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Instruments and Measurements

1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were measured on a 

MERCURYVX300 spectrometers. HR-ESI-MS was recorded on a Thermo Scientific 

LTQ Orbitrap XL mass spectrometer. UV-vis-NIR absorption spectra were recorded 

on a Shimadzu UV-2501 recording spectrophotometer. Cyclic voltammetry (CV) 

measurements were carried out on a CHI voltammetry analyzer at room temperature. 

Tetrabutylammonium hexafluorophosphate (n-Bu4NPF6, 0.1 M) was used as the 

supporting electrolyte. The conventional three-electrode configuration consists of a 
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platinum working electrode with a 2 mm diameter, a platinum wire counter electrode, 

and an Ag/AgCl wire reference electrode. Cyclic voltammograms were obtained at a 

scan rate of 100 mV/s. PL spectra were measured with a Shimadzu RF-5301PC 

fluorescence spectrophotometer. Instrument Parameters : Measurement type: 

Wavelength scan; Scan mode: Emission; Data mode: Fluorescence; Scan speed: 240 

nm/min; EX Slit: 5.0 nm, EM Slit: 5.0 nm; PMT Voltage: 400 V. PL quenching was 

calibrated for the film absorption at the excitation wavelength, and the PL quenching 

efficiency was estimated from the ratio of the PL intensity of polymer: acceptors film 

sample to that of the polymer or acceptors control sample. DFT calculations were 

performed by using Gaussian at the B3LYP/6-311G(d,p) level, and the long alkyl 

chains was simplified as methyl. The film morphology was measured using an atomic 

force microscope (AFM, Bruker-ICON2-SYS) using the tapping mode. The RMS 

values of the surface AFM images are averaged based on five times testing on different 

areas for each sample. TEM images were performed on a JEOL JEM-1400 transmission 

electron microscope. 

Device Fabrication and Characterization

The PSCs were fabricated with a structure of ITO/PEDOT: PSS (30 nm)/active 

layer/cathode. A thin layer of PEDOT: PSS was deposited through spin-coating on 

precleaned ITO-coated glass from a PEDOT: PSS aqueous solution (Baytron P VP AI 

4083 from H. C. Starck) at 2000 rpm and dried subsequently at 150 °C for 15 minutes 

in air. Then the device was transferred to a nitrogen glove box, where the active blend 

layer of PM6 polymer and BDTN-BF (or BDTN-Th) was spin-coated from its 

chloroform solution onto the PEDOT: PSS layer under a spin-coating rate of 2500 rpm. 

After spin-coating, the active layers were annealed at 80 °C for 5 minutes for the 

devices with thermal annealing treatment. The thickness of the active layers is ca. 145 
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nm. Then methanol solution of PDINO at a concentration of 1.0 mg mL-1 was deposited 

atop the active layer at 3000 rpm for 30 s to afford a PDIN cathode buffer layer with 

thickness of ca. 10 nm. Finally, top Al electrode was deposited in vacuum onto the 

cathode buffer layer at a pressure of ca. 5.0 × 10-5 Pa. All film thickness was measured 

by the Alpha-Step D-500 surface profilometer. The current density-voltage (J-V) 

characteristics of the PSCs were measured in glovebox on a computer-controlled 

Keithley 2450 Source-Measure Unit. Oriel Sol3A Class AAA Solar Simulator (model, 

Newport 94023A) with a 450 W xenon lamp and an air mass (AM) 1.5 filter was used 

as the light source. The light intensity was calibrated to 100 Mw cm-2 by a Newport 

Oriel 91150V reference cell. The input photon to converted current efficiency (EQE) 

was measured by Solar Cell Spectral Response Measurement System QE-R3-011 (Enli 

Technology Co., Ltd., Taiwan). The light intensity at each wavelength was calibrated 

with a standard single-crystal Si photovoltaic cell. Optical microscope (Olympus BX51) 

was used to defined the active area (4.6 mm2) of the device. Masks made using laser 

beam cutting technology to have a well-defined area of 2.2 mm2 were attached to define 

the effective area for accurate measurement. All the masked and unmasked tests gave 

consistent results with relative errors within 0.5%. The JSC values obtained by 

integrating the product of the EQE with the AM 1.5G solar spectrum agreed with the 

measured value to within 3%. All the device measurements were undertaken in a 

nitrogen glovebox (O2 < 0.1 ppm, H2O < 0.1 ppm). For the J–V measurement, the 

voltage step and delay time were 10 mV and 1 ms, respectively. The scan started from 

-1.5 V to 1.5 V.

Mobility Measurements

Hole and electron mobility were measured using the space charge limited current 
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(SCLC) method. Device structures are ITO/PEDOT: PSS/BHJs (1:1, w/w) /Au for 

hole-only devices and ITO/ZnO/ BHJs (1: 1, w/w)/PDIN/Al for electron-only devices. 

The SCLC mobilities were calculated by MOTT-Gurney equation: 

J = 9ε0εrμV2/8d3

Where J is the current density, εr is the relative dielectric constant of active layer 

material usually 2-4 for organic semiconductor, herein we use a relative dielectric 

constant of 3, ε0 is the permittivity of empty space (8.85×10-12 F m-1), µ is the mobility 

of hole or electron and d is the thickness of the active layer, V is the internal voltage in 

the device, and V = VApplied – VBuilt-in (in the hole-only and the electron-only devices, the 

Vbi values are 0.2 V and 0 V respectively), where VApplied is the voltage applied to the 

device, and VBuilt-in is the built-in voltage resulting from the relative work function 

difference between the two electrodes.

Experimental Section

All solvents and reagents were used as received from commercial sources and used 

without further purification unless otherwise specified. Compound 2-4 were 

synthesized according to reported methods.1-3 Compound BDTN, BDTN-CHO, 

BDTN-BF and BDTN-Th were synthesized as follows:

Compound BDTN. A mixture of compound 4 (370 mg, 0.4 mmol), sodium tert-

butoxide (300 mg, 3.1 mmol), Pd2(dba)3 (46 mg, 0.05 mmol) and 1,1´-

bis(diphenylphosphino)ferrocene (dppf, 55 mg, 0.1 mmol) in anhydrous toluene (5 mL) 

was stirred at room temperature for 10 minutes. To the resulting solution was then 

added 2-butyloctylamine (170 mg, 0.9 mmol) in 1 ml of anhydrous toluene and the 
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mixture was stirred at 120 °C for 2 h. After cooling to room temperature, H2O was 

added to the resulting mixture and extracted with CH2Cl2 three times. The combined 

organic layer was dried over MgSO4 and concentrated under reduced pressure. The 

residue was purified by column chromatography on silica gel using petroleum 

ether/dichloromethane (9:1, v/v) as eluent to obtain BDTN as the viscous yellow oil 

(155 mg, 40% yield). 1H NMR (CDCl3, 400 MHz): δ [ppm]: 7.19 (d, J = 5.2 Hz, 2H), 

7.09 (d, J = 5.3 Hz, 2H), 4.70 (d, J = 7.6 Hz, 4H), 4.15 (t, J = 6.8 Hz, 4H), 2.01-1.93 

(m, 6H), 1.62-1.58 (m, 8H), 1.42-1.38 (m, 8H), 1.34-1.31 (m, 8H), 1.25-1.20 (m, 4H), 

1.12-1.02 (m, 24H), 0.91 (t, J = 7.0 Hz, 6H), 0.77 (t, J = 7.0 Hz, 6H), 0.69 (t, J = 7.1 

Hz, 6H). 13C NMR (100 MHz, CDCl3): δ [ppm]: 146.42, 142.72, 136.94, 133.84, 

123.70, 119.31, 115.82, 114.36, 112.14, 74.30, 52.39, 38.57, 31.89, 31.64, 31.60, 30.71, 

30.44, 29.66, 29.48, 29.43, 29.31, 29.06, 28.10, 28.06, 26.06, 25.87, 25.85, 22.87, 22.80, 

22.69, 22.67, 22.54, 14.15, 14.06, 13.85. HR-ESI-MS (m/z): calcd for C58H89N2O2S4
+ 

(M+H)+ 973.58014, found 973.57904.

Compound BDTN-CHO. DMF (10 mL) was slowly injected into phosphorus 

oxychloride (2.5 mL) at 0 °C. After stirring for 2 hours, compound BDTN (300 mg, 0.3 

mmol) in 1,2-dichloroethane (25 mL) was added. The mixture was refluxed at 65 °C 

for 12 h, then the reaction was quenched with aqueous sodium succinate, and extracted 

with dichloromethane. After removing the solvent from filtrate, the residue was purified 

by column chromatography on silica gel using petroleum ether/dichloromethane (2:1, 

v/v) as eluent to obtain BDTN-CHO as the deep orange solid (240 mg, 75% yield). 1H 

NMR (CDCl3, 400 MHz): δ [ppm]: 9.94 (s, 2H), 7.72 (s, 2H), 4.75 (d, J = 7.7 Hz, 4H), 
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4.18 (t, J = 6.8 Hz, 4H), 2.02-1.95 (m, 6H), 1.62-1.59 (m, 8H), 1.42-1.39 (m, 8H), 1.34-

1.31 (m, 8H), 1.21-1.19 (m, 4H), 1.13-1.05 (m, 24H), 0.91 (t, J = 7.1 Hz, 6H), 0.76 (t, 

J = 7.0 Hz, 6H), 0.70 (t, J = 7.0 Hz, 6H). 13C NMR (100 MHz, CDCl3): δ [ppm]: 183.11, 

145.83, 143.74, 141.47, 141.41, 135.44, 123.48, 120.59, 119.74, 115.56, 74.99, 52.71, 

38.91, 36.08, 34.68, 31.89, 31.62, 30.71, 30.43, 29.73, 29.64, 29.48, 29.45, 29.30, 29.08, 

28.09, 26.04, 25.83, 22.88, 22.83, 22.69, 22.65, 22.55, 14.17, 14.06, 13.86, 11.48. HR-

ESI-MS (m/z): calcd for C60H88N2O4S4
+ (M+H)+ 1028.56214, found 1028.56264.

Compound BDTN-BF. BDTN-CHO (110 mg, 0.1 mmol) and 2-(5,6-difluoro-3- 

oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (70 mg, 0.3 mmol) were added to a 

25 ml two-necked flask. After being flushed by a gentle stream of dry nitrogen for 15 

min, chloroform (10 ml) was added and the two compounds were fully dissolved by 

stirring for a while. Then pyridine (0.6 ml) was added and the mixture was refluxed at 

65 °C for 12 hours. After most of the solvent was evaporated, the crude product was 

washed by methanol. The residue was purified by column chromatography with 

petroleum ether/dichloromethane (3:2, v/v) as the eluent to obtain BDTN-BF as the 

dark blue solid (90% yield). 1H NMR (CDCl3, 400 MHz): δ [ppm]: 8.92 (s, 2H), 8.47 

(m, J = 7.6 Hz, 2H), 7.87 (s, 2H), 7.68 (m, J = 7.5 Hz, 2H), 4.76 (d, J = 7.6 Hz, 4H), 

4.24 (t, J = 6.9 Hz, 4H), 2.04-2.01 (m, 6H), 1.66-1.59 (m, 8H), 1.46-1.41 (m, 8H), 1.37-

1.35 (m, 8H), 1.24-1.20 (m, 4H), 1.12-1.08 (m, 24H), 0.94 (t, J = 7.0 Hz, 6H), 0.76 (t, 

J = 6.9 Hz, 6H), 0.72 (t, J = 7.1 Hz, 6H). 13C NMR (100 MHz, CDCl3): δ [ppm]: 185.79, 

158.44, 155.43, 153.01, 152.86, 148.04, 145.17, 144.72, 138.77, 137.15, 136.86, 

136.38, 134.40, 132.41, 126.97, 120.55, 120.14, 117.08, 114.85, 114.59, 112.58, 



- 7 -

112.40, 75.60, 68.20, 53.08, 38.85, 31.87, 31.61, 30.62, 30.43, 30.35, 29.65, 29.49, 

29.33, 28.01, 26.07, 25.76, 22.88, 22.70, 22.54, 14.17, 14.05, 13.84. HR-ESI-MS (m/z): 

calcd for C84H92F4N6O4S4
+ (M)+ 1452.59935, found 1452.59851.

Compound BDTN-Th. BDTN-CHO (110 mg, 0.1 mmol) and 2-(6-oxo-5,6-dihydro-

4H-cyclopenta[c]thiophen-4-ylidene)malononitrile (60 mg, 0.3 mmol) were added to a 

25 ml two-necked flask. After being flushed by a gentle stream of dry nitrogen for 15 

min, chloroform (10 ml) was added and the two compounds were fully dissolved by 

stirring for a while. Then pyridine (0.6 ml) was added and the mixture was refluxed at 

65 °C for 12 hours. After most of the solvent was evaporated, the crude product was 

washed by methanol. The residue was purified by column chromatography with 

petroleum ether/dichloromethane (3:2, v/v) as the eluent to obtain BDTN-Th as the dark 

blue solid (90% yield). 1H NMR (CDCl3, 400 MHz): δ [ppm]: 8.89 (s, 2H), 8.36 (d, J = 

2.3 Hz, 2H), 7.94 (d, J = 2.2 Hz, 2H), 7.88 (s 2H), 4.72 (d, J = 7.7 Hz, 4H), 4.21 (t, J = 

6.8 Hz, 4H), 2.04-1.97 (m, 6H), 1.66-1.63 (m, 8H), 1.48-1.42 (m, 8H), 1.37-1.33 (m, 

8H), 1.26-1.21 (m, 4H), 1.13-1.09 (m, 24H), 0.93 (t, J = 6.9 Hz, 6H), 0.76 (t, J = 6.9 

Hz, 6H), 0.71 (t, J = 7.0 Hz, 6H). 13C NMR (100 MHz, CDCl3): δ [ppm]: 181.39, 156.59, 

148.06, 144.80, 144.58, 142.55, 142.33, 139.95, 137.32, 136.70, 132.30, 127.74, 

127.27, 126.59, 125.10, 120.07, 117.02, 115.44, 114.86, 75.51, 66.08, 53.04, 38.80, 

31.85, 31.61, 30.60, 30.39, 30.34, 29.61, 29.49, 29.30, 27.98, 26.05, 25.73, 22.89, 22.68, 

22.54, 14.16, 14.05, 13.83. HR-ESI-MS (m/z): calcd for C80H92N6O4S6
+ (M+H)+ 

1392.54988, found 1392.54822.
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Figure S1. Absorption spectra of PM6:BDTN-BF and PM6:BDTN-Th blend films.
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Figure S2. Cyclic voltammograms for BDTN-BF and BDTN-Th films in CH3CN/0.1 

M n-Bu4NPF6 at 100 mV s -1, the potential was referred to the Ag/AgCl reference 

electrode.  
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Figure S3. The chemical structures, LUMO and HOMO orbital distributions and 

energy levels calculated by DFT calculations for BDTN-BF and BDTN-Th.

 

Figure S4. The S1 transition of BDTN-BF and BDTN-Th.
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Figure S5. The top and side views of the BDTN-BF and BDTN-Th in optimized 

molecular geometry.

Figure S6. Architecture of BDTN-BF and BDTN-Th based devices.

 



- 11 -

Figure S7. (a) Photoluminescence spectra of the polymer PM6 and the blend films 

excited at 580 nm; (b) photoluminescence spectra of the acceptors and the blend films 

excited at 760 nm.

Figure S8. BDTN-BF and BDTN-Th neat films in electron-only devices.

Table S1. Photovoltaic performance of the PSCs based on PM6:BDTN-BF (1:1, w/w) 

under the illumination of AM 1.5G, 100 mW cm-2.

Treatment
Jsc

[mA cm-2]

Voc

[V]

FF

[%]

PCE

[%]

As-cast 17.66 0.94 54.28 9.01

TA a) 19.07 0.93 54.86 9.73

CS2
 b) 19.21 0.92 61.47 10.87

TA a) + CS2
 b) 20.20 0.93 61.46 11.54

a) Thermal annealing at 80 oC for 5 min.

b) 40 s of CS2 fumigation.

Table S2. Photovoltaic performance of the PSCs based on PM6:BDTN-Th (1:1, w/w) 
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under the illumination of AM 1.5G, 100 mW cm-2.

Treatment
Jsc

[mA cm-2]

Voc

[V]

FF

[%]

PCE

[%]

As-cast 7.62 0.96 42.57 3.13

TA a) 8.20 0.95 45.11 3.53

CS2
 b) 4.82 0.90 42.56 1.84

TA a) + CS2
 b) 5.88 0.85 43.40 2.16

a) Thermal annealing at 80 oC for 5 min.

b) 40 s of CS2 fumigation.

Table S3. The detailed Jsc values of the devices for Voc around 0.93 V.

Devices
Voc

[V]

Jsc

[mA cm-2]
Ref.

J71: m-MeIC 0.922 18.56 4

PBDB-T:BTTIC-TT 0.924 19.61 5

PBDB-T:BTTIC-Ph 0.930 16.47 5

PTQ10:IDTPC 0.93 17.5 6

PBDB-T:MeIC1 0.927 18.32 7

PBT1-C-MW2:ITCPTC 0.93 17.1 8

PBT1-C-HW:ITCPTC 0.93 16.8 8

PBDB-T:BDCPDT-TTC 0.94 17.72 9
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PM6:TSeTIC 0.93 19.42 10

PBDB-T:ITBTC 0.941 16.37 11

PBDB-T:IDTO 0.943 16.25 12

PBT1-EH:IDTCN 0.93 13.31 13

PBDB-T:IT-M 0.94 17.44 14

PBT1-C:ITCPTC 0.94 17.0 15

Table S4. The detailed Voc values of the devices for Jsc around 20 mA cm-2.

Devices
Jsc

[mA cm-2]

Voc

[V]
Ref.

PBDB-T:BTTIC-Th 19.45 0.902 5

PBDB-T:BTTIC-TT 19.61 0.924 5

PBDB-T:BTTIC 19.52 0.904 16

PM6:ITC-2Cl 20.1 0.91 17

PBDB-T:BTTIC-2M 19.39 0.90 18

PM6:TSeTIC 19.42 0.93 10

FTAZ:IDIC 20.8 0.84 19

PBDB-T:NCBDT 20.33 0.84 20

PBDB-T:NITI 20.67 0.86 21

FTAZ:IOIC2 19.7 0.90 22
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PBDB-T:ZITI 19.8 0.89 23

PBDB-T-SF:IT-4F 20.50 0.88 24

PDTB-ET-T:IT-4F 20.73 0.90 25

PBDB-T:IDTOT2F 20.87 0.85 26

Table S5. The data of photocurrent versus the effective voltage of the PM6:BDTN-BF 

and PM6:BDTN-Th based devices.

Devices
Jsat

[mA cm-2]

Jph
a

[mA cm-2]

Jph
b

[mA cm-2]

Jph
a/ Jsat

[%]

Jph
b/ Jsat

[%]

PM6:BDTN-BF 22.3 20.2 19.3 90.6 86.6

PM6:BDTN-Th 18.0 8.2 7.8 45.6 43.4

a) Under the condition of the short-circuit.

b) Under the condition of the maximal power output.

Figure S9.1H NMR spectrum for BDTN.
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Figure S10.1H NMR spectrum for BDTN-CHO.

Figure S11.1H NMR spectrum for BDTN-BF.
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Figure S12.1H NMR spectrum for BDTN-Th.

Figure S13.13C NMR spectrum for BDTN.
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Figure S14.13C NMR spectrum for BDTN-CHO.

Figure S15.13C NMR spectrum for BDTN-BF.
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Figure S16.13C NMR spectrum for BDTN-Th.
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