SPHENIX: Hydrodynamics for the next generation of EAGLE simulations

Josh Borrow Institute for Computational Cosmology Matthieu Schaller, Claudio Dalla Vecchia, Richard Bower

Disclaimer

- This talk assumes a high amount of SPH knowledge!
- If you want to discuss fundamentals, I'm happy to do this afterwards.

			arxiv.org		
Corn	ell University			۱ the Simo	We gratefully acknowledge suppor ns Foundation and member institu
rXiv.org > astro-ph > ar		Xiv:1012.1885		Search	All fields 🔹 Se
A et ve v le ve	:	totion and Ma	the de feu Ac	Help Advar	nced Search
Astrophysics > instrumentation and Methods for Astro				rophysics	Download:
Smoothed Particle Hydrodynamics Magnetohydrodynamics			and	 PDF Other formats (license) 	
Daniel J. Price (Monash)					Current browse conter astro-ph.IM
(Submitted on 8 Dec 2010)					
This paper presents an overview and introduction to Smoothed Particle Hydrodynamics and Magnetohydrodynamics in theory and in practice. Firstly, we give a basic grounding in the fundamentals of SPH, showing				new recent 1012	
				n practice.	Change to browse by
how the equations of motion and energy can be self-consistently derived from the density estimate. We then show how to interpre equations using the basic SPH interpolation formulae and highlig subtle difference in approach between SPH and other particle me In doing so, we also critique several `urban myths' regarding SPH particular the idea that one can simply increase the `neighbour r more slowly than the total number of particles in order to obtain convergence. We also discuss the origin of numerical instabilities as the pairing and tensile instabilities. Finally, we give practical a on how to resolve three of the main issues with SPMHD: removing tensile instability formulating discinative terms for MHD shocks			tently erpret these ighlight the le methods.	astro-ph astro-ph.CO astro-ph.SR physics physics.flu-dyn physics.plasm-ph	
			ase the `neighb es in order to o	`neighbour number' rder to obtain	References & Citation NASA ADS
			ilities such	1 blog link (what is this?)	
			ical advice noving the	Export citation Google Scholar	
enforcing the divergence constraint on the particles, and we g current status of developments in this area. Accompanying th				cks and give the le paper is	Bookmark 🎇 🐼 🙀 🗺
the first public release of the NDSPMHD SPH code, a 1, 2 and 3 dimensional code designed as a testhed for SPH (SPMHD algorithms that					
can be us	sed to test many of	the ideas and u	sed to run all of	the	
numerica	I examples contain	ed in the paper.			
Comments: 4 " f	44 pages, 14 figures, Computational Plasm From this http URL	accepted to specia a Physics". The nds	edition of J. Com pmhd code is ava	p. Phys. on ilable for download	I
Subjects: I	nstrumentation and	Methods for Astr	ophysics (astro-p	oh.IM) ; Cosmology	

(astro-ph.SR); Fluid Dynamics (physics.flu-dyn); Plasma Physics

An excellent introduction to SPH by Daniel Price.

Background

- SPH scheme used for the EAGLE simulations was called 'ANARCHY'
- This was a Pressure-Entropy based formulation that included switches for artificial viscosity and artificial conductivity

Viscosity

$$S_{i} = -h_{i}^{2} \min(\dot{\nabla} \cdot \mathbf{v}_{i}, 0) \qquad \alpha_{\text{loc},i} = \alpha_{\max} S/(S + v_{s})$$

$$a_{i} \rightarrow \begin{cases} \alpha_{\text{loc},i} & \text{if } \alpha_{i} < \alpha_{\text{loc},i} \\ \alpha_{\text{loc},i} + (\alpha_{i} - \alpha_{\text{loc},i})e^{-4dt/\tau_{\text{sc},i}} & \text{if } \alpha_{i} > \alpha_{\text{loc},i} \\ \alpha_{\min} & \text{if } \alpha_{i} < \alpha_{\min} \end{cases}$$

Simplified version of Cullen & Dehnen 2010

Conductivity

$$\frac{\mathrm{d}u}{\mathrm{d}t} \propto \sum_{j} (\alpha_{i} + \alpha_{j}) v_{\mathrm{D},ij} (u_{i} - u_{j})$$
$$\frac{\mathrm{d}\alpha_{\mathrm{D},i}}{\mathrm{d}t} = \beta_{\mathrm{D}} h_{i} \frac{\nabla^{2} u_{i}}{\sqrt{u_{i}}} + \frac{\alpha_{D,i} - \alpha_{D,\min}}{\tau_{\mathrm{sc},i}},$$

Modified from Price 2008, presented in Schaye+ 2015

,i**'**

1,

Square test (2D) reproduced from Hopkins 2013.

Why use Pressure SPH?

- Agertz + 2007 brought up some issues with 'surface tension' in traditional SPH schemes.
- Despite this being **resolved** in **Price 2008** with the addition of **artificial conduction**, this issue remained in the communities mind until **Hopkins** 2013, which introduced Pressure-SPH.

Smoothing sure Pres

Smoothing Density

 $\bar{P} = \sum (\gamma - 1) u_i m_j W(r_{ij}, h_i)$

Kelvin-Helmholtz test (2D) reproduced from Agertz+ 2007

Pressure Problems

- Due to smoothing over a rapidly varying quantity (*u* or *A*), Pressure-SPH schemes are inherently very unstable in dynamic situations.
- This is **amplified in cosmological simulations** with the EAGLE model, where **cooling is applied** by an **additional** du/dt.

Smoothi <u> </u> Pres

Smoothing Density

Pressure-SPH in multi-dt?

- A major issue arises when drifting smoothed pressure in a multi-dt scenario.
- In simulations with cooling, this can lead to pressures and energies that are inconsistent for the fluid.

Density Smoothing

$$\rho(t + \Delta t) \to \exp\left(-\frac{3}{h}\frac{\mathrm{d}h}{\mathrm{d}t}\Delta t\right) \cdot \rho(t) = D_{\rho}(t, \Delta t) \cdot \rho(t)$$

$$u(t + \Delta t) \rightarrow u(t) + \frac{\mathrm{d}u}{\mathrm{d}t} \Delta t = D_u(t, \Delta t) \cdot u(t)$$

$$P(t + \Delta t) \rightarrow (\gamma - 1)u(t + \Delta t)\rho(t + \Delta t)$$
$$= P(t)D_{\rho}(t, \Delta t)D_{u}(t, \Delta t)$$

Pressure Smoothing

$$\bar{P}(t + \Delta t) \to \exp\left(\frac{1}{\bar{P}}\frac{\mathrm{d}\bar{P}}{\mathrm{d}t}\Delta t\right) \cdot \bar{P}(t) = D_P(t,\Delta t) \cdot \bar{P}(t)$$

$$1\bar{D}$$

$$\frac{\mathrm{d}P_i}{\mathrm{d}t} = (\gamma - 1)\sum_j m_j \left(W_{ij} \frac{\mathrm{d}u_j}{\mathrm{d}t} + u_j \left[\mathbf{v}_a - \mathbf{v}_a \right] \cdot \nabla_j W_{ij} \right)$$

A Sod Shock test illustrating the improvements possible with diffusion for contact discontinuities.

Back to "TSPH"

- Energy diffusion can solve issues at contact discontinuities that cause the artificial surface tension present in Density-Energy SPH.
- This was actually previously used in the ANARCHY scheme (among others) to promote entropy mixing.

Thermal Feedback

- The EAGLE simulations use a thermal feedback model, injecting energy directly into a single particle.
- The original diffusion limiter picked this up as a huge contact discontinuity and rapidly diffused energy out of the hot particle!

Example test of an EAGLE supernova in an isolated 0.1 g/cm³ background.

AShocking Diffusion Limiter

- To remedy this issue, we need to **turn** off diffusion when feedback events take place.
- We already have a **shock detector** in the artificial viscosity; use it to dampen the diffusion based on shock strength.

$$\alpha_{\text{ngb,max}} = \max_{j} (\alpha_{j}) \qquad \alpha_{D} = \max\left(\alpha_{D}, 1 - \frac{\alpha_{\text{ngb,max}}}{\alpha_{max}}\right)$$

AShocking **Diffusion Limiter**

- To fully apply the diffusion limiter in cases with incredibly strong pressure discontinuities (e.g. a feedback event), in interactions each diffusion parameter is weighted by that particle's pressure.
- This is required as **some particles** may not have re-calculated their maximal local alpha since the feedback event occurred.

Weighted diffusion parameter

$$\kappa_{ij} = \frac{P_i \alpha_{\mathrm{D},i} + P_j \alpha_{\mathrm{D},j}}{P_i + P_j}$$

Note each parameter is evolved separately

Diffusion equation

$$\frac{\mathrm{d}u}{\mathrm{d}t} \propto \sum_{j} \kappa_{ij} v_{\mathrm{D},ij} (u_i - u_j)$$

Diffusion velocity

$$v_{D,ij} = \sqrt{\frac{|P_i - P_j|}{\frac{1}{2}(\rho_i + \rho_j)}} + \frac{|\mathbf{v}_{ij} \cdot \mathbf{r}_{ij}|}{r_{ij}}$$

Testing the Limiter

- The new limiter manages to allow the same energy impact in scenarios with and without diffusion for feedback.
- This has no impact in situations without significant shocks, where surface tension issues arise.

Same test as previously (0.1 g/cm³ background) but with new diffusion limiter.

SPHENIX

GIZMO-MFM

Concusions

- with energy diffusion (also known as artificial conduction).
- regions that have just been hit with the EAGLE energetic feedback.

• The **ANARCHY** SPH model used for the original EAGLE used the Pressure-Entropy **SPH** equation of motion.

• This formulation of SPH **suffers** in **regimes** where particle cooling rates are high, which occurs frequently in cosmological simulations.

To remedy this, we now use SPHENIX; a model based on Density-Energy SPH

This fixes the classic 'surface tension' problem with Density-based SPH schemes.

SPHENIX includes a custom diffusion limiter to prevent overzealous diffusion in