3, flow rate; 10 mL/min, detection; UV 254 nm) to give **9a** (45 mg, 80 µmol, 50%) as a colorless oil.

[α]¹⁹_D +7.21 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.42 (m, 1H), 7.19-7.15 (m, 2H), 7.11 (m, 1H), 6.71 (d, J = 16.0 Hz, 1H), 6.03 (dd, J = 16.0, 6.4 Hz, 1H), 5.70 (dt, J = 15.2, 6.4 Hz, 1H), 5.38 (dd, J = 15.6, 6.8 Hz, 1H), 4.20 (dt, J = 6.0, 6.0 Hz, 1H), 4.07 (dt, J = 6.0, 6.0 Hz, 1H), 3.66 (s, 3H), 3.38 (d, J = 6.4 Hz, 2H), 2.29 (t, J = 7.6 Hz, 2H), 1.70-1.55 (m, 4H), 1.51-1.41 (m, 2H), 0.92 (t, J = 7.6 Hz, 3H), 0.92 (s, 9H), 0.86 (s, 9H), 0.09 (s, 3H), 0.06 (s, 3H), 0.01 (s, 3H), -0.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.2, 137.5, 136.3, 135.4, 134.9, 129.6, 128.6, 127.5, 126.7, 126.6, 126.3, 75.0, 73.2, 51.6, 37.8, 35.8, 34.1, 31.4, 26.1, 26.0, 21.0, 18.4, 18.3, 9.9, -4.1, -4.1, -4.6, -4.7; LRMS (ESI) m/z 583.35 [(M+Na)⁺]; HRMS (ESI) calcd for C₃₂H₅₆NaO₄Si₂ : 583.3615 [(M+Na)⁺], found: 583.3636.

Methyl (*S*,*E*)-5-((*tert*-butyldimethylsilyl)oxy)-8-(3-((*R*,*E*)-3-((*tert*-butyldimethylsilyl)oxy) pent-1-en-1-yl)phenyl)oct-6-enoate (9b)

Similar to the synthesis of 9a, 9b was prepared from 7b in 58% yield.

[α]¹⁹_D +16.9 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.16 (m, 3H), 7.03 (d, J = 6.8 Hz, 1H), 6.45 (d, J = 16.0 Hz, 1H), 6.15 (dd, J = 16.0, 6.4 Hz, 1H), 5.69 (dt, J = 15.2, 6.8 Hz, 1H), 5.48 (dd, J = 15.2, 6.4 Hz, 1H), 4.19 (dt, J = 6.0, 6.0 Hz, 1H), 4.10 (dt, J = 6.4, 6.4 Hz, 1H), 3.66 (s, 3H), 3.34 (d, J = 6.4 Hz, 2H), 2.31 (t, J = 7.6 Hz, 2H), 1.68-1.47 (m, 6H), 0.92-0.87 (m, 21H), 0.08 (s, 3H), 0.05 (s, 3H), 0.03 (s, 3H), 0.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.2, 140.7, 137.5, 135.1, 133.4, 129.2, 129.1, 128.7, 127.7, 126.7, 124.3, 75.0, 73.2, 51.6, 38.7, 37.9, 34.2, 31.4, 26.1, 26.0, 21.0, 18.5, 18.4, 9.8, 0.14, -4.0, -4.1, -4.6, -4.6; LRMS (ESI) *m/z* 583.35 [(M+Na)⁺]; HRMS (ESI) calcd for C₃₂H₅₆NaO₄Si₂ : 583.3615 [(M+Na)⁺], found: 583.3631.

Methyl (*S*,*E*)-5-((*tert*-butyldimethylsilyl)oxy)-8-(4-((*R*,*E*)-3-((*tert*-butyldimethylsilyl)oxy) pent-1-en-1-yl)phenyl)oct-6-enoate (9c)

Similar to the synthesis of 9a, 9c was prepared from 7c in 66% yield.

[α]¹⁸_D +29.0 (*c* 1.10, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.29 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 6.45 (d, J = 16.0 Hz, 1H), 6.13 (dd, J = 16.0, 6.3 Hz, 1H), 5.67 (dt, J = 15.0, 6.5 Hz, 1H), 5.46 (dd, J = 15.0, 6.5 Hz, 1H), 4.18 (dt, J = 6.0, 6.0 Hz, 1H), 4.09 (dt, J = 6.0, 6.0 Hz, 1H), 3.66 (s, 3H), 3.33 (d, J = 6.5 Hz, 2H), 2.31 (t, J = 7.3 Hz, 2H), 1.70-1.44 (m, 6H), 0.95-0.79 (m, 21H), 0.08 (s, 3H), 0.05 (s, 3H), 0.03 (s, 3H), 0.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 139.6, 135.2, 135.0, 132.8, 129.0, 128.9, 128.9, 126.5, 75.0, 73.2, 51.6, 38.4, 37.8, 34.2, 31.4, 26.1, 26.0, 21.0, 18.5, 18.4, 9.9, -4.0, -4.1, -4.6, -4.6; LRMS (ESI) *m/z* 583.35 [(M+Na)⁺]; HRMS (ESI) calcd for C₃₂H₅₆NaO₄Si₂ : 583.3615 [(M+Na)⁺], found: 583.3629.

o-BZ-RvE2 (1a)

To a stirred solution of **9a** (5.0 mg, 8.9 μ mol) in THF (18 μ L) was added TBAF (1.0 M in THF, 54 μ L, 54 μ mol) at room temperature. The mixture was stirred at the same temperature for 24 h. After the reaction was completed, the mixture was added phosphate buffer (pH 6) and extracted with AcOEt. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by flash silica gel column chromatography (MeOH - CHCl₃ = 1 : 30) to give *o*-BZ-RvE2 (**1a**) (2.7 mg, 8.5 μ mol, 95%) as a colorless oil.

 $[\alpha]^{19}_{D}$ +1.45 (*c* 0.25, MeOH); ¹H NMR (400 MHz, CD₃OD) δ 7.46 (m, 1H), 7.16 (m, 3H), 6.83 (d, *J* = 16.0 Hz, 1H), 6.08 (dd, *J* = 16.0, 6.4 Hz, 1H), 5.79 (dt, *J* = 15.6, 6.0 Hz, 1H), 5.37 (dd, *J* = 15.6, 6.8 Hz, 1H), 4.14 (dt, *J* = 6.8, 6.8 Hz, 1H), 4.00 (dt, *J* = 6.4, 6.4 Hz, 1H), 3.44 (d, *J* = 6.0 Hz, 2H), 2.24 (t, *J* = 7.2 Hz, 2H), 1.68-1.44 (m, 6H), 0.98 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 180.2, 138.7, 137.4, 135.5, 135.3, 130.9, 130.7, 128.8, 128.6, 127.6, 127.0, 75.1, 73.2, 38.0, 36.9, 31.3, 23.0, 10.3; LRMS (ESI) *m/z* 316.95 [(M–H)[–]]; HRMS (ESI) calcd for C₁₉H₂₅O₄ : 317.1753 [(M–H)[–]], found:317.1749; HPLC purity >99% (COSMOSIL 5C18-MS- II 4.6mm x 250mm,

CH₃CN/H₂O/TFA = 35/65/0.01, 1.0 mL/min, t_R = 11.7 min, detection 254 nm)

m-BZ-RvE2 (1b)

Similar to the synthesis of 1a, m-BZ-RvE2 (1b) was prepared from 9b in 72% yield.

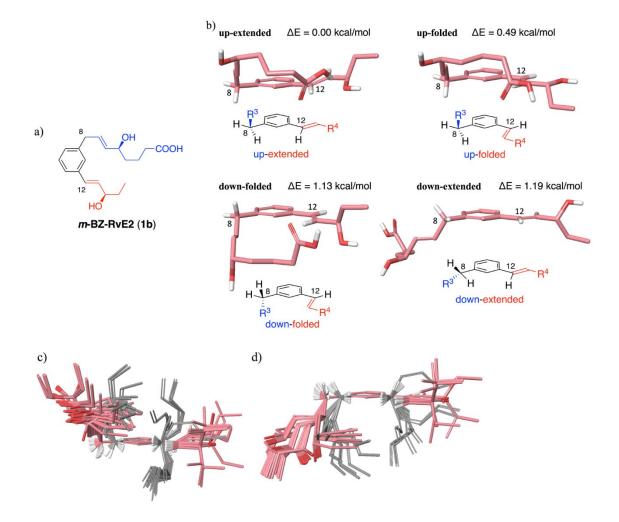
[α]¹⁹_D –1.31 (*c* 0.18, MeOH); ¹H NMR (400 MHz, CD₃OD) δ 7.23 (m, 3H), 7.07 (m, 1H), 6.54 (d, *J* = 16.0 Hz, 1H), 6.20 (dd, *J* = 16.0, 6.8 Hz, 1H), 5.79 (dt, *J* = 15.2, 6.8 Hz, 1H), 5.52 (dd, *J* = 15.6, 6.8 Hz, 1H), 4.11 (dt, *J* = 6.8, 6.8 Hz, 1H), 4.11 (dt, *J* = 6.8, 6.8 Hz, 1H), 3.36 (d, *J* = 6.8 Hz, 2H), 2.30 (t, *J* = 7.2 Hz, 2H), 1.66-1.50 (m, 6H), 0.96 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 177.9, 142.1, 138.8, 135.7, 133.7, 131.5, 131.5, 129.9, 129.1, 127.9, 125.4, 75.3, 73.3, 39.7, 38.0, 35.1, 31.5, 22.5, 10.5; LRMS (ESI) *m/z* 316.90 [(M–Na)[–]]; HRMS (ESI) calcd for C₁₉H₂₅O₄ : 317.1753 [(M–H)[–]], found: 317.1746; HPLC purity >99% (COSMOSIL 5C18-MS- II 4.6mm x 250mm, CH₃CN/H₂O/TFA = 35/65/0.01, 1.0 mL/min, *t*_R = 11.5 min, detection 254 nm)

p-BZ-RvE2 (1c)

Similar to the synthesis of **1a**, *p*-BZ-RvE2 (**1c**) was prepared from **9c** in 76% yield. [α]¹⁸_D +1.77 (*c* 0.43, MeOH); ¹H NMR (500 MHz, CD₃OD) δ 7.31 (d, *J* = 8.0 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 6.52 (d, *J* = 16.0 Hz, 1H), 6.16 (dd, *J* = 16.0, 6.5 Hz, 1H), 5.77 (dt, *J* = 15.5, 6.5 Hz, 1H), 5.49 (dd, *J* = 15.5, 7.0 Hz, 1H), 4.09 (dt, *J* = 6.5, 6.5 Hz, 1H), 4.02 (dt, *J* = 7.0, 7.0 Hz, 1H), 3.34 (d, *J* = 6.5 Hz, 2H), 2.29 (t, *J* = 7.5 Hz, 2H), 1.70-1.46 (m, 6H), 0.96 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 177.7, 141.0, 136.4, 135.5, 132.8, 131.2, 131.1, 129.8, 127.5, 75.1, 73.1, 39.3, 37.8, 34.9, 31.3, 22.3, 10.3; LRMS (ESI) *m/z* 316.90 [(M–Na)⁻]; HRMS (ESI) calcd for C₁₉H₂₅O₄ : 317.1753 [(M–H)⁻], found: 317.1749; HPLC purity 98% (COSMOSIL 5C18-MS- II 4.6mm x 250mm, CH₃CN/H₂O/TFA = 35/65/0.01, 1.0 mL/min, *t*_R = 11.0 min, detection 254 nm)

Murine peritonitis evaluation

Male BALB/c mice (6–7 weeks; Japan SLC, Shizuoka, Japan) were used. Heat-killed *Propionibacterium acnes* (*P. acnes*; 500 µg per mouse) was injected intraperitoneally. At 12 h after *P. acnes* injection, 300 pg of RvE2, *o*-BZ-RvE2, *m*-BZ-RvE2, *p*-BZ-RvE2 or vehicle alone was administered intraperitoneally. At 12 h after *P. acnes* injection, three different doses (300 fg, 300 pg or 300 ng per mouse) of RvE2, *o*-BZ-RvE2 or vehicle alone was administered intraperitoneally. At 12 h after *P. acnes* injection, three different doses (300 fg, 300 pg or 300 ng per mouse) of RvE2, *o*-BZ-RvE2 or vehicle alone was administered intraperitoneally. At 24 h after *P. acnes* injection, peritoneal exudate cells (PECs) were collected and counted. Results were expressed as percentage inhibition of *P. acnes*-induced increase in the number of PECs compared with vehicle alone. All animal procedures were conducted in accordance with the Hokkaido University animal ethics committee.


Metabolic stability

60 µL was taken from an ethanol solution (1 mg / 1 mL) of synthesized compound, and the solvent was removed. 0.1 M PBS buffer (435 µL, pH 7.4), CH₃CN (10 µL), NADPH Regeneration System A solution (25 µL), and NADPH Regeneration System B solution (5 µL) were added to each compound, and agitated with a vortex mixer. After incubation at 37 °C., Corning[®] UltraPoolTM HLM 150 (25 µL) was added after 5 minutes, and 80 µL of the solution was dispensed every hour (after 0, 1, 2, 3, 6 hours). The dispensed solution was quenched by adding CH₃CN (80 µL), and each sample was centrifuged (10000 rpm) at room temperature for 3 minutes. The supernatant was analyzed using HPLC (COSMOSIL 5C18-MS- II 4.6mm x 250mm, CH₃CN/H₂O/TFA = 35/65/0.01, 1.0 mL/min, detection 254 nm).

References

- 1. K. Götz, J. C. Liermann, E. Thines, H. Anke, T. Opatz, Org. Biomol. Chem. 2010, 8, 2123.
- 2. E. J. Corey, A. Guzman-Perez, S. E. Lazerwith, J. Am. Chem. Soc. 1997, 119, 11769.
- R. E. Boer, J. A. Giménez-Bastida, O. Boutaud, S. Jana, C. Schneider, G. A. Sulikowski, Org. Lett. 2018, 20, 4020.
- 4. R. Ostwald, P. Y. Chavant, H. Stadtmüller, P. Knochel, J. Org. Chem. 1994, 59, 4143.

Stable conformations of *m*-BZ-RvE2

Figure S1. Stable conformations of *m*-BZ-RvE2 (**1b**) obtained by calculations. a) Chemical structure of *m*-BZ-RvE2. b) Four typical stable conformations. ΔE means the relative potential energy from the global minimum. c) Superimposition of the up-extended/folded forms of *m*-BZ-RvE2 (pink) on the up-up/down conformers of RvE2 (gray) within 2.0 kcal/mol from the global minimum conformation. d) Superimposition of the down-extended/folded forms of *m*-BZ-RvE2 (pink) on the down-up/down conformers of RvE2 (gray) within 2.0 kcal/mol from the global minimum conformation.