S2 File: Calculation of Average Measured Diameter of a Sphere

We wish to relate the average diameter of a sphere measured by ultra-thin sectioning to the actual diameter of a spherical particle. To calculate the average measured diameter, $D_{\text {measured }}$ of a sphere for which we know the actual diameter, $D_{\text {actual }}$, we use the equation for averaging a function over a volume.

$$
\begin{equation*}
f_{\mathrm{avg}}=\frac{1}{V o l} \int_{V} f d V \tag{1}
\end{equation*}
$$

In our case, we average over the function that defines the cross-sectional diameter of the sphere at any distance from the sphere's center, $d(r)(\mathbf{S 2} \mathbf{F i g})$. This function can be defined as

$$
\begin{equation*}
d(r)=2 \sqrt{\left(\frac{D_{\text {actual }}}{2}\right)^{2}-r^{2}} \tag{2}
\end{equation*}
$$

Realizing that the volume we are integrating over is a sphere, we can write

$$
\begin{equation*}
V o l=\frac{4 \pi}{3}\left(\frac{D_{\text {actual }}}{2}\right)^{3} \tag{3}
\end{equation*}
$$

Finally, we use spherical coordinates to evaluate the volume integral, yielding the expression

$$
\begin{equation*}
D_{\text {measured }}=\frac{6}{\pi D_{\text {actual }}^{3}} \int_{0}^{\pi} \sin (\phi) d \phi \int_{0}^{2 \pi} d \theta \int_{0}^{D_{\text {actual }} / 2} 2 \sqrt{\left(\frac{D_{\text {actual }}}{2}\right)^{2}-r^{2}} r^{2} d r \tag{4}
\end{equation*}
$$

Which simplifies to

$$
\begin{align*}
D_{\text {measured }} & =\frac{48}{D_{\text {actual }}^{3}} \int_{0}^{D_{\text {actual }} / 2} \sqrt{\left(\frac{D_{\text {actual }}}{2}\right)^{2}-r^{2}} r^{2} d r \tag{5}\\
& =\frac{3}{8} D_{\text {actual }}\left[\arcsin \left(\frac{2 r}{D_{\text {actual }}}\right)-\frac{1}{4} \sin \left(4 \arcsin \left(\frac{2 r}{D_{\text {actual }}}\right)\right)\right]_{r=0}^{r=D_{\text {actual }} / 2} \tag{6}\\
& =\frac{3 \pi}{16} D_{\text {actual }} \tag{7}
\end{align*}
$$

