
Data collection, curation and
validation on the traits wheelTM

PFTC5 – Peru

Aud Halbritter

UNIVERSITY OF BERGEN

aud.halbritter@uib.no
@audhalbritter

Science is based on data

Science is based on data

Create – collect leaves
Collect „good“ plant material

Create – Prepare the leaves
Label your samples
Take notes!

Create – Prepare
• Unique sample ID

• AAA1234
• Barcode
https://github.com/EnquistLab/PFTC3_Peru/blob/master/traits/Rdatagathering/Cre
ateBarecodes.R
R package: baRcodeR

https://github.com/EnquistLab/PFTC3_Peru/blob/master/traits/Rdatagathering/CreateBarecodes.R

Create - Weight

Write down the
weight with all
digits.

Create - Scanning

Process – Data validation
UNIVERSITY OF BERGEN

Create - Scanning

Create - Scanning

Create - Scanning

Create - Scanning

Create – Calculate Leaf Area
Code:
https://github.com/EnquistLab/PFTC3_Peru/bl
ob/master/traits/Rdatagathering/CalculateLeaf
Area.R

ImageJ
R package: LeafArea

Custom function:
devtools::install_github("richardjtelford/LeafArea")
library(LeafArea)

Function to process multiple scans
(loop.files)

https://github.com/EnquistLab/PFTC3_Peru/blob/master/traits/Rdatagathering/CalculateLeafArea.R

Create - Calculate Leaf Area
Function to calculate leaf area
loop.files <- function(files){
file.copy(files, new.folder)
print(files)
area <- try(run.ij(set.directory = new.folder, distance.pixel =

237, known.distance = 2, log = TRUE, low.size = 0.005, trim.pixel
= 60, trim.pixel2 = 150, save.image = TRUE))
if(inherits(area, "try-error")){
return(data.frame(LeafArea = NA))

}
file.copy(dir(new.folder, full.names = TRUE, pattern =

"\\.tif"), output.folder)
Sys.sleep(0.1)
if(any(!file.remove(dir(new.folder, full.names = TRUE))))

stop()
res <- data.frame(ID = names(unlist(area[[2]])), LeafArea =

(unlist(area[[2]])))
return(res)

}

Create - Thickness

Measure leaf
thickness 3 times
for each sample
avoiding the mid
rib.

If the leaf is too
small make less
measurements.
The measurments
should not overlap.

Process – Data entry

Process – Import and checking

Git repo with code:
https://github.com/EnquistLab/PFTC3_Peru

Import and cleaning data:
traits/Ranalysis/DataImport2020.R

Check trait data spreadsheet:
traits/Rdatagathering/CheckSpreadsheet.R: contains a function
to check the spreadsheets

Check data visually:
Rdatagathering/CheckSpreadsheet.R: MakeSomePlots

https://github.com/EnquistLab/PFTC3_Peru
https://github.com/EnquistLab/PFTC3_Peru/tree/master/traits/Ranalysis
https://github.com/EnquistLab/PFTC3_Peru/tree/master/traits/Rdatagathering
https://github.com/EnquistLab/PFTC3_Peru/tree/master/traits/Rdatagathering

Process – data checking
assertr
Provides functionality to assert conditions that have to be met so that errors in
data used in analysis pipelines can fail quickly. Similar to 'stopifnot()' but more
powerful, friendly, and easier for use in pipelines.

site.list <- c("WAY", "ACJ", "PIL", "TRE", "QUE")

… function(dat){
…
assert(in_set(site.list), Site, error_fun = error_report)
…

}

tidylog
feedback for basic
dplyr operations

Process – Data validation

Weighing error:
1000 x smaller
(mg)

• Plot data
• wet mass vs. dry mass
• wet mass vs. leaf area
• Leaf thickness 1 vs leaf

thickness 2 etc.
• Log scale if necessary
• Check outliers
• Check unrealistic values

• SLA > 500 g/cm2
• SLA < 5 g/cm2
• LDMC > 1

Process – some numbers
China (2x) Peru 1* Svalbard Peru 2**

leaves 6734 3071 1469 1534

Total wet
mass (g)

1141 836 132 248

Total leaf
area (cm2)

42353 23021 5666 7505

Lines of R
code

522
+ 1 year

playing with
Excel

393
++

399 205

*not all chemical traits collected yet
** not all leaves processed yet

Document – Data documentation

Process data –
Why reproducible workflow

Clean, repeatable and script-based workflow

• It makes returning to the code much easier
a few months down the line; whether revisiting
an old project, or making revisions following
peer review.

• The results of your analysis are more easily
scrutinised by the readers of your paper,
meaning it is easier to show their validity.

• Having clean and reproducible code available
can encourage greater uptake of new
methods that you have developed.

Repeatable and script-based workflow
• Start your analysis from your raw data
• Any cleaning, merging, transforming, etc. of data should be done in

scripts, not manually
• Split your workflow (scripts) into logical thematic units. For example,

you might separate your code into scripts that
– (i) load, merge and clean data
– (ii) analyse data
– (iii) produce outputs like figures and tables

• Eliminate code duplication by packaging up useful code into custom
functions.

• Programm defensively and test your code
• Make sure to comment your functions thoroughly, explaining their

expected inputs and outputs, and what they are doing and why.
• Document your code and data as comments in your scripts or by

producing separate documentation.
• Any intermediary outputs generated by your workflow should be kept

separate from raw data.

Tidy(uni)verse
The tidyverse is an
opinionated collection of R
packages designed for data science.
All packages share an underlying
design philosophy,
grammar, and data
structures.

https://www.tidyverse.org/packages

Package drake

It analyzes your workflow, skips steps with up-to-
date results, and orchestrates the rest
with optional distributed computing. At the
end, drake provides evidence that your results
match the underlying code and data, which
increases your ability to trust your research.

https://books.ropensci.org/drake/plans.html
https://books.ropensci.org/drake/hpc.html

Programmig style guide
• Concise, descriptive and

menaingful names
• Spacing, split long code and

intendations
• Use #comments
• Do not repeat code -> use

functions
• Use relative not absolute path
• Defensive programming: test your

code

Git and GitHub
• Git is a version control system. Git manages

the evolution of a set of files – called
a repository – in a sane, highly structured way.
If you have no idea what I’m talking about, think
of it as the “Track Changes” features from
Microsoft Word on steroids.

• GitHub (Bitbucket, GitLab) provides a home for
your Git-based projects on the internet.

http://git-scm.com/

Why Git and GitHub
• Easy to share code with collaborators,

students, etc.
• Collaborators can work on the same code at

the same time
• Keeping track of changes in the code

Workflow

Commit - some rules
• Commit often and provide useful messages

so you can keep track of what you are doing.
• Commit code

and plain text
• Don’t upload

large files
(e.g. data files)

• Don’t upload
output files (figures)

• You can create a
gitignore file where
you can define
rules, which files
will be uploaded to git.

Further reading
• https://happygitwithr.com/ Jenny Bryan

https://happygitwithr.com/

Further reading

