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. iy, e Grand Canyon, 1952
100 mi_Ie\§ downstream from Glen Canyon Dam




1. Quantifying the biophysical impact of river regulation




2. Recovery timescales of large reservoir inundation

= = S G et e ~ | Colorado River Delta, Upper Lake Powell, near Hite, Utah



‘2. Recovery timescales of large reservoir inundation

1999, full pool >
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An attempt to preserve water security for 7
western states under rapidly expanding
populations and water needs

Upper Basin states must deliver ~7.5 million
acre-feet of water to the Lower Basin each year

Lake Powell /Glen Canyon Dam provide a means
for ensuring that water is there to be delivered
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Glen Canyon Dam
Completed 1963

WL
T | A




Glen Canyon Dam
Completed 1963

Regime
Shifts



Glen Canyoh Dc;m
Completed 1963

Regime
Shifts

el Bee Seor |
and Coarsening

” These aren’t unique to Glen Canyon qu Gromd Ccnyon or ’rhe Colorado River
[Bellmore et al., 2017; Collier et al., 2000; East et al., 2015 & 2018; Graf, 1999 & 2006; Grant et al., 2003; Kondolf, 7997
Mag:lhgcm and Nislow, 2005 Schmidt and WIICOCI( 2008, and mcmy ofhers...]
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Two alterations to Colorado River driven by Glen Canyon Dam
Flow Regime Shift (Direct Effect)
Vegetation Encroachment (Indirect Effect)

...and how these have fundamentally altered exposed sand area at big
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Coupled fluvial-aeolian sediment transport

Floods deposit sediment
in sandbars...
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Exposed sediment depends
on water level in the river
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Discharge (m®/s)
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HYDROPOWER: -
- Loss of Large Floods
- Loss of Low Flows
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OF GLEN CANYON DAM

How has this fundamentally altered flow regime affected
the amount of bare sand along the Colorado River?
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These Four Sub-Reaches are Geomorphically Distinct... Glen Canyon
- wide channel

250 T | | | | | | T | .
L - low gradient
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Mapping Sand Along the Colorado River in Grand Canyon — 2009 - 2015

ith total sta

Main channel sand mapped with multibeam sonar

Total Station (Riparian)

Remote Sensing /Field Surveys (Uplands)
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Channel margin sand mapped with singlebeam sonar Upland sand mapped with remote sensing /field surveys



Multibeam Sonar Bed Classification

g

Validation using underwater camera

Buscombe et al., 2014; JGR-ES

Upstream-looking DEM
(black dots are 1/10 mile intervals)



2009 - 2015 Sand Map nd Remote and Manual Upland Ma

Pping

‘ .

ping: Active Channel a

RAE -2
X 73 "

%

= \iE st 4Ra iy ‘
e Channel Sand 8 Remotely Mapped Manually Mapped
Upland Sand Upland Sand
From multibeam and From supervised classification From field mapping on
total station surveys of 2009 aerial photos river trips

Mapped every square meter of sand from the channel bed
to historic flood of record (5,947 m3/s) over 168 km reach



Prepared in cooperation with the
GRAND CANYON MONITORING AND RESEARCH CENTER

Modeling Water-Surface Elevations and Virtual Shorelines
for the Colorado River in Grand Canyon, Arizona

m3/s m3/s

...and ten intermediate
flows not shown here

Magirl et al., 2008

Inundation Extent at
1,274 m3/s
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Exposed Sand as a Function of Discharge
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Exposed Sand as a Function of Discharge
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Exposed Sand as a Function of Discharge
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Discharge (m?3/s)
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3,286 individual records
of daily discharge...
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Exposed Sand Area / Day (m?, millions)
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..but can we operate it differently?

e . the future hold?

on Dam isn’'t going anywhere
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New 20-year management plan for
Glen Canyon Dam staring in 2017

7 alternative operation regimes
(‘Alternatives A-G’) E';flfme Summary
analyzed for impacts on: it
* Fish/bug populations
* Recreation

October 2016

~ sy

* Sediment =y =1 -
* Cultural site preservation | '
* Hydropower generation

“Alternative D" ultimately selected

- Allows for annual experimental floods
- Allows for low flows to conserve
insect communities

- Relatively similar release pattern to
current operating protocol



Alternative A:

Alternative B:

Alternative C:
Adaptive flows:

Alternative D:
Compromise

Alternative E:

Alternative F:

Alternative G:

No change from Maximizing invertebrates, between power Native fish Mirroring pre- Maximizing
current operation hydropower fish, and generation and conservation dam seasonal sediment
regime generation sediment ecology flows flow regime conservation
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Two alterations to Colorado River driven by Glen Canyon Dam
Flow Regime Shift (Direct Effect)
Vegetation Encroachment (Indirect Effect)

...and how these have fundamentally altered exposed sand area at big




Observations

A trend toward:
- Increased vegetation area, particularly along the river
- Correspondingly reduced area of bare sand
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In a 28 km segment in Lower Marble Canyon, we found: Quantifying and forecasting changes

- Large-scale reduction in bare sand area following dam construction  EERUEETEEES GEH TR R R EH Y
sediment in response to altered
hydrology and land cover

- Most sand loss occurred in first ~30 years after Glen Canyon Dam
- Most rapid growth at low stages
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What's the current and projected future Current Vegetation:
composition of vegetation throughout this KR NSRRI T TeR=Y ReREP2I0N K<)
168 km reach? via 4-band, 0.2 m aerial imagery]
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Exposed Sand Area (m?2)

In a 28 km segment in Lower Marble Canyon, we found:

RESEARCH ARTICLE

- Large-scale reduction in bare sand area following dam construction  F Sy R SR RURTIR PR g
- Most sand loss occurred in first ~30 years after Glen Canyon Dam  KS=SCiEEUESUEEREELEICHEAS e M ELERIE AT Eh T
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f (maximum inundation duration)
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Exposed Sand Area (m?2)

In a 28 km segment in Lower Marble Canyon, we found:

- Large-scale reduction in bare sand area following dam construction

RESEARCH ARTICLE

Hydrological regime and climate interactively shape riparian

- Most sand loss occurred in first ~30 years after Glen Canyon Dam  RESetthELIlLELULLE LG LR e LE T A el

- Most rapid growth at low stages
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for 75 plant species, which we aggregated into four groups

Suitability =
f (elevation above daily peak flow)
f (maximum inundation duration)

...over period October 2017 — October 2018

Suitability modeling completed at 25 sandbars
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Take-Home 1: the majority of the bare sand throughout this 168
km reach is underwater; any reductions in current low flows have
the potential to expose a great deal of sand.
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T12. Advances and Applications of River Science in the West
Sharon Bywater-Reyes.
Description: This session seeks abstracts concerning the development or application of science in
riverine environments, including but not limited to, field, experimental, or numerical studies of
hydraulics, sediment transport, interactions with biota, or river restoration.
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