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Disclaimer

• This talk assumes a high amount 
of SPH knowledge! 

• If you want to discuss fundamentals, 
I'm happy to do this afterwards.

An excellent introduction to SPH by Daniel Price.



Background

• SPH scheme used for the EAGLE 
simulations was called 'ANARCHY' 

• This was a Pressure-Entropy 
based formulation that included 
switches for artificial viscosity and 
artificial conductivity

Viscosity

Simplified version of Cullen & Dehnen 2010

Modified from Price 2008, presented in Schaye+ 2015

Conductivity

Si = − h2
i min( ·∇ ⋅ vi,0)

αi →

αloc,i if αi < αloc,i,

αloc,i + (αi − αloc,i)e−4dt/τsc,i if αi > αloc,i,
αmin if αi < αmin,

αloc,i = αmaxS/(S + v2
sigi

)

du
dt

∝ ∑
j

(αi + αj)vD,ij(ui − uj)

dαD,i

dt
= βDhi

∇2ui

ui
+

αD,i − αD,min

τsc,i
,



Why use 
Pressure SPH?

• Agertz+ 2007 brought up some issues with 
'surface tension' in traditional SPH schemes. 

• Despite this being resolved in Price 2008 with 
the addition of artificial conduction, this issue 
remained in the communities mind until Hopkins 
2013, which introduced Pressure-SPH.
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ρ = ∑
j

mjW(rij, hi)

P̄ = ∑
j

(γ − 1)uimjW(rij, hi)

Square test (2D) reproduced from 
Hopkins 2013.



Pressure 
Problems

• Due to smoothing over a rapidly varying 
quantity (u or A), Pressure-SPH schemes are 
inherently very unstable in dynamic situations. 

• This is amplified in cosmological simulations 
with the EAGLE model, where cooling is applied 
by an additional du/dt.
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Kelvin-Helmholtz test (2D) 
reproduced from Agertz+ 2007



Pressure-SPH 
in multi-dt?

• A major issue arises when 
drifting smoothed pressure in a 
multi-dt scenario. 

• In simulations with cooling, this 
can lead to pressures and 
energies that are inconsistent 
for the fluid.

ρ(t + Δt) → exp (−
3
h

dh
dt

Δt) ⋅ ρ(t) = Dρ(t, Δt) ⋅ ρ(t)

u(t + Δt) → u(t) +
du
dt

Δt = Du(t, Δt) ⋅ u(t)

P(t + Δt) → (γ − 1)u(t + Δt)ρ(t + Δt)
= P(t)Dρ(t, Δt)Du(t, Δt)

Density Smoothing

Pressure Smoothing

P̄(t + Δt) → exp ( 1
P̄

dP̄
dt

Δt) ⋅ P̄(t) = DP(t, Δt) ⋅ P̄(t)

dP̄i

dt
= (γ − 1)∑

j

mj (Wij
duj

dt
+ uj [va − va] ⋅ ∇jWij)
Yikes!



Back to 
"TSPH"

• Energy diffusion can solve issues at 
contact discontinuities that cause the 
artificial surface tension present in 
Density-Energy SPH. 

• This was actually previously used in the 
ANARCHY scheme (among others) to 
promote entropy mixing.
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A Sod Shock test illustrating the 
improvements possible with 
diffusion for contact discontinuities.



Thermal 
Feedback

• The EAGLE simulations use a 
thermal feedback model, injecting 
energy directly into a single particle. 

• The original diffusion limiter picked 
this up as a huge contact 
discontinuity and rapidly diffused 
energy out of the hot particle!
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Example test of an EAGLE supernova in an isolated 0.1 g/cm3 background. 
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A Shocking 
Diffusion Limiter

• To remedy this issue, we need to turn 
off diffusion when feedback events 
take place. 

• We already have a shock detector in 
the artificial viscosity; use it to 
dampen the diffusion based on 
shock strength.

Allowed

Disallowed

αngb,max = max
j

(αj) αD = max (αD,1 −
αngb,max

αmax = 2 )



A Shocking 
Diffusion Limiter

• To fully apply the diffusion limiter in cases with 
incredibly strong pressure discontinuities (e.g. a 
feedback event), in interactions each diffusion 
parameter is weighted by that particle's pressure. 

• This is required as some particles may not have 
re-calculated their maximal local alpha since the 
feedback event occurred. 

du
dt

∝ ∑
j

κijvD,ij(ui − uj)

κij =
PiαD,i + PjαD,j

Pi + Pj

Weighted diffusion parameter

Note each parameter is evolved separately

Diffusion equation

vD,ij =
|Pi − Pj |
1
2 (ρi + ρj)

+
|vij ⋅ rij |

rij

Diffusion velocity
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Testing the 
Limiter

• The new limiter manages to allow 
the same energy impact in 
scenarios with and without 
diffusion for feedback. 

• This has no impact in situations 
without significant shocks, where 
surface tension issues arise.
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Same test as previously (0.1 g/cm3 background) but with new diffusion limiter. 
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Conclusions • The ANARCHY SPH model used for the 
original EAGLE used the Pressure-Entropy 
SPH equation of motion. 

• This formulation of SPH suffers in regimes 
where particle cooling rates are high, which 
occurs frequently in cosmological simulations.

• To remedy this, we now use SPHENIX; a model based on Density-Energy SPH 
with energy diffusion (also known as artificial conduction). 

• This fixes the classic 'surface tension' problem with Density-based SPH schemes. 

• SPHENIX includes a custom diffusion limiter to prevent overzealous diffusion in 
regions that have just been hit with the EAGLE energetic feedback.


