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On the 14th of September 2015 gravitational waves from the merger of two
black holes (Abbott, 2016h) observed by advanced LIGO (Aasi, 2015) marked
the beginning of the era of gravitational-wave astronomy. This first detec-
tion, along with further observations by advanced LIGO and Virgo (Acer-
nese, 2015), have revealed a previously unobserved population of black holes
tens of times more massive than the sun. In this thesis, I describe how we
can build models for the distribution of the masses and spins of binary black
holes to gain insights into how massive stars end their lives. In addition to
the astrophysical information these events provide, observations of merging
black hole binaries provide the best possible tests of strong field effects of
general relativity. I introduce a method to compute the gravitational-wave
memory effect. By constructing more accurate models for the coalescence of
compact binaries, we can enhance our understanding of extreme dynamics
in general relativity. I also present new, fast, and flexible software for astro-
physical inference, which, combined with the theoretical models developed
in this thesis, will allow us to make new scientific discoveries in the burgeon-
ing field of gravitational-wave astronomy.
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Chapter 1

Introduction

The direct detection of gravitational waves from a binary black hole merger
by Advanced LIGO (Aasi, 2015) on the 14th of September 2015 marked the
beginning of the era of gravitational-wave astronomy (Abbott, 2016h). Fol-
lowing this, nine additional binary black hole mergers and one binary neu-
tron star merger were seen during the first two observing runs of Advanced
LIGO/Advanced Virgo (Acernese, 2015; Abbott, 2019b). Searches for com-
pact binary coalescences by groups outside of the LIGO/Virgo collaborations
have independently identified these events and identified a new set of bina-
ries (e.g., Nitz et al., 2018a; Zackay et al., 2019; Venumadhav et al., 2019a; Nitz
et al., 2019). These observations have enabled the first measurement of the
population of binary black holes in the local Universe (Abbott, 2019a), a new,
independent, measurement of the Hubble constant (Abbott, 2017a), and new
tests of general relativity (e.g., Abbott, 2016k; Abbott, 2019d; Abbott, 2019e;
Isi et al., 2019; Hübner et al., 2020).

1.1 Bayesian Inference

Bayesian inference is how we use observations and experiments to under-
stand the Universe. It relies on Bayes’ theorem, which was first implied by
Thomas Bayes in a private letter first published posthumously (Bayes, 1763)
and expanded upon in Laplace, 1774. However the familiar form

p(a|b) = p(b|a)p(a)
p(b)

(1.1)

was first written a century ago by Dorothy Wrinch and Harold Jef-
freys (Wrinch & Jeffreys, 1919; Wrinch & Jeffreys, 1921; Wrinch & Jeffreys,
1923). Bayes’ theorem tells us that the probability of one event a given
another event b has happened is entirely determined by the probabilities of
event b given a, event b, and event a.

In the context of scientific inference we often write this equation in the
form

p(θ|d,M) =
L(d|θ,M)π(θ|M)

Z(d|M)
. (1.2)

1
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I have introduced a new quantityM to the right hand side of each term. This
is our model for the data123. Here we have identified the quantity we want
to learn about as θ, the parameters describing our model, e.g., black hole
masses, or the maximum mass of black holes, and the quantity that informs
our inference as our data, d, e.g., measurements of strain in interferometers.
We have also relabeled a number of the terms:

• p(θ|d,M) is the posterior probability of the parameters given the data
and our model.

• L(d|θ,M) is the likelihood of obtaining the data given our model and
parameters.

• π(θ|M) is the prior probability of the parameters given our model.

• Z(d|M) is the evidence for the data given the model.

For a detailed introduction to Bayesian inference for gravitational-wave
astronomy, including definitions of these terms, see Chapter 2. For a general
statistical introduction I suggest, e.g., Gelman et al., 2013, and for a history of
Bayes’ theorem, e.g., Dale, 1982; McGrayne, 2011.

1.2 Gravitational Waveforms

Aside from data, the other essential ingredient for performing inference is
the model. When analysing gravitational-wave transients this is the expected
effect of gravitational radiation on our interferometers. This consists of two
effects:

• the displacement of test masses due to the passage of the gravitational
radiation. This is often expressed in terms of the polarisation states
h+,×4.

• the response of the detector to the gravitational wave.

Compact binary coalescences are typically described in terms of three
phases: “inspiral” when the two bodies orbit each other, “merger” when
the two bodies collide, “ringdown” (sometimes referred to as “post-merger”
for binary neutron star inspirals) where the remnant returns to a stationary
state, i.e., a rotating, Kerr, black hole. Computing the expected waveform
(often referred to as a “template”) requires solving the general relativistic

1When performing model selection we can invoke a prior on a set of different models to
perform model comparison, see, Chapter 2.

2Some authors include an additional term I to represent all of the prior information we
implicitly include in our inference.

3H is sometimes used to represent a hypothesis rather thanM for model.
4In general relativity only these two “tensor” polarisations are allowed, rather than the

full six allowed polarisations allowed in general metric theories of gravity (Nishizawa et al.,
2009).
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wave equation for the source. However, this waveform cannot be analyti-
cally solved through inspiral, merger, and ringdown. Therefore, a range of
approximations are used to compute the gravitational radiation. For com-
pact binary coalescences, these range from perturbative expansions about
the Newtonian limit in the parameterised post-Newtonian formalism, see,
e.g., Blanchet, 2014, or about analytic solutions of general relativity, e.g.,
quasi-normal ringdown (e.g., Chandrasekhar & Detweiler, 1975; Berti, Car-
doso & Starinets, 2009), to the effective one-body approximation for binary
systems (e.g., Damour, 2014), and numerical relativity (e.g., Lehner & Preto-
rius, 2014), computational integration of the relativistic equations of motion.

Each of these approaches has advantages and disadvantages. The expan-
sion based methods provide analytic approximations to the waveform which
can, in turn, be Fourier transformed to give closed-form frequency-domain
expressions for the waveform allowing for efficient parallelised evaluation
of the waveform5, see, Chapter 7. However, neither of these approximations
can model the full waveform.

The inspiral phase is well described by the post-Newtonian expansion.
This consists of an expansion in the orbital speed, (v/c)6, of the compo-
nents of the binary. However, this is not a convergent series and therefore
inevitably breaks down as the binary becomes increasingly relativistic, i,e.,
during the merger. For a detailed review of the post-Newtonian formalism
in the context of binary inspirals see, e.g., Blanchet, 2014. Since the coef-
ficient of each of the post-Newtonian parameters is determined by general
relativity, measuring these coefficients is a powerful test of general relativ-
ity that has been performed on solar system effects (e.g., Ni, 2017), radio
pulsars (e.g., Perrodin & Sesana, 2018), and gravitational-wave sources (e.g.,
Abbott, 2019e).

After the merger of two black holes, the remnant sheds its “hair” to yield
a Kerr black hole during the ringdown phase. In general relativity, the exact
frequencies of the ringdown are entirely determined by the mass and spin
of the final black hole by the “no-hair” theorem (Israel, 1968; Carter, 1971),
and the amplitude and phase by the binary components. Gravitational-wave
observations have already allowed new tests of this theorem (e.g., Isi et al.,
2019). While this approximation predicts the post-merger emission, it cannot
describe the pre-merger phase.

Numerical relativity provides the most accurate approximation we have
of the true waveform by numerically solving the equations of motion. How-
ever, due to the computational difficulty in performing numerical relativity
simulations, generating each waveform takes currently months of computing
time.

One limiting factor in the accuracy of gravitational waveforms computed
using numerical relativity is determined by the waveform extraction method.

5As discussed in Chapter 2 the likelihood typically used to analyse gravitational-wave
transients are expressed in the frequency domain due to the convenient description of the
noise in terms of a power spectral density.

6Because the first correction to the Newtonian (denoted 1PN) equations of motion is pro-
portional to (v/c)2, the expansion is in practice in (v/c)2
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Extracting the strain observed by a distant observer from the numerical rel-
ativity simulation involves evolving the wave from the wave zone, just out-
side the merger, to the asymptotic limit. A range of methods are used for
this, however, the most commonly used methods are not able to extract the
gravitational-wave memory signal, see, e.g. Pollney & Reisswig, 2011; Bishop
& Rezzolla, 2016. Gravitational-wave memory is a permanent displacement
of freely-falling test masses at infinity (Christodoulou, 1991) sourced by the
emitted gravitational radiation. This means that any waveforms based on
numerical relativity simulations are missing this term. In Chapter 5, I present
a method for calculating the memory signal; a similar approach has been
used for calculating binary black hole “merger kicks” (e.g., Gerosa, Hébert &
Stein, 2018).

One popular approach to combine these different methods is to “stitch”
together a post-Newtonian inspiral, a parameterised fit to the merger signal,
and a quasi-normal ringdown with the IMRPHENOM family of waveform
models (e.g., Hannam et al., 2014; Schmidt, Ohme & Hannam, 2015; Khan
et al., 2016; Khan et al., 2019; London et al., 2018). These allow rapid evalu-
ation of a full inspiral-merger-ringdown waveform directly in the frequency
domain and have been critical in facilitating past astrophysical inference.

A range of interpolation methods has been developed to rapidly generate
high-fidelity gravitational-wave templates at accuracies approaching that of
numerical relativity simulations. Surrogate models have found widespread
use in gravitational-wave data analysis by interpolating numerical relativ-
ity (e.g., Blackman et al., 2017; Blackman et al., 2017; Varma et al., 2019),
effective one-body (e.g., Field et al., 2014; Pürrer, 2016), and analytic wave-
forms (e.g., Pürrer, 2014; Canizares et al., 2015; Smith et al., 2016; Zackay,
Dai & Venumadhav, 2018) at known times or frequencies. Gaussian process
regression has been employed on a range of waveform models (e.g., Doc-
tor et al., 2017; Huerta et al., 2018). This approach has the advantage that
it returns a measure of the uncertainty in the waveform estimate, which is
typically neglected. Easter et al., 2019 interpolated the post-merger spectrum
of gravitational-waves from a binary neutron star inspiral. Recently Tiglio
& Villanueva, 2019 employed symbolic regression on numerical relativity
simulations to obtain closed-form expressions for the full inspiral-merger-
ringdown of non-spinning binary black holes.

The response of detectors to gravitational waves is, by comparison, much
simpler, depending only on geometric terms (e.g., Anderson et al., 2001), al-
though, for long-duration signals the motion of the Earth can complicate the
analysis (e.g., Giampieri, 1997; Essick, Vitale & Evans, 2017).

1.3 Astrophysical Population Modelling

While the data for astrophysical population inference is still gravitational-
wave strain, we require an extra layer of modeling. Unlike in the case of the
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gravitational waveform simulation, where we know exactly the 16 parame-
ters which describe a binary black hole waveform7, we have less prior knowl-
edge of what the model should look like for the distribution of masses and
spins8. Building models for these distributions is the main focus of Chap-
ters 3 and 4.

The remainder of the thesis is structured as follows. Chapter 2 gives a
detailed introduction to Bayesian inference for gravitational-wave astron-
omy. This covers many of the methods used in the subsequent chapters.
Chapters 3 and 4 introduce phenomenological models for the distribution of
black hole masses and spins, how we can use these models to extract specific
physics, and how many observations we need before we can measure these
features. In Chapter 5, I develop a method to compute the expected sig-
nal due to gravitational-wave memory from waveforms that omit this term.
Chapters 6 and 7 discuss computational frameworks for performing astro-
physical inference. I present some closing thoughts on the current state of as-
trophysical inference with gravitational waves including a review of current
results, and future possible directions for astrophysical inference in Chap-
ter 8. In Appendix A, I discuss the effect of applying a time-domain window
to gravitational-wave data and how to avoid potential biases in parameter
estimation using windowed data.

As Chapters 2-7 are reproductions of previously published papers a num-
ber of the literature references and discussion of the observed catalogue of
compact binaries are somewhat out of date. Rather than modifying these
chapters, I direct readers to this chapter or Chapter 8 for discussions which
reflect the state of the field at the time of writing. Additionally, the subject
of Bayesian inference for analysing single gravitational-wave transients and
astrophysical populations is introduced multiple times throughout the the-
sis. In order to preserve the flow of those chapters, and enable them to be
taken out of context, I have not removed those sections. The introduction in
the following chapter should be taken as the authoritative version and those
sections in subsequent can safely be skipped by readers reading all chapters
in order.

7There are nine “intrinsic” parameters which describe the binary components and orbit
(two masses, two three-dimensional spin vectors, and orbital eccentricity), and seven “ex-
trinsic” parameters which describe the relative position and orientation of the binary and
the detector (distance, two-dimensional sky position, orbital inclination, signal polarisation,
and a reference time and orbital phase).

8There are more exotic scenarios which require a larger number of parameters to describe
a merging binary, e.g, parameterised deviations from general relativity (e.g., Abbott, 2019e)





Chapter 2

An introduction to Bayesian
inference in gravitational-wave
astronomy: parameter estimation,
model selection, and hierarchical
models

Published as:
Thrane, E. & Talbot, C., Publ. Astron. Soc. Aust. 36, e010 (2019).

Abstract

This is an introduction to Bayesian inference with a focus on hierarchical
models and hyper-parameters. We write primarily for an audience of
Bayesian novices, but we hope to provide useful insights for seasoned
veterans as well. Examples are drawn from gravitational-wave astronomy,
though we endeavor for the presentation to be understandable to a broader
audience. We begin with a review of the fundamentals: likelihoods, priors,
and posteriors. Next, we discuss Bayesian evidence, Bayes factors, odds
ratios, and model selection. From there, we describe how posteriors are
estimated using samplers such as Markov Chain Monte Carlo algorithms
and nested sampling. Finally, we generalize the formalism to discuss
hyper-parameters and hierarchical models. We include extensive appen-
dices discussing the creation of credible intervals, Gaussian noise, explicit
marginalization, posterior predictive distributions, and selection effects.

7
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2.1 Preface: why study Bayesian inference?

Bayesian inference is an essential part of modern astronomy. It finds particu-
larly elegant application in the field of gravitational-wave astronomy thanks
to the clear predictions of general relativity and the extraordinary simplicity
with which compact binary systems are described. An astrophysical black
hole is completely characterized by just its mass and its dimensionless spin
vector. The gravitational waveform from a black hole binary is typically char-
acterized by just fifteen parameters. Since sources of gravitational waves are
so simple, and since we have a complete theory describing how they emit
gravitational waves, there is a direct link between data and model. The sig-
nificant interest in Bayesian inference within the gravitational-wave commu-
nity reflects the great possibilities of this area of research.

Bayesian inference and parameter estimation are the tools that allow us
to make statements about the Universe based on data. In gravitational-wave
astronomy, Bayesian inference is the tool that allows us to reconstruct sky
maps of where a binary neutron star merged (Abbott, 2017i), to determine
that GW170104 merged 880+450

−390 Mpc away from Earth (Abbott, 2017f), and
that the black holes in GW150914 had masses of 35+5

−3 M� and 33+3
−4 M� (Ab-

bott, 2016i). We use it to determine the Hubble constant (Abbott, 2017a),
to study the formation mechanism of black hole binaries (Vitale & Evans,
2017; Stevenson, Berry & Mandel, 2017; Talbot & Thrane, 2017; Gerosa &
Berti, 2017; Farr et al., 2017; Wysocki et al., 2018; Lower et al., 2018), and to
probe how stars die (Fishbach, Holz & Farr, 2018; Talbot et al., 2018; Abbott,
2019a). Increasingly, Bayesian inference and parameter estimation are the
language of gravitational-wave astronomy. In this note, we endeavor to pro-
vide a primer on Bayesian inference with examples from gravitational-wave
astronomy1.

Before beginning, we highlight additional resources, useful for re-
searchers interested in Bayesian inference in gravitational-wave astronomy.
Sivia & Skilling, 2006 and Gregory, 2005 are useful references that are
accessible to physicists and astronomers; see also the Springer Series in
Astrostatistics (Manuel et al., 2012; Hilbe, 2013; Chattopadhyay & Chat-
topadhyay, 2014; Andreon & Weaver, 2015). The chapter in Hilbe, 2013 by
Loredo discusses hierarchical models, but refers to them as “multilevel”
models (Loredo, 2013). Seasoned veterans may find Gelman et al., 2013 to be
a thorough reference.

1This review focuses on Bayesian inference applied to audio-band gravitational waves
from compact binary coalescence, the only source of gravitational waves yet detected. We
note in passing that Bayesian inference has been applied to study gravitational waves from
rotating neutron stars (Umstätter et al., 2004; Dupuis & Woan, 2005; Abbott, 2017d), bursting
sources (Cornish & Littenberg, 2015; Logue et al., 2012; Powell et al., 2016), and stochastic
backgrounds (Mandic et al., 2012; Callister et al., 2017; Abbott, 2018a). Bayesian inference
methods have also been developed for space-based observatories observing at millihertz
frequencies (Babak et al., 2008; Babak et al., 2010) and for pulsar timing arrays operating at
nanohertz frequencies (Lentati et al., 2014; Vigeland & Vallisneri, 2014).
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2.2 Fundamentals: likelihoods, priors, and poste-
riors

A primary aim of modern Bayesian inference is to construct a posterior dis-
tribution

p(θ|d). (2.1)

Here, θ is the set of model parameters and d is the data associated with a
measurement2. For illustrative purposes, let us say that θ are the 15 parame-
ters describing a binary black hole coalescence and d is the strain data from a
network of gravitational-wave detectors. The posterior distribution p(θ|d) is
the probability density function for the continuous variable θ given the data
d. The probability that the true value of θ is between (θ′, θ′ + dθ) is given by
p(θ′|d)dθ′. It is normalized so that

∫
dθ p(θ|d) = 1 (2.2)

The posterior distribution is what we use to construct credible intervals that
tell us, for example, the component masses of a binary black hole event like
GW150914. For details about the construction of credible intervals, see Sec-
tion 2.6.

According to Bayes theorem, the posterior distribution is given by

p(θ|d) = L(d|θ)π(θ)

Z . (2.3)

Here, L(d|θ) is the likelihood function of the data given the parameters θ,
π(θ) is the prior distribution for θ, and Z is a normalization factor34 called
the “evidence”

Z ≡
∫

dθL(d|θ)π(θ). (2.4)

The likelihood function is something that we choose. It is a description of
the measurement. By writing down a likelihood, we implicitly introduce
a noise model. For gravitational-wave astronomy, we typically assume a

2By referring to “model parameters,” we are implicitly acknowledging that we begin with
some model. Some authors make this explicit by writing the posterior as p(θ|d, M) where
M is the model. (Other authors sometimes use I to denote the model.) We find this notation
clunky and unnecessary since it goes without saying that one must always assume some
model. If/when we consider two distinct models, we add an additional variable to denote
the model.

3In this document we use different symbols for different distributions: p for posteriors, L
for likelihoods, and π for priors. We advocate this notation since it highlights what is what
and makes formulas easy to read. However, it is by no means standard, and some authors
will use p for any and all probability distributions.

4For now, we treat the evidence as “just” a normalization factor, though, below we
see that it plays an important role in model selection, and that it can be understood as a
marginalized likelihood.



10 CHAPTER 2. AN INTRODUCTION TO BAYESIAN INFERENCE

Gaussian-noise likelihood function that looks something like this

L(d|θ) = 1
2πσ2 exp

(
−1

2
|d− µ(θ)|2

σ2

)
. (2.5)

Here, µ(θ) is a template for the gravitational strain waveform given θ and
σ is the detector noise. Note that π with no parentheses and no subscript is
the mathematical constant, not a prior distribution. There is no square root
in the normalisation factor because d is (typically) complex, which means
that we are working with a two-dimensional Gaussian—the Whittle likeli-
hood (Whittle, 1951); see also Cornish & Romano, 2013. This likelihood func-
tion reflects our assumption that the noise in gravitational-wave detectors is
Gaussian5. Note that the likelihood function is not normalized with respect
to θ and so6

∫
dθ L(d|θ) 6= 1. (2.6)

For a more detailed discussion of the Gaussian noise likelihood in the context
of gravitational-wave astronomy, see Section 2.7.

Like the likelihood function, the prior is something we get to choose. The
prior incorporates our belief about θ before we carry out a measurement.
In some cases, there is an obvious choice of prior. For example, if we are
considering the sky location of a binary black hole merger, it is reasonable to
choose an isotropic prior that weights each patch of sky as equally probable.
In other situations, the choice of prior is not obvious. For example, before
the first detection of gravitational waves, what would have been a suitable
choice for the prior on the primary7 black hole mass π(m1)? When we are
ignorant about θ, we often express our ignorance by choosing a distribution
that is either uniform or log-uniform8.

While θ may consist of a large number of parameters, we usually want to
look at just one or two at a time. For example, the posterior distribution for a

5The Gaussian noise assumption is a good starting point for describing the strain noise
in gravitational-wave detectors. The combined effect of many random noise processes tends
to produce nearly Gaussian strain noise. Of course, the noise description can be generalized
to include non-Gaussian glitches, drift over time, and instrumental lines all of which can
be described by noise parameters; see, e.g., Littenberg & Cornish, 2015; Röver, Meyer &
Christensen, 2011.

6Given that the likelihood is not normalized with respect to θ, one might ask in what way
it is normalized. The answer is that the likelihood is normalized with respect to the data
d. Before we collect any data, the likelihood describes the chance of getting data d. It is a
probability density function with units of inverse data. The integral over all possible d is
unity. Once we obtain actual data, d is, of course, fixed.

7The “primary” black hole is the heavier of two black holes in a binary, which is con-
trasted with the lighter “secondary” black hole.

8A log uniform distribution is used when we do not know the order of magnitude of
some quantity, for example, the energy density of primordial gravitational waves.
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binary black hole merger is a fifteen-dimensional9 function that includes in-
formation about black hole masses, sky location, spins, etc. What if we want
to look at the posterior distribution for just the primary mass? To answer
this question we marginalize (integrate) over the parameters that we are not
interested in (called “nuisance parameters”) so as to obtain a marginalized
posterior

p(θi|d) =
∫ (

∏
k 6=i

dθk

)
p(θ|d) (2.7)

=
L(d|θi)π(θi)

Z (2.8)

The quantity L(d|θi) is called the “marginalized likelihood.” It can be ex-
pressed like so:

L(d|θi) =
∫ (

∏
k 6=i

dθk

)
π(θk)L(d|θ) (2.9)

When we marginalize over one variable θa in order to obtain a poste-
rior on θb, we are calculating our best guess for θb given uncertainty in θa.
Speaking somewhat colloquially, if θa and θb are covariant, then marginaliz-
ing over θa “injects” uncertainty into the posterior for θb. When this happens,
the marginalized posterior p(θb|d) is broader than the conditional posterior
p(θb|d, θa). The conditional posterior p(θb|d, θa) represents a slice through
the p(θb|d) posterior at a fixed value of θa.

This is nicely illustrated with an example. There is a well-known co-
variance between the luminosity distance of a merging compact binary from
Earth DL and the inclination angle θJN. For the binary neutron star coales-
cence GW170817, we are able to constrain the inclination angle much better
when we use the known distance and sky location of the host galaxy com-
pared to the constraint obtained using the gravitational-wave measurement
alone10. Results from Abbott, 2019c are shown in Fig. 2.1.

2.3 Models, evidence and odds

In Eq. (2.4), reproduced here, we defined the Bayesian evidence:

Z ≡
∫

dθL(d|θ)π(θ).

9There are eight “intrinsic” parameters, which are fundamental properties of the binary:
primary mass m1, secondary mass m2, primary dimensionless spin vector~s1, and secondary
dimensionless spin vector ~s2. The other seven parameters are “extrinsic,” relating to how
we view the binary. The extrinsic parameters are: inclination angle ι, polarization angle ψ,
phase at coalescence φc, right ascension RA, declination DEC, luminosity distance DL, and
time of coalescence t.

10The viewing angle = Θ = min(θJN , 180◦ − θJN is constrained to be < 28◦ with the elec-
tromagnetic counterpart, and < 55◦ without it (Abbott, 2017i)
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FIGURE 2.1: The joint posterior for luminosity distance and inclination angle
for GW170817 from Abbott, 2019c. The blue contours show the credible region
obtained using gravitational-wave data alone. The purple contours show the
smaller credible region obtained by employing a relatively narrow prior on dis-
tance obtained with electromagnetic measurements. Publicly available posterior

samples for this plot are available here: Abbott, 2018e.



2.3. MODELS, EVIDENCE AND ODDS 13

In practical terms, the evidence is a single number. It usually does not mean
anything by itself, but becomes useful when we compare one evidence with
another evidence. Formally, the evidence is a likelihood function. Specif-
ically, it is the completely marginalized likelihood function. It is therefore
sometimes denoted L(d) with no θ dependence. However, we prefer to use
Z to denote the fully marginalized likelihood function.

Above, we described how the evidence serves as a normalization constant
for the posterior p(θ|d). However, the evidence is also used to do model se-
lection. Model selection answers the question: which model is statistically
preferred by the data and by how much? There are different ways to think
about models. Let us return to the case of binary black holes. We may com-
pare a “signal model” in which we suppose that there is a binary black hole
signal present in the data with a prior π(θ) to the “noise model,” in which
we suppose that there is no binary black hole signal present. While the sig-
nal model is described by the fifteen binary parameters θ, the noise model is
described by no parameters. Thus, we can define a signal evidence ZS and a
noise evidence ZN

ZS ≡
∫

dθL(d|θ)π(θ) (2.10)

ZN ≡L(d|0), (2.11)

where

L(d|0) ≡ 1
2πσ2 exp

(
−1

2
|d|2
σ2

)
. (2.12)

The noise evidence ZN is sometimes referred to as the “null likelihood.”
The ratio of the evidence for two different models is called the Bayes fac-

tor. In this example, the signal/noise Bayes factor is

BFS
N ≡

ZS

ZN
. (2.13)

It is often convenient to work with the log of the Bayes factor11

log BFS
N ≡ log(ZS)− log(ZN). (2.14)

When the absolute value of log BF is large, we say that one model is preferred
over the other. The sign of log BF tells us which model is preferred. A thresh-
old of | log BF| = 8 is often used as the level of “strong evidence” in favor of
one hypothesis over another (Jeffreys, 1961).

The signal/noise Bayes factor is just one example of a Bayes factor com-
paring two models. We can calculate a Bayes factor comparing identical
models but with different priors. For example, we can calculate the evidence
for a binary black hole with a uniform prior on dimensionless spin and com-
pare that to the evidence obtained using a zero-spin prior. The Bayes factor

11A typical log evidence might be −5000, which evaluates to zero when exponentiated on
a computer . Functions such as logsumexp can be useful for combining evidences.
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comparing these models would tell us if the data prefer spin.

Zspin =
∫

dθL(d|θ)π(θ) (2.15)

Zno spin =
∫

dθL(d|θ)πno spin(θ). (2.16)

Where πno spin(θ) is a prior with zero spins. The spin/no spin Bayes factor is

BFspin
no spin =

Zspin

Zno spin
. (2.17)

We may also compare two disparate signal models. For example, we can
compare the evidence for a binary black hole waveform predicted by general
relativity (model MA with parameters θ) with a binary black hole waveform
predicted by some other theory (model MB with parameters ν):

ZA =
∫

dθL(d|θ, MA)π(θ) (2.18)

ZB =
∫

dνL(d|ν, MB)π(ν). (2.19)

The A/B Bayes factor is

BFA
B =

ZA

ZB
. (2.20)

Note that the number of parameters in ν can be different from the number of
parameters in θ.

Our presentation of model selection so far has been a bit fast and loose.
Formally, the correct metric to compare two models is not the Bayes factor,
but rather the odds ratio

OA
B ≡

ZA

ZB

πA

πB
. (2.21)

The odds ratio is the product of the Bayes factor with the prior odds πA/πB,
which describes our prior belief about the relative likelihood of hypotheses
A and B. In many practical applications, we set the prior odds ratio to unity,
and so the odds ratio is the Bayes factor. This practice is sensible in many
applications where our intuition tells us: until we do this measurement both
hypotheses are equally likely12.

12There are some (fairly uncommon) examples where we might choose a different prior
odds ratio. For example, we may construct a model in which general relativity (GR) is
wrong. We may further suppose that there are multiple different ways in which it could
be wrong, each corresponding to a different GR-is-wrong sub-hypothesis. If we calculated
the odds ratio comparing one of these GR-is-wrong sub-hypotheses to the GR-is-right hy-
pothesis, we would not assign equal prior odds to both hypotheses. Rather, we would assign
at most 50% probability to the entire GR-is-wrong hypothesis, which would then have to be
split among the various sub-hypotheses (Callister et al., 2017).
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Bayesian evidence encodes two pieces of information. First, the likeli-
hood tells us how well our model fits the data. Second, the act of marginal-
ization tell us about the size of the volume of parameter space we used to
carry out a fit. This creates a sort of tension. We want to get the best fit
possible (high likelihood) but with a minimum prior volume. A model with
a decent fit and a small prior volume often yields a greater evidence than a
model with an excellent fit and a huge prior volume. In these cases, the Bayes
factor penalizes the more complicated model for being too complicated.

This penalty is called an Occam factor. It is a mathematical formulation
of the statement that all else equal, a simple explanation is more likely than a
complicated one. If we compare two models where one model is a superset
of the other—for example, we might compare general relativity and general
relativity with non-tensor modes—and if the data are better explained by the
simpler model, the log Bayes factor is typically modest, log BF ≈ (−2,−1).
Thus, it is difficult to completely rule out extensions to existing theories. We
just obtain ever tighter constraints on the extended parameter space.

2.4 Samplers

Thanks to the creation of phenomenological gravitational waveforms (called
“approximants”), it is now computationally straightforward to make a pre-
diction about what the data d should look like given some parameters θ. That
is a forward problem. Calculating the posterior, the probability of parameters
θ given the data as in Eq. 2.3, reproduced here, is a classic inverse problem13

p(θ|d) = L(d|θ)π(θ)

Z .

In general, inverse problems are computationally challenging compared to
forward problems. To illustrate why let us imagine that we wish to calculate
the posterior probability for the fifteen parameters describing a binary black
hole merger. If we do this naively, we might create a grid with ten bins in ev-
ery dimension and evaluate the likelihood at each grid point. Even with this
coarse resolution, our calculation suffers from “the curse of dimensionality.”
It is computationally prohibitive to carry out 1015 likelihood evaluations. The
problem becomes worse as we add dimensions. As a rule of thumb, brute-
force bin approaches become painful once one exceeds three dimensions.

The solution is to use a stochastic sampler, (although recent work has
shown progress carrying out these calculations using the alternative tech-
nique of iterative fitting, Pankow et al., 2015; Lange, O’Shaughnessy & Rizzo,
2018). Commonly used sampling algorithms can be split into two broad cat-
egories of method: Markov-chain Monte Carlo (MCMC) (Metropolis et al.,

13We note here a few early papers important in the development of Bayesian inference
tools for gravitational-wave astronomy. Initial implementation of MCMC methods for spin-
ning binaries was carried out in van der Sluys et al., 2008a. The first demonstration of
Bayesian parameter estimation for spinning binaries was performed in van der Sluys et al.,
2008b. Veitch & Vecchio, 2008, demonstrated Bayesian model selection for compact binaries.



16 CHAPTER 2. AN INTRODUCTION TO BAYESIAN INFERENCE

1953; Hastings, 1970) and nested sampling (Skilling, 2004). These algorithms
generate a list of posterior samples {θ} drawn from the posterior distribution
such that the number of samples on the interval (θ, θ + ∆θ) ∝ p(θ) (Veitch et
al., 2015). Some samplers also produce an estimate of the evidence. We can
visualize the posterior samples as a spreadsheet. Each column is a different
parameter, for example, primary black hole mass, secondary black hole mass,
etc. For binary black hole mergers, there are typically fifteen columns. Each
row represents a different posterior sample.

Posterior samples have two useful properties. First, they can be used to
compute expectation values of quantities of interest since (Hogg & Foreman-
Mackey, 2018)

〈 f (x)〉p(x) =
∫

dx p(x) f (x) ≈ 1
ns

ns

∑
k

f (xk). (2.22)

Here p(x) is the posterior distribution that we are sampling, f (x) is some
function we want to find the expectation value of, and the sum over k runs
over ns posterior samples. Below, Eq. 2.22 will prove useful simplifying our
calculation of the likelihood of data given hyper-parameters.

The second useful property of posterior samples is that, once we have
samples from an N-dimensional space, we can generate the marginalized
probability for any subset of the parameters by simply selecting the corre-
sponding columns in our spreadsheet. This property is used to help visual-
ize the output of these samplers by constructing “corner plots,” which show
the marginalized one- and two-dimensional posterior probability distribu-
tions for each of the parameters. For an example of a corner plot, see Fig. 2.1.
A handy python package exists for making corner plots (Foreman-Mackey,
2016).

2.4.1 MCMC

Markov chain Monte Carlo sampling was first introduced in Metropolis et al.,
1953 and extended in Hastings, 1970. For a recent overview of MCMC meth-
ods in astronomy, see Sharma, 2017. In MCMC methods, particles undergo
a random walk through the posterior distribution where the probability of
moving to any given point is determined by the transition probability of the
Markov chain. By noting the position of the particles—or “walkers” as they
are sometimes called—at each iteration, we generate draws from the poste-
rior probability distribution.

There are some subtleties that must be considered when using MCMC
samplers. First, the early-time behavior of MCMC walkers is strongly depen-
dent on the initial conditions. It is therefore necessary to include a “burn-in”
phase to ensure that the walker has settled into a steady state before begin-
ning to accumulate samples from the posterior distribution. Once the walker
has reached a steady state, the algorithm can continue indefinitely and so it
is necessary for the user to define a termination condition. This is typically
chosen to be when enough samples have been acquired for the user to believe
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an accurate representation of the posterior has been obtained. Thus, MCMC
requires a degree of artistry, developed from experience.

Additionally, the positions of a walker in a chain are often autocorrelated.
Because of this correlation, the positions of the walkers do not represent a
faithful sampling from the posterior distribution. If no remedy is applied, the
width of the posterior distribution is underestimated. It is thus necessary to
“thin” the chain by selecting samples separated by the autocorrelation length
of the chain.

Markov chain Monte Carlo walkers can also fail to find multiple modes
of a posterior distribution if there are regions of low posterior probability be-
tween the modes. However, this can be mitigated by running many walkers
which begin exploring the space at different points. This also demonstrates
a simple way to parallelize MCMC computations to quickly generate many
samples. Many variants of MCMC sampling have been proposed in order
to improve the performance of MCMC algorithms with respect to these and
other issues. For a more in-depth discussion of MCMC methods see, e.g.,
chapter 11 of Gelman et al., 2013, or Hogg & Foreman-Mackey, 2018. The
most widely used MCMC code in astronomy is EMCEE (Foreman-Mackey et
al., 2013)14.

2.4.2 Nested sampling

The first widely used alternative to MCMC, was introduced by Skilling in
2004. While MCMC methods are designed to draw samples from the pos-
terior distribution, nested sampling is designed to calculate the evidence.
Generating samples from the posterior distribution is a by-product of the
nested sampling evidence calculation algorithm. By weighting each of the
samples used to calculate the evidence by the posterior probability of the
sample, nested samples are converted into posterior samples.

Nested sampling works by populating the parameter space with a set of
“live points” drawn from the prior distribution. At each iteration, the lowest
likelihood point is removed from the set of live points and new samples are
drawn from the prior distribution until a point with higher likelihood than
the removed point is found. The evidence is evaluated by assigning each
removed point a prior volume and then computing the sum of the likelihood
multiplied by the prior volume for each sample.

Since the nested sampling algorithm continually moves to higher likeli-
hood regions, it is possible to estimate an upper limit on the evidence at each
iteration. This is done by imagining that the entire remaining prior volume
has a likelihood equal to that of the highest likelihood live point. This is used
to inform the termination condition for the nested sampling algorithm. The
algorithm stops when the current estimate of the evidence is above a certain
fraction of the estimated upper limit15. Unlike MCMC algorithms nested

14http://dfm.io/emcee/
15In practice this is expressed as the difference between the calculated log evidence and

the upper limit of the log evidence.

http://dfm.io/emcee/
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sampling is not straightforwardly parallelizable, and posterior samples do
not accumulate linearly with run time.

2.5 Hyper-parameters and hierarchical models

As more and more gravitational-wave events are detected, it is increasingly
interesting to study the population properties of binary black holes and binary
neutron stars. These are the properties common to all of the events in some
set. Examples include the neutron star equation of state and the distribution
of black hole masses. Hierarchical Bayesian inference is a formalism, which
allows us to go beyond individual events in order to study population prop-
erties16.

The population properties of some set of events is described by the shape
of the prior. For example, two population synthesis models might yield two
different predictions for the prior distribution of the primary black hole mass
π(m1). In order to probe the population properties of an ensemble of events,
we make the prior for θ conditional on a set of “hyper-parameters” Λ

π(θ|Λ). (2.23)

The hyper-parameters parameterize the shape of the prior distribution for
the parameters θ. An example of a (parameter, hyper-parameter) relationship
is (θ = primary black hole mass m1, Λ = the spectral index of the primary mass
spectrum α). In this example

π(m1|α) ∝ mα
1 . (2.24)

A key goal of population inference is to estimate the posterior distribution
for the hyper-parameters Λ. In order to do this, we marginalize over the
entire parameter space θ in order to obtain a marginalized likelihood.

L(d|Λ) =
∫

dθ L(d|θ)π(θ|Λ). (2.25)

Normally, we would call this completely marginalized likelihood an evi-
dence, but because it still depends on Λ, we call it the likelihood for the data
d given the hyper-parameters Λ. The hyper-posterior is given simply by

p(Λ|d) = L(d|Λ)π(Λ)∫
dΛL(d|Λ)π(Λ)

. (2.26)

16Possibly the earliest papers proposing to measure distributions of gravitational-wave pa-
rameters are Mandel & O’Shaughnessy, 2010; Mandel, 2010, while hierarchical Bayesian in-
ference was introduced to study the population properties of sources of gravitational waves
in Adams, Cornish & Littenberg, 2012.
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Note that we have introduced a hyper-prior π(Λ), which describes our prior
belief about the hyper-parameters Λ. The term in the denominator

ZΛ ≡
∫

dΛL(d|Λ)π(Λ) (2.27)

is the “hyper-evidence,” which we denote ZΛ in order to distinguish it from
the regular evidence Zθ. In Section 2.9 we discuss posterior predictive distri-
butions (PPD), which represent the updated prior on θ in light of the data d
and given some hyper-parameterization.

We now generalize the discussion of hyper-parameters in order to handle
the case of N independent events. In this case, the total likelihood for all N
events Ltot is simply the product of each individual likelihood

Ltot(~d|~θ) =
N

∏
i
L(di|θi). (2.28)

Here, we use vector notation so that ~d is the set of measurements of N
events, each of which has its own parameters, which make up the vector ~θ.
Since we suppose that every event is drawn from the same population prior
distribution—hyper-parameterized by Λ—the total marginalized likelihood
is

Ltot(~d|Λ) =
N

∏
i

∫
dθi L(di|θi)π(θi|Λ). (2.29)

The associated (hyper-) posterior is

ptot(Λ|~d) =
Ltot(~d|Λ)π(Λ)∫

dΛLtot(~d|Λ)π(Λ)
. (2.30)

The denominator, of course, is the total hyper-evidence.

Z tot
Λ =

∫
dΛLtot(~d|Λ)π(Λ) (2.31)

We may calculate the Bayes factor comparing different hyper-models in the
same way that we calculate the Bayes factor for different models.

Examining Eq. 2.31, we see that the total hyper-evidence involves a large
number of integrals. For the case of binary black hole mergers, every event
has 15 parameters, and so the dimension of the integral is 15N + M taking
where M is the number of hyper-parameters in Λ. As N gets large, it becomes
difficult to sample such a large prior volume all at once. Fortunately, it is
possible to break the integral into individual integrals for each event, which
are then combined through a process sometimes referred to as “recycling.”
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It turns out that the total marginalized likelihood in Eq. 2.29 can be writ-
ten like so

Ltot(~d|Λ) =
N

∏
i

Z∅(di)

ni

ni

∑
k

π(θk
i |Λ)

π(θk
i |∅)

. (2.32)

Here, the sum over k is a sum over the ni posterior samples associated with
event i. The posterior samples for each event are generated with some default
prior π(θk|∅). The default prior is ultimately canceled from the final answer,
so it not so important what we choose for the default prior so long as it is
sufficiently uninformative. Using the ∅ prior, we obtain an evidence Z∅. In
this way, we are able to analyze each event individually before recycling the
posterior samples to obtain a likelihood of the data given Λ.

To see where this formula comes from, we note that

p(θi|di,∅) =
L(di|θi)π(θi|∅)

Z∅(di)
(2.33)

Rearranging terms,

L(di|θi) = Z∅(di)
p(θi|di,∅)

π(θi|∅)
. (2.34)

Plugging this into Eq. 2.29, we obtain17

Ltot(~d|Λ) =
N

∏
i

∫
dθi p(θi|di,∅)Z∅(di)

π(θi|Λ)

π(θi|∅)
. (2.35)

Finally, we use Eq. 2.22 to convert the integral over θi to a sum over posterior
samples, thereby arriving at Eq. 2.32.

All of the results derived up until this point ignore selection effects where
an event with parameters θ1 is easier to detect than an event with parameters
θ2. There are cases where selection effects are important. For example, the
visible volume for binary black hole mergers scales as approximately V ∝
M2.1, which means that higher mass mergers are relatively easier to detect
than lower mass mergers (Fishbach & Holz, 2017). In Section 2.10, we show
how this method is extended to accommodate selection effects.

2.6 Credible intervals

It is often convenient to use the posterior to construct “credible intervals,”
regions of parameter space containing some fraction of posterior probability.
(Note that Bayesian inference yields credible intervals while frequentist
inference yields confidence intervals.) For example, one can plot one-, two-,
and three-sigma contours. By definition, a two-sigma credible region

17One “recycles” the posterior samples generated using the the π(θi|∅) prior in order to
do something new with the hyper-parameterized prior π(θi|Λ).
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includes 95% of the posterior probability, but this requirement does not
uniquely determine a single credible region. One well-motivated method
for constructing confidence intervals is the highest posterior density interval
(HPDI) method.

We can visualize the HPDI method as follows. We draw a horizontal line
through a posterior distribution and calculate the area of above the line. If we
move the line down, the area goes up. If we place the line such that the area is
95%, then the posterior above the line is the HPDI two-sigma credible inter-
val. In general, the HPDI is neither symmetric nor unimodal. The advantage
of HPDI over other methods is that it yields the minimum width credible
interval. This method is sometimes referred to as “draining the bathtub.”

Another commonly used method for calculating credible intervals is to
construct symmetric intervals. Symmetric credible intervals are constructed
using the cumulative distribution function,

P(x) =
∫ x

−∞
dx′ p(x′). (2.36)

The X% credible region is the region

1
2

(
1− X

100

)
< P(x) <

1
2

(
1 +

X
100

)
. (2.37)

While symmetric credible intervals are simpler to construct than HPDI, par-
ticularly from samples drawn from a distribution, they can be misleading
for multi-modal distributions and for distributions which peak near prior
boundaries.

Credible intervals are useful for testing and debugging inference projects.
Before applying an inference calculation to real data, it is useful to test it on
simulated data. The standard test, see, e.g., Sidery et al., 2014, is to simulate
data d according to parameters θtrue drawn at random from the prior distri-
bution π(θ). Then, we analyze this data in order to obtain a posterior p(θ|d).
The true value should fall inside the 90% credible interval 90% of the time.
Testing that this is true provides a powerful validation of the inference algo-
rithm. Note that we do not expect the posterior to peak precisely at θtrue, just
within the one-sigma region.

2.7 Gaussian noise likelihood

In this section, we introduce additional notation that is helpful for talking
about the Gaussian noise likelihood frequently used in gravitational-wave
astronomy. In the main body of the manuscript, d has been taken to represent
data. Now, we take d to represent the Fourier transform of the strain time
series d(t) measured by a gravitational-wave detector. In the language of
computer programming,

d = fft (d(t)) / fs, (2.38)



22 CHAPTER 2. AN INTRODUCTION TO BAYESIAN INFERENCE

where fs is the sampling frequency and fft is a Fast Fourier transform. The
noise in each frequency bin is characterized by the single-sided noise power
spectral density P( f ), which is proportional to strain squared and which has
units of Hz−1.

The likelihood for the data in a single frequency bin j given θ is

L(dj|θ) =
1

2πPj
exp

(
−2∆ f

∣∣dj − µj(θ)
∣∣2

Pj

)
. (2.39)

Here ∆ f is the frequency resolution. The factor of 2∆ f comes about from a
factor of 1/2 in the normal distribution and a factor of 4∆ f needed to convert
the square of the Fourier transforms into units of one-sided power spectral
density. Note that the normalisation factor does not contain a square root be-
cause the data are complex, and so the Gaussian is a two-dimensional Whittle
likelihood (Whittle, 1951); see also Cornish & Romano, 2013. The template
µ(θ) is related to the metric perturbation h+,×(θ) via antenna response fac-
tors F+,× (Anderson et al., 2001)

µ(θ) = F+(RA, DEC, ψ)h+(θ) + F×(RA, DEC, ψ)h×(θ) (2.40)

Gravitational-wave signals are typically spread over many (M) frequency
bins. Assuming the noise in each bin is independent, the combined likeli-
hood is a product of the likelihoods for each bin

L(d|θ) =
M

∏
j
L(dj|θ) (2.41)

Here d is the set of data including all frequency bins and dj represents the
data associated with frequency bin j. If we consider a measurement with
multiple detectors, the product over j frequency bins gains an additional in-
dex l for each detector. Combining data from different detectors is like com-
bining data from different frequency bins.

It is frequently useful to work with the log likelihood, which allows us to
replace products with sums of logs. The log also helps dealing with small
numbers. The log likelihood is

logL(d|θ) =
M

∑
j

logL(dj|θ)

=− 1
2 ∑

j
log
(
2πPj

)
− 2∆ f ∑

j

|d− µ(θ)|2
Pj

=Ψ− 1
2
〈d− µ(θ), d− µ(θ)〉.



2.7. GAUSSIAN NOISE LIKELIHOOD 23

In the last line, we define the noise-weighted inner product18 (Cutler & Flana-
gan, 1994)

〈a, b〉 ≡ 4∆ f ∑
j
<
(

a∗j bj

Pj

)
, (2.42)

and the constant

Ψ ≡ −∑
j

log
(
2πPj

)
. (2.43)

Since constants do not change the shape of the log likelihood we often “leave
off” this normalizing term and work with log likelihood minus Ψ. This is
permissible as long as we do so consistently because when we take the ratio
of two evidences—or equivalently, the difference of two log evidences—the
Ψ factor cancels anyway. For the remainder of this section, we set Ψ = 0.
Now that we have introduced the inner product notation, we are going to
stop bold-facing the data d as it is implied that we are dealing with many
frequency bins.

Using the inner product notation, we may expand out the log likelihood

logL(d|θ) =− 1
2
[〈d, d〉 − 2〈d, µ(θ)〉+ 〈µ(θ), µ(θ)〉]

=− 1
2

[
−2 logZN − 2κ2(θ) + ρ2

opt(θ)
]

= logZN + κ2(θ)− 1
2

ρ2
opt(θ). (2.44)

We see that the log likelihood can be expressed with three terms. The first is
proportional to the log noise evidence

−2 logZN ≡ 〈d, d〉. (2.45)

For debugging purposes, it is useful to keep in mind that if we calculate
− logZN on actual Gaussian noise (with Ψ = 0), we expect a typical value
nearly equal to the number of frequency bins M (multiplied by the number
of detectors) since each term in the inner product contributes a value close to
unity19. We skip over the second term κ2 for a moment. The third term is the
optimal matched filter signal-to-noise ratio squared

ρ2
opt ≡ 〈µ, µ〉. (2.46)

18Following the convention of gravitational-wave astronomy, our inner product is real by
construction. However, below it will be useful to define a complex-valued inner product;
see Eq. 2.58.

19Specifically, the distribution of an ensemble of independent − lnZN is a normal distri-
bution with mean M and width M1/2 where M is the number of frequency bins (multiplied
by the number of detectors). This follows from the central limit theorem.
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Returning now to the second term, we express κ2 as the product of the
matched filter signal-to-noise ratio and the optimal signal-to-noise ratio

κ2 ≡〈d, µ〉
=ρmf ρopt, (2.47)

where

ρmf ≡
〈d, µ〉
〈µ, µ〉1/2 . (2.48)

Readers familiar with gravitational-wave astronomy are likely ac-
quainted with the concept of matched filtering, which is the maximum
likelihood technique for gravitational-wave detection. By writing the
likelihood in this way, we highlight how parameter estimation is related to
matched filtering. Rapid evaluation of the likelihood function in Eq. 2.44
has been made possible through reduced order methods (Smith et al., 2016;
Pürrer, 2014; Canizares et al., 2013).

2.8 Explicitly Marginalized Likelihoods

The most computationally expensive step in computing the likelihood for
compact binary coalescences is creating the waveform template (µ in Eq. 2.5).
This is done in two steps. The first step is to use the intrinsic parameters to cal-
culate the metric perturbation. The second (much faster) step is to use the ex-
trinsic parameters to project the metric perturbation onto the detector response
tensor. In some cases, it is possible to reduce the dimensionality of the inverse
problem—thereby speeding up calculations and improving convergence—
by using a likelihood, which explicitly marginalizes over extrinsic parame-
ters. The improvement is especially marked for comparatively weak signals,
which can be important for population studies; see, e.g., Smith & Thrane,
2018. In this section, we show how to calculate Lmarge—a likelihood, which
explicitly marginalize over coalescence time, phase at coalescence, and/or
luminosity distance. We continue with notation introduced in Section 2.7.

2.8.1 Time marginalization

In this subsection, we follow Farr, 2014 to derive a likelihood, which explic-
itly marginalizes over time of coalescence t. Given a waveform with a ref-
erence coalescence time of t0, we can calculate the waveform at some new
coalescence time t by multiplying by the appropriate phasor:

µj(t) = µj(t0) exp
(
−2πij

(t− t0)

T

)
. (2.49)

Here T = 1/∆ f is the duration of data segment and j is the index of the fre-
quency bin as in Section 2.7. It is understood that µ is a function of whatever
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parameters we are not explicitly marginalizing over. We can therefore write
κ2 (see Eq: 2.47) as

κ2(t) ≡〈d, µ(t)〉

=4∆ f<
M

∑
j

d∗j µj(t0)

Pj
exp

(
−2πij

(t− t0)

T

)
.

(2.50)

However this sum is the discrete Fourier transform. By recasting this equa-
tion in terms of the fast Fourier transform fft, it is possible to take advantage
of a highly optimized tool.

We discretize t− t0 = k∆t where k takes on integer values between 0 and
M = T/∆t. Having made this definition, marginalizing over coalescence
time becomes summing over k. The variable κ2 is a function of (discretized)
coalescence time k. We can write in terms of a fast Fourier transform.

κ2(k) = 4∆ f<
M

∑
j

d∗j µj(t0)

Pj
exp

(
−2πij

k
M

)

= 4∆ f< fftk

(
d∗j µj(t0)

Pj

)
.

(2.51)

Here fftk refers to the k bin of a fast Fourier transform.
The other terms in 2.44 are independent of the time at coalescence of the

template. The marginalized likelihood is therefore

logLt
marg = log

∫ t0+T

t0

dtL(θ, t)π(t)

= logZN −
1
2

ρ2
opt(θ) + log

∫ t0+T

t0

dt eκ2(θ,t)π(t)

= logZN −
1
2

ρ2
opt(θ) + log

M

∑
k

eκ2(θ,k)πk,

(2.52)

where πk = π(t)∆t is the prior on the discretized coalescence time.
Caution should be taken to avoid edge effects. If we employ a naive prior,

the waveform will exhibit unphysical wrap-around. Similarly, care must
be taken to ensure that the time-shifted waveform is consistent with time-
domain data conditioning, e.g., windowing. (This is usually not a problem
for confident detections because the coalescence time is well-known and so
the segment edges can be avoided.) A good solution is to choose a suitable
prior, which is uniform over some values of k, but with some values set to
zero in order to prevent the signal from wrapping around the edge of the
data segment. Note that Eq. 2.49 breaks down for when the detector changes
significantly over T due to the rotation of the Earth. It can also fail in the
high signal-to-noise ratio limit when the t array becomes insufficiently fine-
grained.
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2.8.2 Phase marginalization

In this subsection, we follow Veitch & Del Pozzo, 2013 (see also Veitch et
al., 2015) to derive a likelihood, which explicitly marginalizes over phase of
coalescence φc. To begin, we assume a gravitational waveform approximant
consisting entirely of the dominant ` = 2, |m| = 2 modes so that20

µ = µ22 + µ2−2, (2.54)

This is a valid assumption, e.g., for the widely used waveform approximants—
e.g., TAYLORF2 (Damour, Iyer & Sathyaprakash, 2005), IMRPHE-
NOMD (Khan et al., 2016), IMRPHENOMP (Hannam et al., 2014)—but
not for waveforms that employ higher order modes, e.g., Blackman et al.,
2017. Given this approximation21,

µ(φc) = e2iφc µ(φc = 0). (2.56)

The optimal signal-to-noise ratio ρopt is invariant under rotations in φc.
However the matched filter signal-to-noise ratio is not. Thus, the phase-
marginalized likelihood is

Lφc
marg = ZN − exp

(
1
2

ρ2
opt

)

+
∫ 2π

0
dφc exp

(1
2
〈
d, µ(φc)

〉
+

1
2
〈
µ(φc), d

〉)
π(φc).

(2.57)

20The variables µ22 and µ2−2 are defined like so

µ`m ≡F+<
(

h`m(θ) −2Y`m(ι, φ)
)

+F×=
(

h`m(θ) −2Y`m(ι, φ)
)

. (2.53)

They depend on the metric perturbation h`m and the antenna response functions F+,×. The
variable −2Y`m(ι, φ) is a spin-weighted spherical harmonic function, evaluated the inclina-
tion angle ι and aziumuthal angle φ of the observer. Without loss of generality, we can set
φ = 0, which establishes a coordinate frame. Having defined this frame, we may rotate the
binary by the phase of coalescence φc in order to change the phase of the signal observed at
Earth.

21We emphasize that the phase at coalescence is distinct from φ, the azimuthal angle to the
observer in the source frame, which transforms differently

µ(φ) = e2iφµ22(φ = 0) + e−2iφµ2−2(φ = 0). (2.55)

The variable φc calibrates the time evolution of the gravitational waveform observed at
Earth, while φ describes how the the waveform varies at a fixed time for observers at differ-
ent spatial locations (corresponding to different azimuthal angles).
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Using Eq. 2.56, we can rewrite the phase-marginalized likelihood

Lφc
marg =

∫ 2π

0
dφc exp

(1
2
〈
d, µ(φc = 0)

〉
C

exp(2iφc)+

1
2
〈
µ(φc = 0), d

〉
C

exp(−2iφc)
)

π(φc)

+ ...

The parts that do not depend on φc are implied by the ellipsis. Here we
introduce the “complex inner product” denoted with a subscript C.

〈a, b〉C ≡ 4∆ f ∑
j

(
a∗j bj

Pj

)
, (2.58)

which is identical to the regular inner product defined in Eq. 2.42 except we
do not take the real part in order to preserve phase information that will be
useful later on. Employing a uniform prior on φc and grouping terms, the
integral can be rewritten yet again

Lφc
marg =

∫ 2π

0

dφc

2π
exp

(
A cos(2φc) + B sin(2φc)

)
+ ... (2.59)

where

A ≡<
〈
d, µ(φc = 0)

〉
C

(2.60)

B ≡=
〈
d, µ(φc = 0)

〉
C

. (2.61)

The integral yields modified Bessel function of the first kind

I0

(√
A2 + B2

)
=

1
2π

∫ 2π

0
dφ eAcφ+Bsφ . (2.62)

Thus
√

A2 + B2 =
√
<
〈
d, µ(0)

〉2
C
+=

〈
d, µ(φc = 0)

〉2
C

=
∣∣∣
〈
d, µ(φc = 0)

〉
C

∣∣∣

=
∣∣∣κ2

C

∣∣∣ , (2.63)

where κ2
C is calculated the same way as κ (Eq. 2.47), except we use a complex

inner product. The φc marginalized likelihood becomes

logLφ
marg = logZN −

1
2

ρ2
opt + log I0(|κ2

C|). (2.64)

We reiterate that this marginalized likelihood is valid only insofar as we trust
our initial assumption, that the signal is dominated by l = 2, |m| = 2 modes.
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2.8.3 Distance marginalization

In this subsection, we follow Singer & Price, 2016 (see also Singer, 2016) to
derive a likelihood, which explicitly marginalizes over luminosity distance
DL. Given a waveform at some reference distance µ(D0), the waveform at an
arbitrary distance is obtained by multiplication of a scale factor

µj(DL) = µj(D0)

(
D0

DL

)
. (2.65)

As before, it is understood that µ is a function of whatever parameters are not
explicitly marginalizing over. Unlike time and phase, distance affects ρopt in
addition to κ2 (Eq. 2.47),

κ2(DL) = κ2(D0)

(
D0

DL

)
,

ρ2
opt(DL) = ρ2

opt(D0)

(
D0

DL

)2

.
(2.66)

Note that κ2 and ρopt are implicit functions of whatever parameters we are
not explicitly marginalizing over.

At a fixed distance, the likelihood is

logL(DL) = logZN + κ2(DL)−
1
2

ρ2
opt(DL), (2.67)

and the likelihood marginalized over luminosity distance is

logLD
marg = logZN + logLD, (2.68)

where

LD(κ
2, ρopt) ≡

∫
dDL eκ2(DL)− 1

2 ρ2
opt(DL)π(DL). (2.69)

This integral to calculate logLD can be evaluated numerically. This explicitly
marginalized form is generally true for all gravitational-waves sources. Its
validity is only limited by the resolution of the numerical integral, though,
cosmological redshifts adds additional complications, which we discuss
in the next subsection. One can construct a pre-computed lookup table
logLD(ρmf, ρopt) to facilitate fast and precise evaluation.

2.8.4 Distance marginalization with cosmological effects

There is a caveat for our discussion of distance marginalization in the pre-
vious subsection: when considering events at cosmological distances, the
prior distributions for lab-frame masses become covariant with luminosity
distance DL due to cosmological redshift. A signal emitted with source-frame
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mass ms is observed with lab-frame mass given by

ml = (1 + z)ms. (2.70)

In this subsection, “mass” m is shorthand for an array of both primary and
secondary mass.

Now we derive an expression for LD
marg, which can be applied to cosmo-

logical distances. We start by specifying the prior on redshift and source-
frame mass22:

π(z, ms) = π(z)π(ms). (2.71)

Both π(z) and π(ms) can be chosen using astrophysically motivated priors;
see e.g., Talbot & Thrane, 2018; Fishbach & Holz, 2017; Fishbach, Holz & Farr,
2018. Whatever priors we choose for π(z) and π(ms), they imply some prior
for the lab-frame mass:

π(z, ml) =π
(
z, ml/(1 + z)

) ∣∣∣∣
dms

dml

∣∣∣∣
=(1 + z)−1π

(
z, ml/(1 + z)

)
. (2.72)

Now that we have converted the source-frame prior into a lab-frame
prior, we can write down the distance-marginalized (redshift-marginalized)
likelihood in terms of lab-frame quantities:

Lz
marge(κ

2, ρopt) =
∫

dzL(κ2, ρopt, z)π(z|ml), (2.73)

where

L(κ2, ρopt, z) =ZN eκ2(DL(z))− 1
2 ρ2

opt(DL(z)). (2.74)

Note that κ2 and ρopt are implicit functions of whatever parameters we are
not explicitly marginalizing over.

By creating a grid of z, we can create a look-up table for L(κ2, ρopt, z),
which allows for rapid evaluation of Eq. 2.73. However, this means we will
also need to create a look-up table for π(z|ml). In order to derive this look-
up table, we rewrite the joint prior on redshift and lab-frame mass can be
rewritten like so

π(z, ml) = π(z|ml)π(ml). (2.75)

The marginalized lab-mass prior is

π(ml) ≡
∫

dz π(z, ml), (2.76)

22Many previous analyses have assumed that this distribution is separable, however this
marginalization technique does not require this.
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which can be calculated numerically. (We also need this distribution to pro-
vide to the sampler.) Thus, the conditional prior we need for our look-up
table is:

π(z|ml) = π(z, ml)/π(ml). (2.77)

With look-up tables for L(κ2, ρopt, z) and π(z|ml), the sampler can quickly
evaluate Lz

marge by summing over the grid of z:

Lz
marg(κ

2, ρopt) = ∆z ∑
k
L(κ2, ρopt, zk)π(zk|ml), (2.78)

where ∆z is the spacing of the redshift grid. This allows us to carry out ex-
plicit distance marginalization while taking into account cosmological red-
shift.

2.8.5 Marginalization with multiple parameters

One must take care with the order of operations when implementing these
marginalization schemes simultaneously. We describe how to combine the
three marginalization techniques described above. The correct procedure is
to start with Eq. 2.64 and then marginalize over distance.

logLφ,D
marg = logZN

+ log
∫

dDLeI0(|κ2
C
(DL)|)− 1

2 ρ2
opt(DL)π(dDL).

(2.79)

Carrying out this integral numerically, one obtains a look-up table
logLφ,D

marge(κ
2
C, ρopt), which marginalizes over φ and DL. Finally, we

add in t marginalization by combining the look-up table with a fast Fourier
transform

Lφ,D,t
marg(κ

2
C, ρopt) = ∑

k
πk Lφ,D

marg
(
κ2

C(k), ρopt(k)
)
. (2.80)

2.8.6 Reconstructing the unmarginalized posterior

While explicitly marginalizing over parameters improves convergence and
reduces runtime, the sampler will generate no posterior samples for the
marginalized parameters. Sometimes, we want posterior samples for these
parameters. In this subsection we explain how it is possible to generate them
with an additional post-processing step.

The parameter we are most likely to be interested in reconstructing is the
luminosity distance DL. Let us assume for the moment that this is the only
parameter over which we have explicitly marginalized. The first step to cal-
culate the matched filter signal-to-noise ratio ρmf and optimal signal-to-noise
ratio ρopt for each sample. For one posterior sample k, the likelihood for dis-
tance is

Lk(d|DL) = ZN eκ2(θk,DL)− 1
2 ρ2

opt(θk,DL), (2.81)
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where κ2(DL) and ρopt(DL) are defined in Eq. 2.66. (When comparing with
Eq. 2.66, note that we have again made explicit the dependence on θk = what-
ever parameters we are not explicitly marginalizing over.) Since this like-
lihood is one-dimensional, it is easy to calculate the posterior for sample k
using Bayes’ theorem:

pk(DL|d) =
L(d|DL)π(DL)∫
dLL(d|DL)π(DL)

. (2.82)

Using the posterior, one can construct a cumulative posterior distribution for
sample k:

Pk(DL|d) =
∫

dDL pk(DL|d). (2.83)

The integral can be carried out numerically. The cumulative posterior dis-
tribution can be used to generate random values of DL for each posterior
sample.

DL = P−1
k (rand) (2.84)

Reconstructing the likelihood or posterior when multiple parameters
have been explicitly marginalized over is more complicated. However, one
may use the following iterative algorithm.

1. For each sample θk marginalize over all originally marginalized param-
eters except one (λ).

2. Draw a single λ sample from the marginalized likelihood times prior.

3. Add this λ sample to the θk and return to step 1, this time not marginal-
izing over λ.

Alternatively, one can skip the step of generating new samples in distance
and calculate the likelihood of the data given DL marginalized over all other
parameters,

L(d|DL) =
1
n

n

∑
k
Lk(d|DL)

=
ZN

n

n

∑
k

eκ2(θk,DL)− 1
2 ρ2

opt(θk,DL). (2.85)

This likelihood can be used in Eq. 2.29 to perform population inference on
the distribution of source distances and/or redshifts.
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2.9 Posterior predictive distributions

The posterior predictive distribution (PPD) represents the updated prior on
the parameters θ given the data d. Recall that the hyper-posterior p(Λ|d) de-
scribes our post-measurement knowledge of the hyper-parameters that de-
scribe the shape of the prior distribution π(θ). The PPD answers the ques-
tion: given this hyper-posterior, what does the distribution of π(θ) look like?
More precisely, it is the probability that the next event will have true pa-
rameter values θ given what we have learned about the population hyper-
parameters Λ

pΛ(θ|d) =
∫

dΛ p(Λ|d)π(θ|Λ). (2.86)

The Λ subscript helps us distinguish the PPD from the posterior p(θ|d). The
hyper-posterior sample version is

pΛ(θ|d) =
1
ns

ns

∑
k

π(θ|Λk), (2.87)

where k runs over ns hyper-posterior samples. While the PPD is the best
guess for what the distribution π(θ) looks like, it does not communicate in-
formation about the variability possible in π(θ) given uncertainty in Λ. In
order to convey this information, it can be useful to overplot many realiza-
tions of π(θ|Λk) where Λk is a randomly selected hyper-posterior sample.
An example of a PPD is included in Fig. 2.3.

2.10 Selection Effects

In this section, we discuss how to carry out inference while taking into ac-
count selection effects, which arise from the fact that some events are easier
to detect than others. We loosely follow the arguments from Abbott, 2016b;
however, see also Mandel, Farr & Gair, 2019; Fishbach, Holz & Farr, 2018. In
Subsection 2.10.1, we discuss selection effects in the context of an individual
detection. In Subsection 2.10.2, we generalize these results to populations of
events.

2.10.1 Selection effects with a single event

Some gravitational-wave events are easier to detect than others. All else
equal, it is easier to detect binaries if they are closer, higher mass (at least,
up until the point that they start to go out of the observing band), and with
face-on/off inclination angles. More subtle selection effects arise due to black
hole spin (e.g., Ng et al., 2018). Typically, a gravitational-wave event is said
to have been detected if it is observed with a matched-filter signal-to-noise
ratio—maximized over extrinsic parameters θextrinsic—above some threshold
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FIGURE 2.2: An example corner plot from Talbot & Thrane, 2018 showing posteri-
ors for hyper-parameters µpp and σpp. Respectively, these two hyper-parameters
describe the mean and width of a peak in the primary mass spectrum due to the

presence of pulsational pair instability supernovae.
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FIGURE 2.3: An example of a posterior predictive distribution (PPD) for primary
black hole mass, calculated using the hyper-posterior distributions in the top
panel (adapted from Talbot & Thrane, 2018). The PPD has a peak near m1 = 35
because the hyper-posterior for µpp is maximal near this value. The width of the

PPD peak is consistent with the hyper-posterior for σpp.

ρth

ρ′mf ≡ max
θextrinsic

(ρmf) > ρth. (2.88)

Usually, ρth = 8 for a single detector or ρth = 12 for a ≥ 2 detector network.
Focusing on events with a ρmf > ρth detection forces us to modify the

likelihood function

L(d|θ, det) =

{
1

pdet(θ)
L(d|θ) ρ′mf(θ) ≥ ρth

0 ρ′mf(θ) < ρth
, (2.89)

where

pdet(θ) ≡
∫

ρ′mf(θ)>ρth

ddL(d|θ). (2.90)

(Here, we temporarily switch to data=d to avoid confusing data with the
differential d; we switch back to data=d in a moment once we are finished
with this normalization constant.) This modification enforces the fact that
we are not looking at data with ρ′mf < ρth. The pdet factor ensures that the
likelihood is properly normalized.

There are different ways to calculate pdet in practice. The probability den-
sity function for ρmf given θ—the distribution of ρmf arising from random
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FIGURE 2.4: The distribution of matched filter signal-to-noise ratio maximized
over phase for the same template in many noise realisations (blue). The distribu-
tion peaks at ρopt = 7.6 (dashed black). The theoretical distribution (Eq. 2.91) is

shown in orange.

noise fluctuations—is a normal distribution with mean ρopt and unit vari-
ance

p(ρ′mf|θ) =
1

2π
exp

(
−1

2

(
ρ′mf − ρopt(θ)

)2
)

, (2.91)

see Fig. 2.4. Thus,

pdet(θ) =
∫ ∞

ρth

dx
1√
2π

exp
(
−1

2

(
x− ρopt(θ)

)2
)

(2.92)

=
1
2

erfc
(

ρth − ρopt(θ)√
2

)
. (2.93)

Alternatively, if we are interested in the selection effects of intrinsic pa-
rameters, one may express pdet as the ratio of the “visible volume” V(θ) to
the total spacetime volume Vtot

pdet(θ) =
V(θ)
Vtot

. (2.94)

The visible volume is typically calculated numerically with injected signals.
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2.10.2 Selection effects with a population of events

When considering a population of events, Eq. 2.89 generalizes to

L(d, N|Λ, det) =

{
1

pdet(Λ|N)
L(d, N|Λ, R). ρmf ≥ ρth

0 ρmf < ρth
. (2.95)

In analogy to Eq. 2.94, the pdet normalization factor can be calculated us-
ing the visible volume as a function of the hyper-parameters Λ

V(Λ) ≡
∫

dθV(Λ)π(θ|Λ). (2.96)

Naively, one might expect that

pdet(Λ|N) =

(V(Λ)

Vtot

)N

, (2.97)

but this expression is incorrect because it does not marginalize over the
Poisson-distributed rate, which ends up changing the answer. Marginalizing
over the rate, we obtain

pdet(Λ|N) =
∫

dR
(V(Λ)

Vtot

)N

π(N|R)π(R)

=
∫

dR
(V(Λ)

Vtot

)N [
e−RV(Λ)V(Λ)NRN

N!

]
π(R)

=

(V(Λ)

Vtot

)N [∫
dR e−RV(Λ)V(Λ)NRN

N!

]
π(R). (2.98)

Note that pdet depends on our prior for the rate R. If we choose a uniform-
in-log prior π(R) ∝ 1/R, we obtain

pdet(Λ|N) ∝
(V(Λ)

Vtot

)N

, (2.99)

which reproduces the results from Abbott, 2019a. Note that

L(d|Λ, det) 6=
∫

dθL(d|θ, det)π(θ|Λ). (2.100)

Addendum

Since the publication of this paper additional compact binary coalescences
have been observed and significant progress has been made in theoretical
and observational analysis. The reader is directed to Chapters 1 and 8 for an
overview of the field at the time of writing.
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Determining the population
properties of spinning black holes
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Abstract

There are at least two formation scenarios consistent with the first
gravitational-wave observations of binary black hole mergers. In field
models, black hole binaries are formed from stellar binaries that may
undergo common envelope evolution. In dynamic models, black hole
binaries are formed through capture events in globular clusters. Both classes
of models are subject to significant theoretical uncertainties. Nonetheless,
the conventional wisdom holds that the distribution of spin orientations
of dynamically merging black holes is nearly isotropic while field-model
black holes prefer to spin in alignment with the orbital angular momentum.
We present a framework in which observations of black hole mergers can
be used to measure ensemble properties of black hole spin such as the
typical black hole spin misalignment. We show how to obtain constraints
on population hyperparameters using minimal assumptions so that the
results are not strongly dependent on the uncertain physics of formation
models. These data-driven constraints will facilitate tests of theoretical
models and help determine the formation history of binary black holes
using information encoded in their observed spins. We demonstrate that
the ensemble properties of binary detections can be used to search for and
characterize the properties of two distinct populations of black hole mergers.
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3.1 Introduction

At present, merging black holes are the only directly detected source of grav-
itational waves (Abbott, 2016h; Abbott, 2016i; Abbott, 2016f; Abbott, 2016c;
Abbott, 2016g; Abbott, 2016b; Abbott, 2017b; Abbott, 2016a; Abbott, 2016e;
Abbott, 2017f). A variety of mechanisms by which black hole binaries can
form have been proposed. These mechanisms might yield significantly dif-
ferent distributions of the intrinsic parameters of binaries (Rodriguez et al.,
2016b). In this work we focus on the distribution of spin orientations to
probe black hole binary formation mechanisms. We consider two mecha-
nisms which are expected to dominate, the field and dynamical models (see,
e.g., Mandel & O’Shaughnessy, 2010 for a detailed review).

In dynamical models, the binary forms when two black holes become
gravitationally bound in dense stellar environments such as globular clus-
ters (Heggie, 1975). Due to mass segregation such clusters arrange them-
selves with more massive objects being found in the center and less massive
objects on the outside. This means that binaries are expected to have mass
ratios close to unity (Sigurdsson & Hernquist, 1993). It is expected that the
spins of the two companions will be isotropically oriented (Rodriguez et al.,
2016b).

The distribution of spin orientations in field models is subject to more the-
oretical uncertainty (e.g., Postnov & Yungelson, 2014). In field models, a stel-
lar binary forms and the components of the binary then coevolve. Although
such stars are expected to form with their angular momenta aligned with the
total angular momentum of the binary, there are exceptions (e.g., Albrecht
et al., 2011; Albrecht et al., 2014). If binaries are formed with misaligned
spins, tidal interactions and mass transfer processes between the stars can
align the angular momenta of the stars with the total angular momentum
of the binary (e.g., Bardeen & Petterson, 1975; Hut, 1981). When the first
star explodes in a supernova and collapses to form a black hole, a natal kick
may be imparted on the two companions due to asymmetry of the explo-
sion (e.g., Janka, 2012), increasing misalignment between spin and angular
momentum vectors. The subsequent evolution of the secondary, possibly in-
volving a common envelope phase, can reverse this misalignment (Ivanova
et al., 2013). This is followed by the supernova of the secondary, which may
give each black hole another kick and some additional degree of misalign-
ment. The net effect is to leave the population of black hole spin orientations
distributed about the angular momentum vector of the binary with some un-
known typical misalignment angle (Kalogera, 2000; Repetto, Davies & Sig-
urdsson, 2012; Rodriguez et al., 2016b; O’Shaughnessy, Gerosa & Wysocki,
2017).

Following the formation of the black hole binary (either through dynam-
ical capture or common evolution) the spin orientation of nonaligned spin-
ning black holes changes due to precession. Isotropic spin orientation dis-
tributions are expected to remain isotropic throughout such evolution (Bog-
danović, Reynolds & Miller, 2007). However, anisotropic distributions, such
as those predicted by field models, may change significantly (Schnittman,
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2004; Kesden et al., 2015; Gerosa et al., 2015). Here, we are interested in the
distribution of spin orientations at the moment the binary enters LIGO’s ob-
serving band. We therefore measure our spin orientations at fref = 20 Hz.
Advanced LIGO’s observing band will eventually extend down to 10 Hz, but
we use 20 Hz here for the sake of convenience. One may use the spin orienta-
tion at fref to reverse engineer the spin alignment distribution at the moment
of formation, but this is not our present goal.

In this paper, we use Bayesian hierarchical modeling (e.g., Gelman et al.,
2013) and model selection to infer the parameters describing the distribution
of spins of black hole binaries. We construct a mixture model, which treats
the fraction of dynamical mergers, the fraction of isolated binary mergers,
and the typical spin misalignment of the primary and secondary black holes
as free parameters. We apply the model to simulated data (including noise)
to show that we can both detect the presence of distinct populations, and also
measure hyperparameters describing typical spin misalignment.

Our method builds on a body of research using gravitational waves to
study the ensemble properties of compact binaries. In Stevenson, Ohme &
Fairhurst, 2015, it was shown that Bayesian model selection can be used to
distinguish between formation channels using nonparametrized mass dis-
tributions. Clustering was used in Mandel et al., 2017 to show that model-
independent statements about the existence of distinct mass subpopulations
can be made with an ensemble of detections. In Fishbach, Holz & Farr, 2017;
Gerosa & Berti, 2017, it was shown that the spin magnitude distribution can
be used to determine whether observed merging black holes formed through
hierarchical mergers of smaller black holes. Hierarchical merger models pre-
dict an isotropic distribution of black hole spin orientations since all binaries
form through dynamical capture.

Vitale et al., 2017b showed that model selection can be used to distinguish
between models which predict mutually exclusive spin orientations of merg-
ing compact binaries, both binary black holes and neutron star black hole
binaries. In order to generate two distinct populations with different spin
distributions, binaries were generated with random spin angles. Those with
tilt angles (between the black hole spin and the Newtonian orbital angular
momentum) < 10◦ were considered to be a fieldlike binary while those with
tilt angles > 10◦ were considered to be dynamiclike. The authors showed
that, after ∼ 100 detections, one can recover the proportion of binaries in
each population to within ∼ 10% at 1σ.

Stevenson, Berry & Mandel, 2017 used Bayesian hierarchical modeling
to recover the proportion of binaries taken from a set of four populations
distributed according to astrophysically motivated, spin orientation distri-
butions with fixed spin magnitudes (ai = 0.7). Unlike Vitale et al., 2017b,
the populations overlap so that even precise knowledge of a binary’s spin
parameters does not provide certain knowledge about its parent population.
Of the four populations, three are different distributions predicted by pop-
ulation synthesis models of isolated binary evolution and the fourth is the
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isotropic distribution predicted for dynamic formation. They achieve a sim-
ilar result to Vitale et al., 2017b, measuring the relative proportion of differ-
ent populations at the ∼ 10% level after 100 events. They also demonstrate
that their two “extreme hypotheses" (perfect alignment and isotropy) can be
ruled out at > 5σ after as few as five events if they are not good descriptions
of nature.

We build on these studies by employing a (hyper)parametrized model
of the spin orientation distribution for the field model in order to measure
not just the fraction of binaries from different populations, but also prop-
erties of the field model. In particular, we aim to measure the typical black
hole misalignment for black hole binaries formed in the field. The advan-
tage of this approach is that our modeling employs a broadly accepted idea
from theoretical modeling (black holes in field binaries should be somewhat
aligned) without assuming less certain details about the size of the misalign-
ment. Since our model is agnostic with respect to the detailed physics of
binary formation and subsequent evolution, the resulting methodology is
robust against theoretical bias and provides a measurement of black hole spin
misalignment for binaries formed in the field.

The remainder of the paper is organized as follows. In the next section
we review how the properties of merging binary black holes are recovered
from observed data and briefly discuss the current observational results. We
then introduce a useful parametrization to describe an admixture of field and
dynamical black hole mergers. We follow this with a description hierarchical
inference. We then present the results of a proof-of-principle study using
simulated data. We introduce a new tool for visualizing spin orientations,
spin maps. Finally, closing thoughts are provided.

3.2 Gravitational-wave parameter estimation

In order to determine the parameters describing the sources of gravitational
waves Θ from gravitational-wave strain data h, we employ Bayesian infer-
ence. Merging binary black hole waveforms are described by 15 parame-
ters: two masses {m1, m2}, two three-dimensional spin vectors {S1, S2}, and
seven additional parameters to specify the position and orientation of the
source relative to Earth. It is possible that in both the field and dynami-
cal formation models the presence of a third companion will induce eccen-
tricity when the binary enters LIGO’s observing band through Lidov-Kozai
cycles (Antonini, Toonen & Hamers, 2017; Toonen, Hamers & Zwart, 2016;
Lidov, 1962; Kozai, 1962; Wen, 2003). However, we consider only circular
binaries. Most gravitational-wave parameter estimation results obtained to
date have been obtained using the Bayesian parameter estimation code LAL-
INFERENCE (Veitch et al., 2015). For our study we use the LALINFERENCE
implementation of nested sampling (Skilling, 2004). We employ reduced or-
der modeling and reduced order quadrature (Smith et al., 2016) to limit the
computational time of the analysis.

Performing parameter estimation over this 15-dimensional space is com-
putationally intensive. In order to maximize the efficiency sampling this
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high-dimensional space, the effect of the two spin vectors on the waveform
is approximately represented using two spin parameters (Schmidt, Ohme &
Hannam, 2015),

χeff =
a1 cos(θ1) + qa2 cos(θ2)

1 + q

χp =max
(

a1 sin(θ1),
(

4q + 3
4 + 3q

)
qa2 sin(θ2)

)
.

(3.1)

Here (a1, a2) are the dimensionless spin magnitudes, q = m2/m1 < 1 is the
mass ratio and (θ1, θ2) are the angles between the spin angular momenta
and the Newtonian orbital angular momentum of the binary. The variable
χeff is “the effective spin parameter." When χeff > 0, the binary merges at a
higher frequency than for χeff = 0 and hence spends more time in the observ-
ing band (Campanelli, Lousto & Zlochower, 2006). Similarly, binaries with
χeff < 0 spend less time in the observing band. The variable χp describes the
precession of the binary, which is manifest as a long-period modulation of
the signal (Apostolatos et al., 1994).

Using numerical relativity to compute all of the waveforms necessary
for parameter estimation is computationally prohibitive. Parameter estima-
tion therefore relies on “approximants," which can be used for rapid wave-
form estimation. We use the IMRPHENOMP approximant (Hannam et al.,
2014), which has been used in many recent parameter estimation studies, in-
cluding parameter estimation for recently observed binaries (e.g., Abbott,
2016i; Abbott, 2017b; Abbott, 2017f). IMRPHENOMP approximates a generi-
cally precessing binary waveform using χeff and χp. Parameter estimation of
the confirmed binary black hole detections, GW150914 (Abbott, 2016g; Ab-
bott, 2016i), GW151226 (Abbott, 2016f) and GW170104 (Abbott, 2017f), yield
(slightly) informative posterior distributions for χeff. However, the posterior
distributions for χp show no significant deviation from the prior.

The observed distribution of these two effective spin parameters will de-
pend on the mass and spin magnitude distributions of black holes. The dis-
tributions are expected to differ for binaries formed through different mech-
anisms (Kalogera, 2000). We do not consider these effects. Instead we work
directly with the spin orientations of each black hole. For our purposes, it
will be useful to define two additional variables:

z1 = cos(θ1)

z2 = cos(θ2). (3.2)

Instead of working with χeff and χp, we work with distributions of z1, z2. We
note that zi ≈ 1 corresponds to aligned spin while zi ≈ −1 corresponds to
antialigned spin and zi = 0 corresponds to black holes spinning in the orbital
plane.



42CHAPTER 3. POPULATION PROPERTIES OF SPINNING BLACK HOLES

3.3 Models

For the purpose of this work we ignore the detailed formation history used
in population synthesis studies. Instead, we introduce a simple parametriza-
tion designed to capture the salient features of the field and dynamic mod-
els. More sophisticated parametrizations are possible and will (eventually)
be necessary to accurately describe realistic populations. However, we be-
lieve this is a suitable starting point given current theoretical uncertainty.

We hypothesize that the distribution of {z1, z2} can be approximated as an
admixture of two populations. The first population is described by a trun-
cated Gaussian peaked at (z1, z2) = (1, 1) with width (σ1, σ2). This is our
proxy for the population formed in the field. The Gaussian shape mimics the
form of distributions predicted by population synthesis models, which are
clustered about z = 1 with some unknown spread. The second population is
uniform in (z1, z2), this represents the dynamically formed population. The
relative abundances of each population are given by ξ (field) and 1− ξ (dy-
namic). Thus, according to our parametrization, the true distribution of black
hole mergers can be approximately described as follows:

p0(z1, z2) =
1
4

p1(z1, z2) =
2
π

1
σ1

e−(z1−1)2/2σ2
1

erf
(√

2/σ1

) 1
σ2

e−(z2−1)2/2σ2
2

erf
(√

2/σ2

) (3.3)

p(z1, z2) = (1− ξ)p0 + ξ p1 (3.4)

Here, p0(z1, z2) is the true dynamic-only distribution, p1(z1, z2) is the true
field-only distribution, and p(z1, z2) is the true distribution for all black hole
binaries. These distributions depend on three hyperparameters: two widths
(σ1, σ2) and one fraction ξ.

For each of our population hyperparameters {σ1, σ2, ξ}, we choose
uniform prior distributions between 0 and 1. For ξ this covers the full
allowed range of values. For σ, this prior is chosen to be consistent with
the most conservative estimates on spin misalignments predicted by field
models (isotropically distributed kicks with the same velocity distribution
as neutron stars, isotropic full kicks in Rodriguez et al., 2016b). In Fig. 3.1,
we plot p1 for various values of σ.

There are two interesting limiting cases. We note that p1(z|σ) → δ(z− 1)
as σ → 0. This corresponds to perfect alignment of black hole spins. We also
note that p1(z|σ)→ p0 as σ→ ∞. Thus, depending on the choice of prior, the
dynamical model is degenerate with the field model evaluated at one point
in hyperparameter space. A consequence of this limiting behavior is that
it is far more difficult to distinguish samples drawn from a broad aligned
distribution (σ = 1), than an almost perfectly aligned distribution (σ = 0.01).
It is simple to extend this model to include more terms describing additional
subpopulations or alter the form of the existing terms to better fit physically
motivated distributions.
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FIGURE 3.1: The distribution of z for our field model proxy with varying σ; see
Eq. 3.3. By sending σ → 0, we obtain perfect alignment and by sending σ → ∞,

we obtain an isotropic distribution.
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3.4 Bayesian hierarchical modeling

Bayesian hierarchical modeling involves splitting a Bayesian inference prob-
lem into multiple stages. In the case of merging compact binaries these steps
are as follows:

i Perform gravitational-wave parameter estimation as described above.
We adopt priors that are uniform in spin magnitude and isotropic in spin
orientations.

ii Assume the population from which events are drawn is described by hy-
perparameters Λ. Calculate a likelihood function for the data given Λ by
marginalizing over the parameters for individual events Θ.

iii Combine multiple events to derive a joint likelihood for Λ.

iv Use the joint likelihood to derive posterior distributions for Λ, which, in
turn, may be used to construct Bayes factors or odds ratios comparing
different population models and confidence intervals on hyperparame-
ters.

Step (i) produces a set of nk posterior samples {Θi}, sampled according to
the likelihood of the binary having each set of parameters, p(Θ|h). This step
is computationally expensive and requires the application of a specialized
tool such as LALINFERENCE. In Step (ii), we estimate Λ using the poste-
rior samples {zi}. Our likelihood requires marginalization over z, for each
event. Since LALINFERENCE approximates the posterior for Θ with a list
of posterior sample points, the marginalization integral over (z1, z2) can be
approximated by summing the probability of each sample in the LALIN-
FERENCE posterior chain for our population model1 (see, e.g., MacKay, 2002,
Chapter 29 for details).

Step (iii): To combine data from N events, we multiply the likelihoods:

Lk(hk|Λ) ∝
∫

dz1dz2 p (z1, z2|hk) p (z1, z2|Λ)

∝
1
nk

nk

∑
α=1

p (zα1, zα2|Λ) (3.5)

L({hk}|Λ) =
N

∏
k=1
Lk(hk|Λ). (3.6)

Here, Lk(hk|Λ) is the likelihood function for the kth event with strain data
hk. The joint likelihood function L({hk}|Λ) combines data from all N mea-
surements to arrive at the best possible constraints on Λ.

Step (iv): At last, we arrive at the posterior distribution for Λ, p(Λ|{hk}).
Combining the joint likelihood L({hk}|Λ) with a prior distribution for the

1Stictly speaking, it is necessary to divide by the prior used in the single event parameter
estimation in the following equations, i.e., p (z1, z2|Λ) becomes p (z1, z2|Λ) /p (z1, z2|LAL).
Since the original prior is uniform in our case, we neglect this term.
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hyperparameters Λ, π(Λ|H), for a particular population model, H, we ob-
tain

p(Λ|{hk}) =
L({hk}|Λ)π(Λ|H)

Z({hk}|H)

∝
π(Λ|H)

Z({hk}|H)

N

∏
k=1

1
nk

nk

∑
α=1

p (zα1, zα2|Λ)

∝
N

∏
k=1

nk

∑
α=1

p(zα1, zα2|Λ).

(3.7)

Here, Z({hk}|H) is the Bayesian evidence for the data from N observations
{hk}, for a model H, which is given by marginalizing over the hyperprior
space

Z({hk}|H) =
∫

dΛL({hk}|Λ, H)π(Λ|H). (3.8)

From our (hyper)posterior distribution p(Λ|{hk}), we construct confidence
intervals for our hyperparameters.

The odds ratio of two models is:

Oi
j =

Z({hk}|Hi)p(Hi)

Z({hk}|Hj)p(Hj)
. (3.9)

We use the odds ratio to select between different models. Here, the p(Hi) are
the prior probabilities assigned to each model. In our study, we assign equal
probabilities to each model. Thus, the odds ratio is equivalent to the Bayes
factor:

Bi
j =

Z({hk}|Hi)

Z({hk}|Hj)
. (3.10)

We impose a somewhat arbitrary, but commonly used threshold of | ln(B)| >
8 (∼ 3.6σ) to define the point at which one model is significantly preferred
over another.

Now that we have derived a number of statistical tools, it is worthwhile to
pause and consider what astrophysical questions we can answer with them.

i. If p(σ1, σ2|{hk}) excludes σ1 = σ2 = ∞, then it necessarily follows that
p(ξ|{hk}) excludes ξ = 0, and we may infer that at least some binaries
merge through fieldlike models.

ii. If p(ξ|{hk}) excludes ξ = 1, we may infer that not all binaries can be
formed via fieldlike models.

iii. If both ξ = 0 and ξ = 1 are excluded, then we may infer the existence of
at least two distinct populations.

iv. If the (σ1, σ2) posterior distribution p(σ1, σ2|{hk}) excludes σ1 = σ2 = 0,
we may infer that not all binaries are perfectly aligned.

In this way we can distinguish between different formation channels or spe-
cific models, i.e., perfect alignment in case (iv).
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We employ Bayes factors to compare our population models. We calculate
evidences for three hypotheses:

i. Zdyn – Dynamic formation only, ξ = 0.

ii. Zfield – Field formation only, ξ = 1.

iii. Zmix – Mixture of field and dynamic, ξ ∈ [0, 1].

We then define three Bayes’ factors to compare these three hypotheses:

i. Bmix
field = Zmix/Zfield.

ii. Bmix
dyn = Zmix/Zdyn.

iii. Bfield
dyn = Zfield/Zdyn.

In the next section, we apply these tools to a variety of simulated data sets in
order to show under what circumstances we can measure various hyperpa-
rameters and carry out model selection.

3.5 Simulated population study

We use a simulated population to test our models. For the sake of simplicity,
we construct a somewhat contrived population in which every binary shares
some parameters corresponding to the best-fit parameters of GW150914:

• (m1, m2) = (35M�, 30M�).

• dL = 410 Mpc.

• (a1, a2) = (0.6, 0.6).

Here, dL is luminosity distance and (a1, a2) are the black hole spin magni-
tudes. The remaining extrinsic parameters (sky position and source orienta-
tion) are sampled from isotropic distributions. We emphasize that the dis-
tance and mass and spin magnitude distributions are not representative of
the full population of black hole binaries, which is poorly constrained. These
distributions represent a subset of GW150914-like events, chosen for illustra-
tive purposes. In reality, for every GW150914-like event, there are likely to
be a large number of more distant (and possibly lower mass) events, which
contribute relatively less information about spin.

We inject 160 binary merger signals into simulated Gaussian noise corre-
sponding to Advanced LIGO at design sensitivity (Aasi, 2015; Abbott, 2016j).
Of these, we generate 80 distributed according to p0 and 80 distributed ac-
cording to p1; see Eq. (3.3). The injected values of (z1, z2) are shown in
Fig. 3.2. The red diamonds correspond to the p0 dynamical model and the
blue circles to the p1 fieldlike model. From these we construct “universes"
summarized in Table 3.1. Each universe contains a different mixture of field
and dynamical binaries. In every universe, (σ1, σ2) = (0.3, 0.5).

For each universe, we present the results of the methods described above.
In Fig. 3.3, we plot the 1σ (dark), 2σ (lighter), and 3σ (lightest) confidence
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FIGURE 3.2: Simulated spin misalignment parameters (z1, z2) for the different
populations of binary black holes used in our study. Red diamonds are drawn
from the isotropic distribution p0 while the blue circles are drawn from the

aligned distribution, p1(z1, z2|σ1, σ2 = 0.3, 0.5); see Eq. (3.3).
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Universe ξ σ1 σ2
A 0 N/A N/A
B 0.1 0.3 0.5
C 0.5 0.3 0.5
D 0.9 0.3 0.5
E 1 0.3 0.5

TABLE 3.1: Hyperparameters describing different simulated universes. Here, ξ
is the proportion drawn from our aligned model and (σ1, σ2) describe the typical

misalignment angle; see Eq. (3.3).

regions as a function of the number of GW150914-like events. In Fig. 3.4, we
plot the three Bayes factors defined in Eq. (3.10) as a function of the number
of GW150914-like events. Each row in Fig. 3.3 and panel in Fig. 3.4 represents
a different universe.

First we consider universe A, consisting of only dynamically formed bi-
naries, ξ = 0; see the top row of Fig. 3.3. Since all binaries form dynamically
in this universe, σ is undefined. We see that after O(1) event we rule out
ξ = 1 at 3σ (the hypothesis that all binaries form in the field).

Next we consider universe E in which all events are drawn from the
aligned model, ξ = 1; see the bottom row of Fig. 3.3 and the bottom panel
of Fig. 3.4. For this universe, σ1 = 0.3, σ2 = 0.5. We rule out ξ = 0 (dynam-
ical only) at 3σ after O(1) event. The Bayes factors also rule out all binaries
forming dynamically after . 10 events. The threshold | ln(B)| = 8 is shown
by the dashed line. After 80 events, the 1σ confidence intervals for σ1 and
σ2 have shrunk to ∼ 30% and the 1σ confidence interval for ξ has shrunk to
3%. The Bayes factor comparing the two-population hypothesis to the purely
field hypothesis Bmix

field (the blue line in the bottom panel of Fig. 3.4) does not
strongly favor field-only formation.

Universes B, C and D are mixtures of the field and dynamical popula-
tions. Of these, B and D have only 10% drawn from the subdominant pop-
ulation. We recover marginally weaker constraints than the corresponding
single population universes. The hypothesis that all binaries form through
the dominant mechanism is disfavored at 1σ after a few tens of events for
universes B and D, establishing a weak preference for the presence of two dis-
tinct populations. For some realizations we can rule out both one component
models after 80 events, however generally we see a subthreshold preference
for the mixture model. This is unsurprising since each one-population model
is a subset of our two-population model. For universe C, an equal mixture
of events drawn from the field and dynamical populations. Both ξ = 0 and
ξ = 1 are excluded at 3σ after tens of events establishing the presence of two
distinct subpopulations.

For all five universes, the presence of a perfectly aligned component (σ =
0) is excluded after fewer than 20 events. For many realizations this number
is < 5. For universes B, C and D (consisting of a mixture of field and dy-
namical mergers), we can rule out the entire population forming from one
of the two channels after 10–40 GW150914-like events. When there is a large
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contribution from the aligned model, we observe that the allowed region for
σ1 becomes small faster than the allowed region for σ2. There are two ef-
fects, which explain this. First, the secondary black hole’s spin has a less
significant effect on the waveform (Vitale et al., 2014; Vitale & Evans, 2017;
Vitale et al., 2017a). The spin orientation of the secondary is therefore less
well constrained for each event. This translates to a larger uncertainty for σ2
compared to σ1. Second, the width of the distribution of spin tilts is broader
for the secondary black holes. This broader distribution is intrinsically more
difficult to resolve.

3.6 Spin maps

In addition to our hierarchical analysis, we present a visualization tool for the
distribution of spin orientations. We introduce “spin maps": histograms of
posterior spin orientation probability density, averaged over many events,
and plotted using a Mollweide projection of the sphere defining the spin
orientation, see Fig. 3.5. The maps use HEALPix (Górski et al., 2005). For
each posterior sample the latitude is the spin tilt of the primary black hole,
θ1, and the longitude the difference in azimuthal angles of the two black
holes, ∆Φ. The difference in azimuthal angles may give information about
the history of the binary, specifically by identifying spin-orbit resonances at
∆Φ = 0, π (Schnittman, 2004; Gerosa et al., 2013; Gerosa et al., 2014; Kes-
den et al., 2015; Gerosa et al., 2015; Trifirò et al., 2016). These resonances, if
detected, would appear as bands of constant longitude. We do not utilize az-
imuthal angle in this work and our injected distributions are isotropic in ∆Φ.
In the future, it would also be interesting to produce ensemble spin disk plots
(e.g., Fig. 5 of Abbott, 2016i), showing the spin magnitude and orientation
for a population of binaries.

The spin maps in Fig. 3.5 include contributions from 80 events for uni-
verses A and C (see Table 3.1). This simple representation is useful because it
provides qualitative insight into the distribution of spins and helps us to see
trends and patterns that might not be obvious from our likelihood formal-
ism. The north pole on these maps corresponds to spin aligned with the total
angular momentum of the binary. We see the preference for the spin to be
aligned with the angular momentum vector of the binary by the clustering in
the northern hemisphere.

3.7 Discussion

The physics underlying the formation of black hole binaries is poorly con-
strained both theoretically and observationally. We do not know which of
the proposed mechanisms is the main source of binary mergers: preferen-
tially aligned mergers formed in the field versus randomly aligned merg-
ers formed dynamically. We are also not confident in the predicted char-
acteristics of binaries formed through either channel. We therefore create a
simple (hyper)parametrization, describing the ensemble properties of black
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FIGURE 3.3: In each panel we plot 1σ (dark shading), 2σ (medium shading), and
3σ (light shading) confidence for different hyperparameters as a function of the
number of events N. Each column represents a different hyperparameter: σ1
(left), σ2 (middle), and ξ (right). Each row represents a different universe; see Ta-
ble 3.1. From top to bottom, the universes are A, B, C, D, and E. The dashed line
indicates the true hyperparameter values. The highest likelihood values of the
three parameters after 80 events are shown on each panel along with the width of

the 1σ confidence interval.
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FIGURE 3.4: Log Bayes factors as a function of the number of GW150914-like
events. The dot-dashed red line shows Bfield

dyn comparing the pure-field hypothesis
to the pure-dynamical hypothesis. The dashed green line shows Bmix
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ing the two-population hypothesis to the dynamical hypothesis. The solid blue
line shows Bmix

field comparing the two-population hypothesis to the pure-field hy-
pothesis. The dashed lines denotes | ln(B)| = 8, our threshold for distinguishing
between models. Each panel is a different universe. The top panel is universe C
(equal mixture of field and dynamic). With . 40 events, there is a strong prefer-
ence for the two-component hypothesis over the pure-dynamic hypothesis. Af-
ter ∼ 50 events there is a preference for the two-component hypothesis over the
pure-field hypothesis. The center panel is universe D (majority field with some
dynamic). With . 10 events, there is a strong preference for the two-component
and pure-field hypotheses over the pure-dynamic hypothesis. There is a pref-
erence for the correct two-population hypothesis over the pure-field hypothesis.
The bottom panel is universe E (pure field). With . 10 events, there is a strong
preference for the two-component and field hypotheses over the dynamic hy-
pothesis. There is a marginal preference for the correct field hypothesis over the

two-population hypothesis.
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FIGURE 3.5: Spin maps: maps of posterior spin orientation probability density
averaged over many realizations. The latitude is the spin tilt of the primary (more
massive) black hole. The longitude is the angle between the projection of the black
hole spins onto the orbital plane. The color bar is the number of posterior samples
per 5 deg2 HEALPix bin. The left panel shows a spin map for 80 events drawn
from universe A (see, Table 3.1) in which every binary merges dynamically. The
right panel shows 80 events drawn from universe C drawn in which, on average,
50% of the events are drawn from the dynamical population while 50% are drawn
from the field population with (σ1, σ2) = (0.3, 0.5); see, Eq. 3.3. The presence of a

preferentially oriented population is seen as clustering around the north pole.

hole binaries. We demonstrate that we can measure hyperparameters de-
scribing the spin properties of an ensemble of black hole mergers with mul-
tiple populations. Previous work by Vitale et al., 2017b and Stevenson, Berry
& Mandel, 2017 demonstrated that the fraction of binaries drawn from dif-
ferent populations can be inferred after O(10) events. We show that after a
similar number of events, the shape of the spin-orientation distribution can
be inferred using a simple hyperparametrization. We reproduce the finding
from Stevenson, Berry & Mandel, 2017, that O(1) event is required to distin-
guish an isotropically oriented distribution, ξ = 0, from a perfectly aligned
distribution, ξ = 1, σ1 = σ2 = 0. After fewer than 40 GW150914-like events
we can determine the properties of the dominant formation mechanism for
all of our considered scenarios. We also introduce the concept of spin maps,
which provide a tool for visualizing the distribution of spin orientations from
an ensemble of detections.

One limitation of our study is that, for the sake of simplicity, we employ
a population of binaries with masses, distance, and spins fixed to values
consistent with GW150914. The advantage of this simple model is that we
are able to isolate the effect of spin orientation by holding other parameters
fixed. The disadvantage is that the GW150914-like population is not a real-
istic description of nature. By changing from a population of binaries at a
fixed distance to a population distributed uniformly in comoving volume,
more events will be required for measurement of population hyperparame-
ters. This is because most events, coming from the edge of the visible volume,
will contribute only marginally to our knowledge of these hyperparameters.
We assume fixed spin magnitudes of a1 = a2 = 0.6. For a binary with aligned
spins, this would imply χeff = 0.6. Based on recent LIGO detections, this
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might be optimistic. For GW151226, χeff = 0.21+0.20
−0.10. For all other observed

events, χeff is consistent with 0. This implies either that the observed black
holes are not spinning rapidly or that the merging black holes observed so
far possess significantly misaligned spins (Abbott, 2016b; Abbott, 2017f; Farr
et al., 2017). If we have overestimated the typical black hole spin magnitude
a, the number of events required to determine the distribution of spin ori-
entation will increase. Implementing a theoretically motivated distribution
of these parameters is left to future studies. Another area of future work is
extending the method to other physically motivated spin orientation distri-
butions.

Addendum

Since the publication of this paper additional compact binary coalescences
have been observed and significant progress has been made in theoretical
and observational analysis. The reader is directed to Chapters 1 and 8 for an
overview of the field at the time of writing.
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Measuring the binary black hole
mass spectrum
with an astrophysically motivated
parameterization
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Abstract

Gravitational-wave detections have revealed a previously unknown popula-
tion of stellar mass black holes with masses above 20M�. These observations
provide a new way to test models of stellar evolution for massive stars. By
considering the astrophysical processes likely to determine the shape of the
binary black hole mass spectrum, we construct a parameterized model to
capture key spectral features that relate gravitational-wave data to theoreti-
cal stellar astrophysics. In particular, we model the signature of pulsational
pair-instability supernovae, which are expected to cause all stars with ini-
tial mass 100M� . M . 150M� to form ∼ 40M� black holes. This would
cause a cut-off in the black hole mass spectrum along with an excess of black
holes near 40M�. We carry out a simulated data study to illustrate some
of the stellar physics that can be inferred using gravitational-wave measure-
ments of binary black holes and demonstrate several such inferences that
might be made in the near future. First, we measure the minimum and max-
imum stellar black hole mass. Second, we infer the presence of a peak due
to pair-instability supernovae. Third, we measure the black hole mass ratio
distribution. Finally, we show how inadequate models of the black hole mass
spectrum lead to biased estimates of the merger rate and the amplitude of the
stochastic gravitational-wave background.
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4.1 Introduction

The black holes observed by advanced gravitational-wave detectors such
as the Laser Interferometer Gravitational-wave Observatory (LIGO) (Aasi,
2015) and Virgo (Acernese, 2015) are widely believed to be formed from mas-
sive stars with initial mass, M & 20M� (Heger et al., 2003). Gravitational-
wave measurements constrain the mass and spin of merging binaries. These
measurements, in turn, can be used to better understand the evolution of
massive stars. In this paper, we study how gravitational-wave measurements
of the black hole mass spectrum can be used to inform our understanding of
stellar evolution.

Simulating the final stages of stellar binary evolution is computationally
expensive. Additionally, there are significant theoretical uncertainties in key
aspects of binary evolution, especially the common envelope phase (Ivanova
et al., 2013) and supernova mechanism. For these reasons, populations of
compact objects are simulated using population synthesis models (e.g., Do-
minik et al., 2015; Belczynski et al., 2017; Stevenson et al., 2017). These are
phenomenological models calibrated against a small number of more de-
tailed stellar simulations.

At the time of writing, there have been five confirmed detections of
binary black hole mergers and one unconfirmed candidate event (e.g.,
Abbott, 2016h; Abbott, 2016f; Abbott, 2016b; Abbott, 2017f; Abbott, 2017h;
Abbott, 2017g). The 90% credible regions for the source masses of the black
holes range from ∼ 5M� to ∼ 40M�. Of the observed events, only one
(GW151226) provides unambiguous evidence of black hole spin (Abbott,
2016f), although two events (GW150914 and GW170104) show a weak
preference for spins anti-aligned with respect to the orbital angular mo-
mentum vector (Abbott, 2016c; Abbott, 2017f). The implications of these
measurements are currently unclear. Current theories include: most binary
black holes are formed dynamically (Rodriguez et al., 2016a; Rodriguez
et al., 2018), black holes are subject to large black hole natal kicks (Rodriguez
et al., 2016b; O’Shaughnessy, Gerosa & Wysocki, 2017), and/or that large
black holes do not form with significant dimensionless spins (Belczynski
et al., 2017; Wysocki et al., 2018).

There has been significant work using gravitational-wave data to infer
the properties of black hole formation with ensembles of detections. These
works range from comparing gravitational-wave data to specific, non-
parameterized models (Mandel & O’Shaughnessy, 2010; Stevenson, Ohme &
Fairhurst, 2015; Dominik et al., 2015; Belczynski et al., 2016; Stevenson, Berry
& Mandel, 2017; Zevin et al., 2017; Belczynski et al., 2017; Miyamoto et al.,
2017; Farr et al., 2017; Wysocki et al., 2018; Barrett et al., 2018), to attempts to
group the data by binning, clustering or Gaussian mixture modeling (Man-
del et al., 2017; Farr, Holz & Farr, 2018; Wysocki, 2017), to fitting physically
motivated phenomenological population (hyper)parameters (Kovetz et al.,
2017; Talbot & Thrane, 2017; Fishbach & Holz, 2017). In this work, we take
the last approach and demonstrate that it is possible to identify physical
features in the black hole mass spectrum with an ensemble of detections
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using phenomenological models, building on work in Kovetz et al., 2017
and Fishbach & Holz, 2017.

Previous attempts to determine the binary black hole mass spectrum
have employed one or more of these three approaches. Clustering is applied
to a binned mass distribution in Mandel et al., 2017 to demonstrate that a
mass gap between neutron star and black hole masses can be identified after
O(100) observations. In Zevin et al., 2017; Stevenson, Ohme & Fairhurst,
2015; Barrett et al., 2018, the authors compare population synthesis mod-
els with different physical assumptions and show that predicted mass
distribution can be distinguished using O(10) of observations.

Previous analyses by the LIGO and Virgo scientific collaborations fit a
power-law model with variable spectral index, α. Fishbach & Holz, 2017
point out that, given LIGO/Virgo’s additional sensitivity to heavier binary
systems, there is a possible dearth of black holes larger than ∼ 40M�. They
suggest that this is due to the occurrence of pulsational pair-instability su-
pernovae (Heger & Woosley, 2002) and propose an extension of the current
LIGO analysis where the maximum mass is a free parameter. Pulsational
pair-instability supernovae occur in stars with initial masses 100M� . M .
150M�, causing all stars in that mass range to form black holes with mass
∼ 40M�. In addition to a cut-off in the black hole mass spectrum, we expect
that there will be an excess of black holes around the cut-off mass.

Kovetz et al., 2017 model the lower mass limit of black holes and use a
Fisher analysis to demonstrate that it should be possible to identify the pres-
ence of the neutron-star black hole mass gap. They also model the distribu-
tion of mass ratios and propose a test for detecting primordial black holes. A
method to simultaneously estimate the binary black hole mass spectrum and
the merger rate is presented in Wysocki, 2017. Wysocki, 2017 also consid-
ers a Gaussian mixture model for fitting the distribution of compact binary
parameters.

The rest of the paper is structured as follows. In section 4.2, we introduce
the statistical tools necessary to make statements about the black hole popu-
lation. We then develop our model in section 4.3 in terms of population (hy-
per)parameters by considering current observational constraints and predic-
tions from theoretical astrophysics and population synthesis. In section 4.4,
we perform a Monte Carlo injection study. We consider how many detections
will be necessary to identify different features using Bayesian parameter esti-
mation and model selection. We show how the predicted mass distributions
differ when using different (hyper)parameterizations. We also explore some
of the consequences of using inadequate (hyper)parameterizations. In par-
ticular, we show that inadequate (hyper)parameterization can lead to signifi-
cant bias in the estimate of the merger rate and the predicted amplitude of the
stochastic gravitational-wave background (SGWB). Some closing thoughts
are provided in section 4.5.
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4.2 Bayesian Inference

4.2.1 Gravitational-wave Detection

A binary black hole system is completely described by 15 parameters,
Θ. Recovering these parameters from the observed strain data requires
the use of specialized Bayesian parameter inference software, e.g., LAL-
INFERENCE (Veitch et al., 2015). The likelihood of a given set of binary
parameters is computed by comparing the strain data to the signal predicted
by general relativity. For the analysis presented here, the expected signal is
calculated using phenomenological approximations to numerical relativity
waveforms (e.g., Hannam et al., 2014; Schmidt, Ohme & Hannam, 2015;
Smith et al., 2016). For a given set of strain data, hi, LALINFERENCE returns
a set of ni samples, {Θ}, which are sampled from the posterior distribution,
p (Θ|hi, H), of the binary parameters, along with the Bayesian evidence,
Z(hi|H), where H is the model being tested.

The distribution of binary black hole systems observed by current de-
tectors is not representative of the astrophysical distribution of binary black
holes. The observing volume of current gravitational-wave detectors is lim-
ited by the instruments’ sensitivity. The sensitive volume for a detector to a
given binary is primarily determined by the masses of the black holes with
spin entering as a higher order effect. More massive systems produce gravi-
tational waves of greater amplitude. However, these more massive systems
merge at a lower frequency and, hence, spend less time in the observing band
of the detector. Additionally, distant sources undergo cosmological redshift
and appear more massive than they actually are. Here, we will deal only
with the un-redshifted “source-frame” masses, not the “lab-frame” masses
observed by gravitational-wave detectors We note that the source/lab-frame
distinction is about cosmological redshift and is not a statement about de-
tectability and/or selection effects.

Accounting for these factors, we calculate Vobs(Θ), the sensitive volume
for a binary with parameters Θ, following Abbott, 2016b, using semi-analytic
noise models corresponding to different sensitivities (Abbott, 2016j). The
noise, and hence sensitivity, in real detectors is time-dependent and so cal-
culating this volume requires averaging over the observing time to obtain a
mean sensitive volume 〈Vobs(Θ)〉 (Abbott, 2016b).

4.2.2 Population Inference

We are interested in inferring population (hyper)parameters describing the
distribution of source-frame black hole masses. The formalism to do this is
briefly described below (see e.g., Gelman et al., 2013, chapter 29 for a more
detailed discussion of hierarchical Bayesian modeling and Mandel, Farr &
Gair, 2014 for a discussion of selection biases).

Hierarchical inference of this kind can be cast as a post hoc method of
changing from the prior distribution used in the single event parameter esti-
mation to a new prior, which depends on population (hyper)parameters, Λ.
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We marginalise over all of the binary parameters while reweighting the pos-
terior samples by the ratio between our (hyper)parameterized model and the
prior used to generate the posterior distribution. This marginalisation inte-
gral is approximated by summing over the posterior samples for each event.
The N events are then combined by multiplying the new marginalised like-
lihood for the individual events,

L
(
{h}N

i=1

∣∣∣Λ, H
)

∝
N

∏
i

ni

∑
j

π(Θi
j|Λ, H)

π(Θi
j|LAL)

. (4.1)

Here π(Θ|LAL) is the prior probability distribution used for single event pa-
rameter estimation. The distribution π(Θi

j|Λ, H) is the probability of a binary
having parameters Θ in our model; see Sec. 4.3. We do not model any black
hole parameters other than source-frame mass and so Θ can be replaced by
m = (m1, m2), in Eq. 4.1 and all following equations. The prior distribu-
tion of source-frame masses in LALINFERENCE is a convolution of a uniform
in component mass prior between limits determined by the reduced order
model (Smith et al., 2016) and the redshift distribution corresponding to uni-
form in luminosity distance extending out to 4Gpc. This distance distribution
is converted to redshift assuming ΛCDM cosmology using the results from
the Planck 2015 data release (Planck Collaboration & Ade, 2016).

We combine this likelihood with π(Λ|H), the prior for the (hy-
per)parameters assuming a model H, and the Bayesian evidence for the data
given H to obtain the posterior distribution for our (hyper)parameters,

p
(

Λ
∣∣∣{h}N

i=1, H
)
=
L
(
{h}N

i=1

∣∣Λ, H
)

π(Λ|H)

Z
(
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∣∣H
) , (4.2)

Z
(
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∣∣∣H
)
=
∫

dΛL
(
{h}N

i=1

∣∣∣Λ, H
)

π(Λ|H). (4.3)

To perform the (hyper)parameter estimation we use the python imple-
mentation of MultiNest (Feroz, Hobson & Bridges, 2009; Buchner et al.,
2014). Additionally, we calculate the posterior predictive distribution (PPD)
of the binary parameters,

p(m|{h}N
i=1, H) =

∫
dΛπ(m|Λ, H)p(Λ|{h}N

i=1, H)

≈ 1
nk

nk

∑
k

π(m|Λk, H), (4.4)

where Λk are the nk (hyper)posterior samples. The PPD shows the probabil-
ity that a subsequent detection will have parameters Θ given the previous
data, {h}.
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4.2.3 Model Selection

Model selection is performed in our Bayesian framework by considering
Bayes factors,

BFα
β =
Z
(
{h}N

i=1

∣∣Hα

)

Z
(
{h}N

i=1

∣∣Hβ

) . (4.5)

A large Bayes factor, BFα
β � 1, indicates that Hα is strongly favored over Hβ.

We adopt a conventional threshold of ln BF = 8 to distinguish between two
models.

4.3 Phenomenology

In this section, we develop a parameterization of the black hole mass
spectrum using predictions from astrophysics theory, population synthesis
models, and electromagnetic observations. In this way, we can relate
gravitational-wave measurements to stellar astrophysics. For low-mass sys-
tems, the parameter that most strongly affects the observable gravitational
waveform is a combination of the component masses known as the chirp
mass,M = (m1m2)

3/5/(m1 + m2)
1/5. For high-mass systems, the waveform

is primarily determined by the total mass of the system. The mass ratio is
more difficult to determine due to covariances between the mass ratio and
the spin of the black holes.

The canonical assumed distribution of black hole masses is a power law
distribution in the primary mass between some maximum and minimum
masses. This power law distribution has three typical parameters: the spec-
tral index α, the minimum mass mmin, and the maximum mass mmax. The
distribution of secondary mass is typically taken to be flat between mmin and
m1. We take this as the starting point for our parameterization.

4.3.1 High-Mass Binaries

The observation of binary black hole mergers through the detection of gravi-
tational waves revealed the presence of a previously unobserved population
of black holes with mass ∼ 30M� (Abbott, 2016h; Abbott, 2017f; Abbott,
2017h). Since gravitational-wave detectors can observe more massive bina-
ries at greater distances, binaries containing larger black holes are preferen-
tially detected over less massive systems. Fishbach & Holz, 2017 note that,
given the observation rate of binaries with mass ∼ 30M�, it is somewhat
surprising that we have not seen more massive black holes. They propose
that this is due to a cut-off in the black hole mass spectrum around this mass.
By comparing the Bayesian evidence for mmax = 41M� and mmax = 100M�
using the first four events, they find tentative support for a cut-off. They fur-
ther show that it will be possible to identify the presence of an “upper mass
gap” with a Bayes Factor of & 150 (ln BF ≈ 5) using 10 detections and the
cut-off mass can be measured with ∼ 40 detections.
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The theoretical motivation for such a cut-off is pulsational pair-instability
supernovae (PPSN) (Heger & Woosley, 2002; Woosley & Heger, 2015),
whereby large amounts of matter are ejected prior to collapse to form a
black hole. The expected result of this process is that all stars with initial
mass 100M� . M . 150M� form black holes with masses ∼ 40M�.
Stars with 150M� . M . 250M� are expected to undergo pair-instability
supernovae (PISN) and leave no remnant. Hence, we expect a gap in the
black hole mass spectrum between ∼ 40M� and ∼ 250M� along with an
excess of black holes at some mass mpp ∼ 40M�. The excess is due to the
100M� . M . 150M� stars which undergo PPSN. The size, position and
shape are determined by the unknown details of PPSN. While the observa-
tion of cut-off near 40M� could be interpreted as evidence for PPSN, the
additional observation of a peak would provide a smoking-gun signature
that the highest mass stellar binaries are reduced in mass via PPSN.

Thus, we extend our description of the upper end of the black hole mass
spectrum to allow for the possibility of an excess due to PPSN. We model
this as a normal distribution with unknown mean mpp ∈ [25, 100]M� and
variance σpp < 5M�. It is also necessary to introduce a mixing fraction pa-
rameter, λ, which describes the proportion of binaries which are drawn from
the normal distribution.

We expect that any PPSN mass peak should be near the high-mass cut-off,
this corresponds to mmax ≈ mpp. Also, assuming that the power law is other-
wise a good description of the black hole mass spectrum, we expect that the
number of black holes in the PPSN peak should be no more than the num-
ber of black holes that would have formed had the power law distribution
continued to the upper limit of the upper mass gap, determined by the onset
of pair-instability supernovae, mPI ∼ 150M�. We impose this condition by
requiring that the extrapolated area which would be under the power-law
curve is less than the area contained within the Gaussian. This amounts to a
restriction on the allowed values of λ,

λ ≤
∫ mPI

mmax
m−α

∫ mPI
mmin

m−α
=

m1−α
PI −m1−α

max

m1−α
PI −m1−α

min

≈
(

mmin

mmax

)α−1

. (4.6)

Here, mmin is the upper limit of the NS-BH mass gap and mmax is the lower
limit of the upper mass gap. The variable mPI is the mass above which stars
undergo PISN leaving no remnant. Here, we assume α > 1 and mPI � mmax.

To hone our intuition, we can plug in plausible values of α, mmin, mmax
and mPI to determine a typical value of λ. For example, if we set mmin =
5M�, mmax = 50M� and α = 2, we find λ ∼ 0.1. If we measure a peak
consistent with these values, we anticipate that the position and width of
the peak can inform our physical understanding of this mechanism. If λ is
measured to be inconsistent with this constraint it could indicate that either
the extrapolation of the power law is not a valid assumption, or that the peak
is not entirely due to PPSN. We note that the fraction of observed black holes
which formed through PPSN will be larger than λ since the more massive
black holes are observable out to a greater distance.
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4.3.2 Low-Mass Binaries

The smaller sensitive volume for lower-mass binaries means that it is more
difficult to probe the low-mass end of the black hole mass spectrum with
gravitational-wave detections. Previous analyses of the black hole mass spec-
trum from gravitational-wave detections have assumed that the black hole
mass spectrum has a sharp cut-off at some minimum mass mmin. However,
this overestimates the number of low-mass black holes if the distribution of
low-mass black holes in merging binaries is the same as that in low-mass X-
ray binaries (Özel et al., 2010). Population synthesis models also generically
predict that the primary mass distribution peaks above the minimum mass.

We replace the step function at the low-mass end of the black hole mass
spectrum with a smoothing function, S(m, mmin, δm), which rises from zero
at mmin to one at mmin + δm,

S(m, mmin, δm) = (exp f (m−mmin, δm) + 1)−1 (4.7)

f (m, δm) =
δm
m
− δm

m− δm
. (4.8)

We note that δm = 0 recovers the step function used in previous analyses.
Since the mass distribution is expected to be an increasing function, the peak
of p(m1) occurs below mmin + δm. We expect mmin ∼ 5M� and δm & 3 given
that the black hole mass spectrum inferred from electromagnetic observa-
tions peaks at 8M�, with no black holes less massive than 5M�.

Our model of the distribution of the primary mass can be summarized as

p(m1|Λ) = (1− λ)ppow(m1|Λ) + λ ppp(m1|Λ) (4.9)

where
ppow(m1|Λ) ∝ m−α

1 S(m1, mmin, δm)H(mmax −m1)

encodes the power-law distribution with a smooth turn on at low mass and

ppp(m1|Λ) ∝ exp

(
− (m1 −mpp)2

2σ2
pp

)
S(m1, mmin, δm).

encodes the peak from PPSN.

4.3.3 Mass Ratio

Previous analyses by the LIGO/Virgo scientific collaborations have assumed
that the secondary mass is distributed uniformly between a lower limit set
by mmin and an upper limit of m1. This is motivated by observations of the
stellar initial binary population, (e.g., Kroupa et al., 2013 and Belloni et al.,
2017). In contrast to this, population synthesis models typically predict that
the distribution of mass ratios should be biased towards equal mass binaries,
(e.g., Belczynski et al., 2017). We model the distribution of the mass ratio as
a power-law with spectral index β as in Kovetz et al., 2017; Fishbach & Holz,
2017. For a mass ratio distribution peaked at equal masses, β > 0. We also
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α Spectral index of m1 for the power-law distributed
component as the mass spectrum.

mmax Maximum mass of the power-law distributed
component as the mass spectrum.

λ Proportion of primary black holes formed via PPSN.
mpp Mean mass of black holes formed via PPSN.
σpp Standard deviation of masses of black holes formed

via PPSN.
mmin Minimum black hole mass.
δm Mass range over which black hole mass spectrum

turns on.
β Spectral index of m2.

TABLE 4.1: (Hyper)parameters describing the black hole mass spectrum.

impose the same smoothing at the lower limit as we apply to the primary
mass. This allows us to write down the conditional probability distribution
for secondary masses given a primary mass,

p(m2|m1, Λ) =

(
m2

m1

)β

S(m2, mmin, δm)H(m1 −m2). (4.10)

4.3.4 Summary

A table listing the (hyper)parameters and their physical meaning is pro-
vided in Tab. 4.1. Including a factor of Vobs to account for selection biases,
the probability of detecting a mass pair given our (hyper)parameters,
Λ = {α, mmin, mmax, δm, λ, mpp, σpp, β} and under model H, is

π(m|Λ, H) ∝ p(m1|Λ, H)p(m2|m1, Λ, H)Vobs(m). (4.11)

We consider six different models for our (hyper)prior distribution, corre-
sponding to decreasingly stringent physical assumptions as independent hy-
potheses, these different prior assumptions can be tested with our Bayesian
framework using Bayes factors. In our first model, H0, we take the power law
distribution with maximum mass, mmax = 100M�, since the injected data set
considered in Sec. 4.4 has a minimum mass of 3M�, we allow mmin to vary,
rather than fixing it at mmin = 5M� as in previous analyses. In H1 we intro-
duce a uniform prior on mmax. In order to determine the relative importance
of the different features, we switch to models which include all the effects
described above except one. In H2, H3 and H4 we do not include the Gaus-
sian component, mass ratio and low-mass smoothing respectively. Finally,
in H5 we include all of these effects. These prior choices are summarized in
Tab. 4.2.
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FIGURE 4.1: The astrophysical distribution of source-frame masses assuming our
modeled distribution of m1 with (hyper)parameters as specified in Tab. 4.2 We
identify the excess of black holes at 35M� due to PPSN. We also see the smooth

turn-on at low masses.

4.3.5 Other Effects

As with any phenomenological model, our model has limitations. If the
proposed mass gaps exist in the population of black holes formed as the
endpoint of stellar evolution there may still be black holes found in these
gaps. The remnant of the binary neutron star merger GW170817 has mass
Mrem . 2.8M� (Abbott, 2017i). It is not clear whether this object is a neutron
star or a black hole. Similarly, the remnant from binary black hole mergers
such as GW150914 is more massive than the suggested upper mass limit due
to PPSN, Mrem = 62+4

−4M� (Abbott, 2016i). Both of these objects lie within the
proposed mas gaps. If either of these mergers happened in a dense environ-
ment such as a globular cluster, it is possible that such objects could merge
with a new companion (Heggie, 1975; Rodriguez et al., 2018). Similarly, pri-
mordial black holes (Hawking, 1971) are not bound by the limitations of stel-
lar evolution.

We do not expect either of these mechanisms to significantly affect the
position and shape of an excess due to PPSN, although they complicate the
interpretation of the maximum black hole mass. It is possible that black holes
formed through repeated mergers could be identified on a case by case basis.
For example, black holes formed by a binary black hole merger event are
expected to have large dimensionless spins, a ∼ 0.7 for equal mass non-
spinning pre-merger black holes (Scheel et al., 2009).
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α mmax λ mpp σpp β mmin δm
H0 [-3, 7] 100 0 N/A N/A 0 [2,10] 0
H1 [-3, 7] [10,100] 0 N/A N/A 0 [2,10] 0
H2 [-3, 7] [10,100] 0 N/A N/A [-5,5] [2,10] [0,10]
H3 [-3, 7] [10,100] [0,1] [25,100] (0,5] 0 [2,10] [0,10]
H4 [-3, 7] [10,100] [0,1] [25,100] (0,5] [-5,5] [2,10] 0
H5 [-3, 7] [10,100] [0,1] [25,100] (0,5] [-5,5] [2,10] [0,10]

MC 1.5 35 0.1 35 1 2 3 5

TABLE 4.2: Summary of example models. The prior ranges for our (hy-
per)parameters in each model are indicated. Each of these distributions is uni-
form over the stated range. The fixed parameters are in bold. “MC” refers to
the values chosen for the simulated universe in Sec. 4.4. These values are cho-
sen to be consistent with current observational data and theoretical predictions of

pulsational pair-instability supernovae and population synthesis modeling.

4.4 Monte Carlo Study

We verify that we are able to recover a distribution described by a particu-
lar set of (hyper)parameters using a Monte Carlo injection study. We create
a simulated universe in which the black hole mass distribution follows our
model with (hyper)parameters given in Tab. 4.2. For simplicity, we draw all
of the extrinsic parameters from the geometrically determined prior distri-
bution used by LALINFERENCE (Veitch et al., 2015) with luminosity distance
extending to 4Gpc. We draw the masses according to Eq. 4.11 and draw black
hole spins uniformly in spin magnitude and isotropically in orientation.

Motivated by the prediction of pulsational pair-instability supernovae,
our simulated universe includes a Gaussian component centred at the upper
limit of the power law component, mmax = 35M�. The Gaussian component
has a width σpp = 1M� and the mixing fraction λ = 0.1. The inferred value
of α is covariant with other parameters of the model, e.g., for the first four
detections, decreasing the maximum black hole mass, decreases the inferred
value of α (Fishbach & Holz, 2017). We set α = 1.5 for our injection study,
which is consistent with that analysis. We choose the spectral index of the
secondary mass distribution to be β = 2 to reflect the preference of popu-
lation synthesis models to produce near equal mass binaries. We impose a
lower mass cut-off of 3M� with a turn-on of δm = 5M�. These values are
chosen to be consistent with current observational data. The distribution of
primary masses with this choice of (hyper)parameters is shown in Fig. 4.1.
We can see that our model gives us a bimodal distribution with peaks at
≈ 7M�, due to the smooth turn-on, and 35M�, due to PPSN.

To enforce selection effects, we keep only binaries with optimal matched
filter signal to noise ratio, ρ > 8, in a single Advanced LIGO detector oper-
ating at design sensitivity (Abbott, 2016j). We generate a set of 200 events
for our simulated universe. Each signal is then injected into a three detector
LIGO-Virgo network with all detectors operating at their design sensitivities.
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FIGURE 4.2: The distribution of source-frame primary mass and mass ratio (q ≡
m2/m1) for our simulated universe, see Tab. 4.2. The dashed and solid lines show
the distribution before and after accounting for selection biases respectively. The

blue histogram indicates the injected values.

Fig. 4.2 shows the distribution of primary masses and mass ratio in our sim-
ulated universe before (dashed) and after (solid) accounting for observation
bias. The blue histogram indicates the injected values.

Using the recovered posterior distributions for the injected events, we
employ the statistical methods described above for each of our models. The
Bayes factors comparing H5 to the others are enumerated in Table 4.3. In Ta-
ble 4.3 we also give an approximate number of events needed to reach our
threshold ln BF = 8, assuming linear growth of ln BF with number of detec-
tions. We consider two cases. “Cosmic” assumes zero measurement error.
All uncertainty comes from cosmic variance. “Design” uses posterior sam-
ples obtained through running LALINFERENCE for a three detector network
operating at design sensitivity. Including measurement errors reduces our
resolving power between any pair of models by a significant factor for all
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H0 H1 H2 H3 H4
Cosmic ln BF5

i 253.0 55.0 18.0 31.0 1.0
Design ln BF5

i 161.0 14.0 5.0 7.0 -1.0
Nexpected 10 100 300 250 � 200

TABLE 4.3: The log Bayes factor comparing each of the hypotheses summarized
in Tab. 4.2 to the correct model, H5, given the 200 samples shown in Fig. 4.2 with
population (hyper)parameters as specified in Tab. 4.2. “Cosmic” indicates that
the masses are used with no measurement error, this represents an upper limit
on how well we can differentiate the two distributions. “Design” uses the output
of LALInference for a three detector Advanced LIGO/Virgo network operating
at design sensitivity. The bottom row gives an approximate number of events to
reach our threshold of Design ln BF = 8. Measuring the shape of the low-mass
cut-off will require many detections, due to the lower sensitivity at low masses.

the models. Unless otherwise specified we will refer to the Design Bayes fac-
tors. Below, we consider the effect of each of the modifications on the mass
distribution model.

4.4.1 Upper-Mass Cut-Off

After 200 events, our model without the variable upper-mass cut-off, H0, is
disfavored with a log Bayes factor of ∼ 160. We determine how many events
are necessary to surpass the threshold of ln BF5

0 = 8 by considering subsets
of our injection set. After 20 detections ln BF5

0 ∼ N(µ = 13.3, σ = 2.4). Here,
N(µ, σ) denotes a normal distribution with mean µ and variance σ2.

Given this, we expect to be able to identify an upper-mass cut-off in the
mass distribution after . 20 events. We note that µ grows linearly with num-
ber of events, this scaling is used in Table 4.3 to approximate the number of
events to reach ln BF = 8. This is consistent with a similar study by Fishbach
& Holz, 2017.

4.4.2 PPSN Peak

After 200 events, the posterior distribution on λ, the fraction of black holes
formed through PPSN, is shown in Figure 4.4. We measure the maximum
posterior probability point and 95% highest density confidence interval
(HDI) to be λ ∼ 0.11+0.07

−0.04 (all future confidence regions will be 95% HDI
unless specified) and disfavor λ = 0 at & 3σ. Correspondingly, ln BF5

2 = 4.9
which is moderate evidence for the existence of the PPSN peak, but below
our threshold for a confident detection.

Figure 4.3 shows the one and two-dimensional posterior distribution for
the position and width of the PPSN peak. We meausre mpp = 34.4+1.0

−1.2M�,
σpp = 1.2+0.9

−1.2M�. We note that the peak and width of the distribution are
covariant, with smaller values of mpp requiring a larger σpp. This is unsur-
prising as the highest mass black holes, ∼ 40M�, must be accounted for. The
posterior distribution on λ shows no significant correlation with mpp or σpp.
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FIGURE 4.3: The posterior on the mean and width of the PPSN peak using our
200 events injected into Gaussian noise. After 200 detections we can measure
the position and width of the PPSN peak to within ∼ 1M� at 95% confidence.
The dark and light shaded regions indicate the one-dimensional 68% and 95%

confidence intervals.
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FIGURE 4.4: The posterior on the fraction of black holes formed through PPSN
and the power-law index on the mass ratio using our 200 events injected into
Gaussian noise. We can measure the fraction of black holes formed through PPSN
to be λ ∼ 0.11+0.07

−0.04 at 95% confidence. We can determine the spectral index of the
mass ratio distribution to within ±1 at 95% confidence with 200 detections.

4.4.3 Mass Ratio

The posterior distribution on β is shown in Figure 4.4. After 200 events, the
1σ and 2σ confidence intervals on β span 1.1 and 2.2 respectively. We disfavor
H3 with a log Bayes factor of ln BF5

3 = 7.1 after our 200 injections, just below
our threshold of 8.

4.4.4 Low Mass

The (hyper)parameters describing the low-mass end of the distribution are
more difficult to measure than the high-mass (hyper)parameters due to the
observation bias favoring high-mass systems. After 200 events, there is no
evidence for or against the low-mass smoothing described by δm. This is
unsurprising since only 9 injected binaries have m1 . 8M�, above which
H4 and H5 are identical. Measuring the same events with improved strain
sensitivity would not improve our sensitivity to δm. We are limited by cosmic
variance: Cosmic ln BF5

4 = 1. The two-dimensional posterior distribution
on mmin and δm, Figure 4.5, shows the correlation between low minimum
masses and long turn-on lengths.

4.4.5 Mass Distribution Recovery

As a qualitative measure of the difference between the inferred mass distri-
butions, we plot the posterior predictive distribution for the primary mass
given the binaries in our injection study for our models in figure 4.6. The
dashed black line indicates the injected distribution. We can see the effect of
the different (hyper)parameterizations.
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FIGURE 4.5: The posterior on the (hyper)parameters describing the low-mass end
of the black holes mass spectrum using our 200 events injected into Gaussian
noise. These parameters are difficult to measure as only about 5% of events have
m1 < 8M�. We can see the clear covariance between a low minimum mass and a

long turn-on length.
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FIGURE 4.6: Posterior predicitive distribution (see Eq. 4.4) for m1 and q for our
models from Tab. 4.2 after 200 injected events. The dashed black line indicates the
true distribution and the notches indicate the injected values. These distributions

represent the observed distribution of source-frame masses.



72 CHAPTER 4. THE BINARY BLACK HOLE MASS SPECTRUM

In order to accommodate the lack of black holes with m & 40M�, α is
overestimated in model H0. This leads to an overly steep inferred distibri-
bution and an overestimate of the total merger rate (see Sec. 4.4.6). Models
H1 and H2, which do not include the Gaussian component, favor a mass
spectrum which is less steep than the injected distribution. This manifests
as a positive gradient after accounting for observation bias. If we do not fit
the mass ratio power-law index, we overestimate the number of heavy black
holes. This bias is seen as an overestimate of λ in H3 and maximum mass in
H1.

4.4.6 Impact on the Merger Rate

The majority of binary black hole mergers are not individually resolvable by
Advanced LIGO/Virgo. Using a (hyper)parameterization which does not
accurately describe the true distribution leads to a biased estimate of the
fraction of mergers which are individually resolvable and hence the merger
rate (Abadie, 2010; Abbott, 2017f). Compact binary coalescences are a Pois-
son process which can be described by a merger rate R(Λ). For a detector
with time-independent sensitivity and a model of the distribution of binary
black hole systems, the merger rate can be inferred from: the number of ob-
served events N, the sensitive volume of our detectors V(Λ), and the obser-
vation time T,

R(Λ) =
N

V(Λ)T
, (4.12)

where
V(Λ) =

∫
dΘ π (Θ|Λ)Vobs(Θ), (4.13)

and Vobs(Θ) is the sensitive volume to a given binary introduced in section
Sec. 4.2.

To illustrate the dependence of R on the mass distribution model, we cal-
culate the posterior distribution for the inferred merger rate estimate for the
models described in Tab. 4.2. For each model, we compute the posterior dis-
tribution for R. During the first observing run of Advanced LIGO,∼ 3 binary
black hole mergers were identified in∼ 48 days joint observing time (Abbott,
2016b). We use these values, N = 3, T = (48/365) yr to normalize our rate
estimates. We neglect the (currently large) Poisson uncertainty in the arrival
rate since this will be small once 200 detections have been made. Fig. 4.7
shows the posterior distribution for the merger rate for each of our models.
We note that if we assume the power law mass distribution extends out to
100M�, the dash-dotted line, we overestimate the merger rate by a factor of
2-3. This is due to the much larger α required to be consistent with the lack
of detections at high masses. A similar result is obtained in Wysocki, 2017 by
simultaneously fitting the merger rate and power-law spectral index.
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FIGURE 4.7: Posterior distribution for the binary black hole merger rate after 200
simulated events. We assume a detection rate consistent with Advanced LIGO’s
first observing run, N/T ≈ 23yr−1, and ignore Poisson uncertainties. The models
are described in Tab. 4.2. The dashed black line indicates the rate for the injected
distribution. If we do not fit the maximum mass (the dash-dotted line) the rate is
overestimated by a factor of 2-3. The inferred merger rate is not strongly sensitive

to any of the other modifications to the mass function.
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FIGURE 4.8: Posterior distribution for the ratio of the amplitude of the expected
stochastic gravitational-wave background to the value using the injected distri-
bution. The models are described in Tab. 4.2. The dashed lines indicate models
in which the mass ratio distribution is assumed to be uniform. The dash-dotted
line indicates the model in which the maximum black hole mass is fixed to be
100M�. Allowing the maximum mass of the power law component to vary de-
creases the predicted amplitude of the stochastic background by ∼ 10%. Relax-
ing the assumption that the distribution of secondary masses in uniform between
the minimum mass and the primary mass decreases the predicted amplitude by

∼ 10%.
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4.4.7 Impact on the Stochastic Background

Unresolvable mergers are widely believed to make the dominant contribu-
tion to the SGWB (Abbott, 2018c; Abbott, 2016d; Abbott, 2017l). The SGWB
is typically characterized by the ratio of the energy density of the universe in
gravitational-waves to the energy required to close the universe, ΩGW . The
most sensitive frequency of current detectors to the SGWB is ∼ 30Hz, this
frequency corresponds to the inspiral phase of all binaries relevant to this
work. The energy density due to binary black hole mergers depends on the
distribution of chirp masses and the merger rate (Zhu et al., 2011),

ΩGW ∼ 〈M5/3〉R. (4.14)

As seen above, cutting off the mass distribution around 40M� leads to
a reduction in the merger rate, however, this is accompanied by an increase
in M5/3. Overall, this leads to an ∼ 10% reduction in the expected SGWB
as seen in Figure 4.8. We also observe that relaxing the assumption that the
secondary mass is uniformly distributed leads to a further ∼ 10% reduction
in ΩGW. This is because the chirp mass is maximized for equal mass bina-
ries for a given primary mass. These reductions are smaller than the current
uncertainty on the amplitude of the background due to Poisson uncertainty
in the observed merger rate. The current method of searching for this back-
ground is by cross-correlating the strain data from the two LIGO detectors,
this method will take more time to resolve a weaker background.

The cross-correlation method is expected to require years of observation
before the background can be resolved. Recently, a method involving search-
ing directly for the stochastic background due to binary black hole mergers
has been introduced in Smith & Thrane, 2018. This method is expected to
be able to detect this component of the background using days of data. Since
this method relies on the rate of binary black hole mergers rather than ΩGW it
will be more sensitive to the black hole mass function than cross-correlation
searches.

4.5 Discussion

The first gravitational-wave detections are revealing a previously unexplored
population of black holes. While we are still in the regime of small-number
statistics, the systems observed to date may be suggestive of a cut-off in the
black hole mass spectrum at ∼ 40M�. This is consistent with the predicted
black hole mass distribution if stars with initial masses M & 100M� undergo
pulsational pair-instability supernovae. We hypothesize that, if this is the
cause of the cut-off, then there should be a corresponding excess of black
holes at around the same mass. We construct a phenomenological model,
which captures this behavior. In agreement with Fishbach & Holz, 2017, we
find that the presence of an upper mass cut-off can be identified at high sig-
nificance with O(10) events.
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We highlight several other interesting results that can be obtained using
200 detections at design sensitivity:

1. We will be able to identify the presence of an excess due to PPSN at
∼ 3σ and constrain the fraction of black holes forming through PPSN
to within ∼ 0.05 at 95% confidence.

2. We can measure the position and width of the PPSN graveyard to
within ∼ 1M�.

3. We will be able to measure the power-law index on the mass ratio to
within ∼ ±1.

Detailed measurement of the low-mass end of the mass distribution will most
likely require 1000s of detections and may have to wait for future detectors,
e.g., the proposed Einstein Telescope (Punturo et al., 2010) or Cosmic Ex-
plorer (Abbott, 2017c).

We demonstrate that neglecting the presence of either a cut-off or a mass
peak can lead to a mis-recovery of the astrophysical distribution of black
holes in merging binaries. For example, the higher sensitivity of current de-
tectors to high-mass binaries means that in order to fit the upper mass range
well, the low-mass distribution is biased. This leads to incorrect estimates
of the total binary black hole merger rate and the predicted amplitude of the
SGWB. The amplitude of the SGWB is also sensitive to the distribution of
mass ratios.

Our analysis assumes that a clear distinction can be made between bi-
nary black hole systems and other compact binaries. In reality, if there is not
a well-defined mass gap between neutron stars and black holes, it will be
non-trivial to distinguish between binary black hole, neutron star-black hole,
and binary neutron star systems (Yang, East & Lehner, 2018). Although, dif-
ferences in, e.g., the spins of the component objects may enable this distinc-
tion (Littenberg et al., 2015). Our framework can be naturally expanded to
include these other classes of compact binaries.

Addendum

Since the publication of this paper additional compact binary coalescences
have been observed and significant progress has been made in theoretical
and observational analysis. The reader is directed to Chapters 1 and 8 for an
overview of the field at the time of writing.
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Abstract

The non-linear gravitational-wave memory effect is a prediction of general
relativity in which test masses are permanently displaced by gravitational
radiation. We implement a method for calculating the expected memory
waveform from an oscillatory gravitational-wave time series. We use this
method to explore the phenomenology of gravitational-wave memory using
a numerical relativity surrogate model. Previous methods of calculating the
memory have considered only the dominant oscillatory (` = 2, m = |2|)
mode in the spherical harmonic decomposition or the post-Newtonian ex-
pansion. We explore the contribution of higher-order modes and reveal a
richer phenomenology than is apparent with ` = |m| = 2 modes alone. We
also consider the “memory of the memory” in which the memory is, itself, a
source of memory, which leads to a small, O

(
10−4), correction to the memory

waveform. The method is implemented in the python package GWMEM-
ORY, which is made publicly available.
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5.1 Introduction

The non-linear (Christodoulou) gravitational-wave memory is a permanent
displacement of freely-falling test masses due to the passage of gravita-
tional waves (Zel’dovich & Polnarev, 1974; Braginsky & Thorne, 1987;
Christodoulou, 1991). This memory effect can be understood as the trav-
elling gravitational waves themselves sourcing gravitational radiation.
Gravitational-wave memory may be detectable by advanced LIGO (Aasi,
2015) and Virgo (Acernese, 2015) by considering an ensemble of detec-
tions (Lasky et al., 2016; McNeill, Thrane & Lasky, 2017), especially if
the low-frequency sensitivity can be increased (Yu et al., 2018). Future
interferometers such as LISA, Cosmic Explorer (Abbott, 2017c) and Einstein
Telescope (Punturo et al., 2010) may be able to resolve the memory effect for
individual binaries (Favata, 2009a; Yang & Martynov, 2018). Gravitational-
wave memory is also a target for pulsar timing arrays (van Haasteren &
Levin, 2010; Pshirkov, Baskaran & Postnov, 2010; Seto, 2009; Cordes & Jenet,
2012; Wang et al., 2015; Arzoumanian et al., 2015).

While extracting memory from numerical relativity simulations is pos-
sible (Pollney & Reisswig, 2011), it is time-consuming and dependent on
the waveform extraction method (Taylor et al., 2013; Bishop & Rezzolla,
2016; Blackman et al., 2017). The minimal waveform model (MWM) (Favata,
2009a; Favata, 2009b; Favata, 2010) uses analytic expressions for the memory
from the inspiral, using the post-Newtonian expansion, and quasi-normal
mode ringdown and incorporates uncertainty in the memory sourced
during merger with a “fudge factor”. The MWM assumes the oscillatory
emission is well-described by the ` = |m| = 2 spin-weighted spherical
harmonic modes. For binaries with unequal masses and/or large spins
this assumption is known to break down (Calderón Bustillo et al., 2016;
Calderón Bustillo, Laguna & Shoemaker, 2017). In this work we implement a
previously suggested method of calculating the memory which avoids these
issues (Wiseman & Will, 1991; Thorne, 1992; Favata, 2010) and explore the
phenomenology of the gravitational-wave memory from binary black holes.

For the memory sourced by the ` = |m| = 2 modes it is possible to choose
the gauge such that the memory is entirely “+” polarized and the inclination
dependence is δh+ ∝ sin2 ι

(
17 + cos2 ι

)
. The binary inclination, ι, is the angle

between the angular momentum vector of the binary and the line-of-sight be-
tween the binary and the observer. We make this choice of gauge throughout
to emphasize the deviation from the behaviour when including additional
oscillatory modes. In this paper, we demonstrate that including additional,
“higher-order”, modes in the calculation of the gravitational-wave memory
leads to O(10%) corrections to the predicted strain and a richer phenomenol-
ogy of gravitational-wave memory than previously believed1.

Since the memory effect is sourced by gravitational radiation, the mem-
ory itself contributes to a higher-order memory effect that we call “mem-
ory of the memory”. We iteratively include higher-order memory terms and

1The impact of higher-order oscillatory modes on the memory for non-spinning binaries
is also considered in a Masters thesis by Goran Dojcinoski (Favata, 2018)
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demonstrate that each memory order is suppressed by a factor of ∼ 100 with
respect to the previous order.

Measuring gravitational-wave memory will allow new tests of general
relativity and alternative theories of gravity. For example, massive graviton
theories predict a memory amplitude which is dependent on the mass of the
graviton and discretely different from general relativity (Kilicarslan & Tekin,
2019). Additionally, the memory effect is significantly reduced in spacetimes
with more than four non-compactified dimensions (Hollands, Ishibashi &
Wald, 2017; Satishchandran & Wald, 2018; Garfinkle et al., 2017). Recently, it
has been suggested that the inclination dependence of the memory could be
used as a test of general relativity (Yang & Martynov, 2018). Given that in this
work we demonstrate that including higher-order oscillatory modes changes
the inclination dependence, care should be taken to avoid false detection of
deviations from general relativity. Indeed, failing to consider higher-order
oscillatory modes has been shown to lead to similar false detections of devi-
ation (Pang et al., 2018).

The remainder of the paper is structured as follows. In the following
section, we describe a method by which the gravitational-wave memory
can be computed from an arbitrary spherical harmonic decomposed time-
domain gravitational waveform. We then explore the phenomenology of
the gravitational-wave memory describing how the (`, m) content of the
oscillatory waveform affects the (`, m) content of the memory. After this, we
consider the memory of the memory and demonstrate that the higher-order
memory terms are strongly suppressed. Finally, we present some closing
thoughts.

5.2 Calculating Gravitational-Wave Memory

The non-linear memory sourced by gravitational waves can be expressed as
an integral of the quadrupole moment of the gravitational-wave flux (Wise-
man & Will, 1991; Thorne, 1992; Favata, 2010)

δhTT
jk (TR, Ω) =

4G
Rc4

∫ TR

−∞
dt
∫

S2
dΩ′

dE
dtdΩ′

[
njnk

1− nl Nl

]TT
. (5.1)

Here, n(Ω′) is a unit vector, N(Ω) is the unit line-of-sight vector drawn from
the observer at Earth to the source and the energy flux is

dE
dtdΩ

=
R2c3

16πG
∣∣ḣ (t, Ω)

∣∣2 , (5.2)

where ḣ ≡ dh/dt and h is the gravitational-wave strain. We use Einstein
summation convention throughout. The angles Ω = (ι, φ) are the inclina-
tion and a reference phase the source (typically the phase at coalescence for
compact binaries), TR is the retarded time, Ω′ describes a sphere centered on
the source with a radius R, the distance between the source and the observer,
and TT denotes the transverse-traceless gauge.
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We project onto the polarization basis by contracting with the polarization
tensors, eij

+, eij
× (Anderson et al., 2001)

δh = δh+ − iδh× =
1
2

δhTT
jk (ejk

+ − iejk
×). (5.3)

It is convenient to project the gravitational-wave strain h(t, Ω) onto a ba-
sis of spin-weighted spherical harmonics,

h(t, Ω) = h+(t, Ω)− ih×(t, Ω) = h`m(t)−2Y`m(Ω). (5.4)

This allows us to separate the time-dependence from the angular dependence
using the same basis that is regularly used for numerical relativity waveform
extraction.

Substituting Equations 5.2 and 5.4 into Equation 5.1, we separate the time
and angular integrals

δh(TR, Ω) =
R

4πc
H`1`2m1m2(TR)Λ`1`2m1m2(Ω), (5.5)

where we have defined

H`1`2m1m2(−∞, TR) ≡
∫ TR

−∞
dtḣ`1m1(t)

˙̄h`2m2(t), (5.6)

Λ`1`2m1m2(Ω) ≡ 1
2
(ejk

+ − iejk
×)×

∫

S2
dΩ′−2Y`1m1(Ω

′)−2Ȳ`2m2(Ω
′)
[

njnk

1− nl Nl

]TT
.

(5.7)

Overbars denote the complex conjugate. We note that δh ∝ 1/R as
H`1`2m1m2 ∝ 1/R2.

We perform one more projection of Λ`1`2m1m2 onto the basis of spin-
weighted spherical harmonics to facilitate combination of the oscillatory and
memory waveforms,

Γ`1`2m1m2
`m ≡

∫

S2
dΩΛ`1`2m1m2−2Ȳ`m

= 2π
∫ 1

−1
d cos ιΛ`1`2m1m2(ι, 0)−2Ȳ`m1−m2(ι, 0),

(5.8)

where we have used the fact that Λ`1`2m1m2 ∝ ei(m1−m2)φ to perform the inte-
gral over φ and evaluate the ι integral at φ = 0. The variable Γ is a purely
geometric factor, which we can think of as the coupling constant linking os-
cillatory “input” modes (l1, m1, l2, m2) to memory “output” mode (`, m). The
coefficients Γ`1`2m1m2

`m are independent of the oscillatory waveform and so can
be computed in advance to speed up evaluation at runtime. It is then neces-
sary only to compute H`1`2m1m2 and look up the relevant Γ`1`2m1m2

`m .
The memory accumulates over the entire lifetime of the binary, however,

we are only interested here in the memory sourced from the final moments
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FIGURE 5.1: Including higher-order oscillatory modes significantly affects the
predicted memory. Comparison of the + (top panel) and × (bottom panel) polar-
izations of the memory time series when using only the ` = |m| = 2 oscillatory
modes (dotted) and when using all modes with ` ≤ 4 (solid). The colors are for
binaries as follows: red is equal-mass (q = 1) and non-spinning (S1 = S2 = ~0),
green is equal-mass with precessing spins (S|| = 0, S⊥ = 0.8), blue is unequal-
mass and non-spinning, black is unequal-mass (q ≡ m1/m2 = 2) with precessing
spins. In all cases, the late-time memory is different by O(10%) compared with
the ` = |m| = 2 only case and is larger for large mass ratios and large, pre-
cessing, spins. For non-spinning binaries, this is due to the excitation of higher-
order modes during merger and ringdown. Ignoring the higher-order modes
completely removes the predicted × polarized memory. The systems shown are
edge-on (ι = π/2, φ = 0) with total mass, M = 60M�, at a luminosity distance,

DL = 400Mpc.

of the inspiral, merger and ringdown. Thus, we define the lower-limit of the
time integral T0 to be the time at which the binary enters the sensitive band
of our detector, usually taken to be 20Hz for current detectors. Finally, we
obtain

δh`m =
R

4πc
Γ`1`2m1m2
`m (Ω)H`1`2m1m2(T0, TR). (5.9)

5.3 Memory Phenomenology

5.3.1 Importance of Higher-Order Modes

Previous studies of the gravitational-wave memory effect from compact bi-
nary coalescences have considered only memory sourced by the dominant,
` = |m| = 2 mode of the oscillatory waveform. As mentioned above, in this
case the angular dependence is given by (Favata, 2009a)

δh+ ∝ sin2 ι
(

17 + cos2 ι
)

, δh× = 0. (5.10)
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This relation breaks down when additional modes are included and the an-
gular dependence of the memory will depend on the relative size of the os-
cillatory spherical harmonic modes.

For our study, we use a numerical-relativity surrogate model,
NRSur7dq2 (Blackman et al., 2017). This model approximates the strain
for all spin-weighted spherical harmonic modes with 2 ≤ ` ≤ 4 and is valid
for mass ratios 1 ≤ q ≡ m1/m2 ≤ 2 and dimensionless spin magnitudes
up to 0.8. For all figures we choose a binary with a total mass of 60M� at
a luminosity distance of 400Mpc with binary inclination and polarization
ι = π/2, φ = 0, unless otherwise stated. We begin the integration 0.08s
before the merger.

The importance of including the higher-order modes in the calculation of
memory is demonstrated in Fig. 5.1. We show the expected memory signal
when considering only the ` = |m| = 2 oscillatory modes and when using
all modes with ` ≤ 4. We consider both non-spinning binaries and binaries
with significant in-plane spins. The in-plane spins lead to precession of the
orbital plane of the binary and have a larger contribution from higher-order
oscillatory modes.

We can see that even in the case of an equal-mass non-spinning binary,
including the higher-order modes leads to an O(10%) change in the predicted
memory signal. This is due to the excitation of higher-order modes during
the merger and ringdown portions of the coalescence. This effect is even
more pronounced for precessing, unequal-mass, binaries. We observe that
all of the considered systems other than the equal mass, non-spinning binary
have a non-zero × component of the memory when the higher-order modes
are included whereas the ` = |m| = 2 memory is entirely plus polarized.

5.3.2 Mode Decomposition of the Oscillatory Waveform

We now explore the effect including additional modes in the oscillatory
waveform has on the final amplitude of the memory signal for the binaries
in Fig. 5.1. We consider limits on the sum in Equation 5.5 by progressively
adding more pairs of spherical harmonic modes. Figure 5.2 shows how the
late-time non-linear memory depends on the spherical harmonic modes
considered.

We see that for non-spinning binaries (red and blue curves) the most im-
portant oscillatory modes are the ` = 2, 3, |m| = 2. For unequal mass binaries
(blue), there is a contribution from the ` = |m| = 3 modes during merger, this
leads to a ×-polarized memory component, even in the non-spinning case.
Binaries with spins in the orbital plane (green and black curves) precess, this
leads to excitation of |m| 6= 2 modes due to mode mixing (Hannam et al.,
2014). Since there are now terms in our sum where |m1| 6= |m2| we see a
significant ×-polarized component in the memory.
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FIGURE 5.2: The late time + (solid) and × polarizatons (dashed) of the mem-
ory amplitudes when including increasing numbers of modes in the oscillatory
waveform (left to right). The horizontal axis (`, |m|)last indicates the last two os-
cillatory modes included in the calculation. The (` = 2, |m| = 2)last modes make
the dominant contribution to the + polarization and have no× component for all
spins and mass ratios. When the (` = 2, |m| = 1)last modes are added we see that
there is a non-zero × polarization for spinning systems. Including the (` = 3,
|m| = 2)last modes has the largest effect of all the higher-order modes on the +
contribution to the late-time memory. The colors are for binaries as follows: red
is equal-mass (q = 1) and non-spinning (S1 = S2 = ~0), green is equal-mass with
precessing spins (S|| = 0, S⊥ = 0.8), blue is unequal-mass and non-spinning,
black is unequal-mass (q ≡ m1/m2 = 2) with precessing spins. The systems
shown are edge-on (ι = π/2, φ = 0) with total mass, M = 60M�, at a luminosity
distance, DL = 400Mpc. We note that the memory is not necessarily maximized

for edge-on systems when higher-order modes are included.
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FIGURE 5.3: The spherical harmonic decomposition of the memory waveform for
a range of mass ratios and spins. The absolute value of the late-time memory is
shown as a function of the (`, m) spherical harmonic decomposition of the mem-
ory. The dominant term is the ` = 2, m = 0 mode for equal mass non-precessing
binaries. For precessing binaries, the × terms in the memory integral lead to sig-
nificant azimuthal dependence of the memory. This is seen in the |m| = 1 modes.
The colors are for binaries as follows: red is equal-mass (q = 1) and non-spinning
(S1 = S2 =~0), green is equal-mass with precessing spins (S|| = 0, S⊥ = 0.8), blue
is unequal-mass and non-spinning, black is unequal-mass (q ≡ m1/m2 = 2) with
precessing spins. The systems shown are edge-on (ι = π/2, φ = 0) with total

mass, M = 60M�, at a luminosity distance, DL = 400Mpc.
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+-polarized ×-polarized Non-spinning

Precessing

FIGURE 5.4: Angular dependence of the late-time +-(left) and×-(right) polarized
memory strain as a function of orientation angles ι (polar) and φ (azimuth). The
top panels show the late-time memory for a non-spinning equal-mass binary and
the bottom panels the late-time memory for a precessing equal-mass binary. The
top panel follows the analytic expression given an oscillatory waveform contain-
ing only the ` = |m| = 2 mode, δh+ ∝ sin2 ι(17 + cos2 ι), δh× = 0. The bottom
panel demonstrates how precessing systems give rise to a more complex memory

structure.

5.3.3 Mode Decomposition of the Memory Waveform

For convenience, we decompose the memory onto the basis of spin-weighted
spherical harmonics. This decomposition is given explicitly in Equation 5.9
where the Γ`1`2m1m2

`m map the “input” oscillatory modes to the “output” mem-
ory modes. Using the coefficients for ` = |m| = 2 we recover the familiar
sin2 ι

(
17 + cos2 ι

)
dependence.

We use the Γ coefficients to decompose the memory onto this basis for the
mass ratios and spins considered in Fig. 5.1. The angular spectral content of
these memory waveforms is shown in Fig. 5.3. We see that the dominant term
is the ` = 2, m = 0 mode in all cases. Other modes are more important for
higher mass ratios and binaries with large misaligned spins. For precessing
sources (green/black) the |m| = 1 memory modes are nearly as large as the
m = 0 modes. While the m = 0 contributions to the memory decay rapidly
with increasing `, the |m| > 0 modes converge more slowly. Therefore, it
may be necessary to go consider ` > 4 modes to ensure waveform fidelity at
the sub-percent level.

Figure 5.4 shows the angular dependence of the late-time memory as a
function of binary inclination (polar) and polarization (azimuth) for an equal
mass binary. We consider two cases: non-spinning (top panels) and precess-
ing (bottom). The |m| = 1 of the memory can be seen in the precessing
case. We also draw the reader’s attention to the non-vanishing × polarized
memory for the precessing binary, in contrast to the non-spinning case. We
note that the orientation dependence is a function of time as different mem-
ory modes grow at different rates, which is the cause of the structure in the
memory time-series in Fig. 5.1 for precessing systems.
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FIGURE 5.5: The maximum of the absolute value of the contribution to the mem-
ory entering at the ith iterative order for a range of mass ratios and spins. The
peak of the oscillatory waveform corresponds to i = 0. The first-order memory
is i = 1, we note that this is of the same order as the peak oscillatory strain.
Each successive order of the memory is then on average two orders of magnitude
smaller than the previous. The colors are for binaries as follows: red is equal-
mass (q = 1) and non-spinning (S1 = S2 = ~0), green is equal-mass with precess-
ing spins (S|| = 0, S⊥ = 0.8), blue is unequal-mass and non-spinning, black is
unequal-mass (q ≡ m1/m2 = 2) with precessing spins. The systems shown are
edge-on (ι = π/2, φ = 0) with total mass, M = 60M�, at a luminosity distance,

DL = 400Mpc.

5.4 Memory of the Memory

Since the memory is sourced by gravitational radiation, the memory itself im-
parts a second-order “memory of the memory”. To calculate this we replace
h`m with hosc

`m + δh1
`m in Equation 5.4, where δh1

`m is the first-order memory.
We apply this procedure iteratively to calculate the total strain

h`m = hosc
`m +

∞

∑
i=1

δhi
`m, (5.11)

where δhi is the contribution to the memory entering at the ith order.
Figure 5.5 shows the relative contribution of the different order memories

for the systems considered previously. Each successive order is suppressed
by ∼ two orders of magnitude with respect to the previous order. We do not
expect these contributions to be significant for current detectors. However,
the sensitivity of future detectors may be sufficient to measure the memory
of the memory.
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FIGURE 5.6: The plus component of the predicted memory using waveforms gen-
erated using different models. We compare the numerical relativity surrogate
(NRSur7dq2) used in the rest of the paper, an effective one-body model (SEOB-
NRv4) and a phenomenological model (IMRPhenomD). The predicted memory
agrees for all model when only considering the ` = |m| = 2 oscillatory modes.
As demonstrated above, including the higher-order oscillatory modes in the sur-
rogate changes the predicted memory. The system shown is edge-on (ι = π/2,
φ = 0), non-spinning, with total mass, M = 60M�, equal mass, and at a luminos-

ity distance, DL = 400Mpc.

5.5 Memory Calculation Code

We release the Python package GWMEMORY2 used in this work. The code
enables calculation of the memory from arbitrary spherical harmonic decom-
posed gravitational waveforms along with functionality for creating wave-
forms using a range of commonly-used waveform families including numer-
ical relativity surrogates, e.g., NRSur7dq2 (Blackman et al., 2017), waveforms
implemented in LALSuite3, and numerical relativity waveforms. Addition-
ally, we include an implementation of the MWM4.

We have tested our waveform calculator using an aligned-spin effective
one-body waveform approximant, SEOBNRv4 (Bohé et al., 2017), a phe-
nomenological waveform approximant, IMRPhenomD (Khan et al., 2016), and
a numerical relativity surrogate, NRSur7dq2 (Blackman et al., 2017). We
find that the predicted memory does not strongly depend on the chosen
oscillatory waveform family within each waveform’s domain of validity, see
Figure 5.6. The surrogate model is currently limited to mass ratios q ≤ 2. The
memory for aligned-spin binaries with mass ratio q > 2 can be calculated
using the aligned-spin waveforms available in LALSimulation5.

2https://github.com/ColmTalbot/gwmemory
3https://git.ligo.org/lscsoft/lalsuite
4We note that the minimal waveform model predicts a memory ∼ 20% larger than our

full calculation. We attribute this difference to the continuing development of the effective-
one-body waveforms used to calibrate the MWM.

5While precessing waveforms are available in LALSuite the necessary decomposition into
spherical harmonic modes is non-trivial and is not yet supported.

https://github.com/ColmTalbot/gwmemory
https://git.ligo.org/lscsoft/lalsuite


5.6. DISCUSSION 87

5.6 Discussion

Detection of gravitational waves from binary black hole mergers allows
new tests of general relativity. In particular, we may be able to detect
the gravitational-wave memory effect with current detectors (Lasky et al.,
2016). In order to detect gravitational-wave memory using observations of
merging binary black hole systems, it will be necessary to rapidly create
high-fidelity frequency-domain memory waveforms for use in Bayesian
parameter estimation.

The gravitational-wave memory is generally not extracted from numer-
ical relativity simulations and is thus not modelled by the waveform ap-
proximants tuned to these simulations. For this reason, it is necessary to
calculate the expected memory waveform from the oscillatory waveform as
a post-processing step. We create a python package GWMEMORY to gen-
erate the memory waveform directly from arbitrary time-domain oscillatory
waveforms.

Using this code, we provide a detailed analysis of the dependence of the
observed memory waveform on the spectral content of the oscillatory sig-
nal and the binary orientation6. We find that the phenomenology of the
gravitational-wave memory is richer than previously believed when sub-
dominant oscillatory modes are included in the calculation of the memory.
We additionally consider the contribution of the memory waveform to a
“memory of the memory”. While this effect is interesting from a pedagogical
perspective, we find that this effect is small in all considered cases, and can
be neglected with the current generation of gravitational-wave detectors.

Addendum

Since the publication of this paper additional compact binary coalescences
have been observed and significant progress has been made in theoretical
and observational analysis. The reader is directed to Chapters 1 and 8 for an
overview of the field at the time of writing.

6The code used to generate the plots in this paper, along with demonstration of
additional functionality, can be found at https://github.com/ColmTalbot/gwmemory/
examples/GWMemory.ipynb.

https://github.com/ColmTalbot/gwmemory/examples/GWMemory.ipynb
https://github.com/ColmTalbot/gwmemory/examples/GWMemory.ipynb
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Abstract

Bayesian parameter estimation is fast becoming the language of gravitational-
wave astronomy. It is the method by which gravitational-wave data is used
to infer the sources’ astrophysical properties. We introduce a user-friendly
Bayesian inference library for gravitational-wave astronomy, BILBY. This
python code provides expert-level parameter estimation infrastructure with
straightforward syntax and tools that facilitate use by beginners. It allows
users to perform accurate and reliable gravitational-wave parameter esti-
mation on both real, freely-available data from LIGO/Virgo, and simulated
data. We provide a suite of examples for the analysis of compact binary
mergers and other types of signal model including supernovae and the
remnants of binary neutron star mergers. These examples illustrate how
to change the signal model, how to implement new likelihood functions,
and how to add new detectors. BILBY has additional functionality to do
population studies using hierarchical Bayesian modelling. We provide an
example in which we infer the shape of the black hole mass distribution
from an ensemble of observations of binary black hole mergers.
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https://iopscience.iop.org/article/10.3847/1538-4365/ab06fc
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6.1 Introduction

Bayesian inference underpins gravitational-wave science. Following a de-
tection, Bayesian parameter estimation allows one to estimate the proper-
ties of a gravitational-wave source, for example, the masses and spins of
the components in a binary merger (e.g., Abbott, 2016i; Abbott, 2016g; Ab-
bott, 2016b; Abbott, 2018d; Abbott, 2019c). If the detection involves neu-
tron stars, Bayesian parameter estimation is used to study the properties of
matter at nuclear densities via the signature of tidal physics imprinted on
the gravitational waveform (Abbott, 2017i; Abbott, 2019c; Abbott, 2018d).
The posterior probability distributions of source parameters such as inclina-
tion angle can be used, in turn, to make inferences about electromagnetic
phenomena such as gamma-ray bursts (e.g., Abbott, 2017e). Such parame-
ter estimation is also used to measure cosmological parameters such as the
Hubble constant (Abbott, 2017a). By combining data from multiple detec-
tions, Bayesian inference is used to understand the population properties
of gravitational-wave sources (e.g., Abbott, 2016b; Talbot & Thrane, 2018;
Wysocki et al., 2018; Smith & Thrane, 2018; Farr et al., 2017; Taylor & Gerosa,
2018; Roulet & Zaldarriaga, 2019, and references therein), which is providing
insights into stellar astrophysics. By extending the gravitational-wave signal
model, Bayesian inference is used to test general relativity and look for evi-
dence of new physics (Abbott, 2016k; Abbott, 2017h; Abbott, 2017e; Abbott,
2018b; Abbott, 2018a)

The field of gravitational-wave astronomy is growing rapidly. We have
entered the “open data era,” in which gravitational-wave data has become
publicly available (Vallisneri et al., 2015). Since Bayesian parameter esti-
mation is central to gravitational-wave science, there is a need for a robust,
user-friendly code that can be used by both gravitational-wave novices and
experts alike.

The primary tool currently used by the LIGO and Virgo collaborations
for parameter estimation of gravitational-wave signals is LALINFER-
ENCE (Veitch et al., 2015). This pioneering code enabled the major
gravitational-wave discoveries achieved during the first two LIGO observ-
ing runs (e.g., Abbott, 2016i; Abbott, 2016g; Abbott, 2016b; Abbott, 2018d;
Abbott, 2019c). The code itself is now almost a decade old, and years of
development have made it hard for beginners to learn, and difficult for
experts to modify and adapt to new challenges. More recently, PYCBC
INFERENCE (Biwer et al., 2019) was released; a modern, PYTHON-based
toolkit designed for compact binary coalescence parameter estimation.
This package provides access to several different samplers and builds
on the PYCBC package (Nitz et al., 2018a) – an open-source toolkit for
gravitational-wave astronomy.

We introduce BILBY, a user-friendly parameter-estimation code for
gravitational-wave astronomy. BILBY provides expert-level parameter
estimation infrastructure with straightforward syntax and tools that facil-
itate use by beginners. For example, with minimal user effort, users can
download and analyze publicly-available LIGO and Virgo data to obtain
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posterior distributions for the astrophysical parameters associated with
recent detections of binary black holes (Abbott, 2016h; Abbott, 2016f; Abbott,
2016b; Abbott, 2017f; Abbott, 2017g; Abbott, 2017h) and the binary neutron
star merger (Abbott, 2017i).

One key functional difference between BILBY and LALINFER-
ENCE/PYCBC INFERENCE is its modularity and adaptability. The core
library is not specific to gravitational-wave science and has uses outside of
the gravitational-wave community. Ongoing projects include astrophysical
inference in multimessenger astronomy, pulsar timing, and x-ray obser-
vations of accreting neutron stars. The gravitational-wave specific library
is also built in a modular way, enabling users to easily define their own
waveform models, likelihood functions, etc. This implies BILBY can be used
for more than studying compact binary coalescences—see Sec. 6.5. The
modularity further ensures the code will be sufficiently extensible to suit the
future needs of the gravitational-wave community. Moreover, we believe
the wider astrophysics inference community will find the code useful by
virtue of having a common interface and ideas that can be easily adapted to
a range of inference problems.

The remainder of this paper is structured to highlight the versatile,
yet user-friendly nature of the code. To that end, the paper is example
driven. We assume familiarity with the mathematical formalism of Bayesian
inference and parameter estimation (priors, likelihoods, evidence, etc.) as
well as familiarity with gravitational-wave data analysis (antenna-response
functions, power spectral densities, etc.). Readers looking for an intro-
duction to Bayesian inference in general are referred to Skilling, 2004,
while gravitational-wave specific introductions to inference can be found
in Refs. (Veitch et al., 2015; Thrane & Talbot, 2019). Section 6.2 describes
the BILBY design philosophy, and Sec. 6.3 provides an overview of the code
including installation instructions in Sec. 6.3.1. Subsequent sections show
worked examples. The initial examples are the sort of simple calculations
that we expect will be of interest to most casual readers. Subsequent sections
deal with increasingly complex applications that are more likely of interest
to specialists.

The worked examples are as follows. Section 6.4 is devoted to compact bi-
nary coalescences. In 6.4.1, we carry out parameter estimation with publicly-
available data to analyze GW150914, the first ever gravitational-wave event.
In 6.4.2, we study a simulated binary black hole signal added to Monte Carlo
noise. In 6.4.3, we study the matter effects encoded in the gravitational wave-
forms of a binary neutron star inspiral. In 6.4.4, we show how it is possible
to add more sophisticated gravitational waveform phenomenology, for ex-
ample, by including memory, eccentricity, and higher order modes. In 6.4.5,
we study an extended gravitational-wave network with a hypothetical new
detector.

Section 6.5 is devoted to signal models for sources that are not compact
binary coalescences. In 6.5.1, we perform model selection for gravitational
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waves from a core collapse supernova. In 6.5.2, we study the case of a post-
merger remnant. Section 6.6 is devoted to hyper-parameterization, a tech-
nique used to study the population properties of an ensemble of events. Clos-
ing remarks are provided in Section 6.8.

6.2 BILBY Design Philosophy

Three goals guide the design choices of BILBY. First, we seek to provide
a parameter-estimation code that is sufficiently powerful to serve as a
workhorse for expert users. Second, we aim to make the code accessible
for novices, lowering the bar to work on gravitational-wave inference.
Third, we desire to produce a code that will age gracefully; advances in
gravitational-wave astronomy and Bayesian inference can be incorporated
straightforwardly without resort to inelegant workarounds or massive
rewrites. To this end, we adhere to a design philosophy, which we articulate
with four principles.

• Modularity. Wherever possible, we seek to modularize the code and
follow the abstraction principle (Pierce, 2002), reducing the amount of
repeated code and easing development. For example, the sampler is a
modularized object, so if a problem is initially analyzed using the PY-
MULTINEST (Buchner, 2014) sampler for example, one can easily switch
to the EMCEE (Foreman-Mackey et al., 2013) sampler or even a custom-
built gravitational-wave sampler. For example, BILBY accesses sam-
plers through a common interface; as a result it is trivial to easily switch
between samplers to compare performance or check convergence is-
sues.

• Consistency. We enforce strict style guidelines, including adherence to
the PEP8 style guide for PYTHON1. As a result, the code is relatively
easy-to-follow and intuitive. In order to maintain integrity of the code
while responding to the needs of a large and active user base, we em-
ploy GITLAB’s merge request feature. Updates require approval by two
experts. The PEP8 protocol is enforced using continuous integration.

• Generality. Wherever possible, we keep the code as general as possible.
For example, the gravitational-wave package is separate from the pack-
age that passes the likelihood and prior to the sampler. This generality
provides flexibility. For example, in Section 6.6, we show how BILBY
can be used to carry out population inference, even though the likeli-
hood function is completely different to the one used for gravitational-
wave parameter estimation. Moreover, a general design facilitates the
transfer of ideas into and out of gravitational-wave astronomy from the
greater astro-statistics community.

• Usability. We observe that historically, people find it difficult to get
started with gravitational-wave inference. In order to lower the bar, we

1https://www.python.org/dev/peps/pep-0008/

https://www.python.org/dev/peps/pep-0008/
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endeavour to make basic things doable with very few lines of code. We
provide a large number of tutorials that can serve as a blueprint for a
large variety of real-world problems. Finally, we endeavour to follow
the advice of the PEP20 style guide for PYTHON2: “There should be
one—and preferably only one—obvious way to do it.” In other words,
once users are familiar with the basic layout of BILBY, they can intuit
where to look if they want to, for example, add a new detector (see
Section 6.4.5) or include non-standard polarization modes.

6.3 Code Overview

6.3.1 Installation

BILBY is open-source, MIT licensed, and written in python. The simplest
installation method is through PyPI3. The following command installs from
the command line:

$ pip install bilby

This command downloads and installs the package and dependencies. The
source-code itself can be obtained from the git repository (Ashton et al.,
2018b), which also houses an issue tracker and merge-request tool for those
wishing to contribute to code development. Documentation about code
installation, functionality, and user syntax is also provided (Ashton et al.,
2018a). Scripts to run all examples presented in this work are provided in
the git repository.

6.3.2 Packages

BILBY has been designed such that logical blocks of code are separated and,
wherever possible, code is abstracted away to allow future re-use by other
models. At the top level, BILBY has three packages: core, gw, and hyper.
The core package contains the key functionalities. It passes the user-defined
priors and likelihood function to a sampler, harvests the posterior samples
and evidence calculated by the sampler, and returns a result object provid-
ing a common interface to the output of any sampler along with information
about the inputs. The gw package contains gravitational-wave specific func-
tionality, including waveform models, gravitational-wave specific priors and
likelihoods. The hyper package contains functionality for the hierarchical
Bayesian inference (see Sec. 6.6). A flowchart showing the dependency of
different packages and modules is available on the git repository (Ashton
et al., 2018b).

2https://www.python.org/dev/peps/pep-0020/
3https://pypi.org/project/BILBY/

https://www.python.org/dev/peps/pep-0020/
https://pypi.org/project/BILBY/
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The core package

The core package provides all of the code required for general problems of
inference. It provides a unified interface to several different samplers listed
below, standard sets of priors including arbitrary user-defined options, and
a universal result object that stores all important information from a given
simulation.

Prior and likelihood functions are implemented as classes, with a
number of standard types implemented in the core package: e.g., the
Normal, Uniform, and LogUniform priors, and GaussianLikelihood,
PoissonLikelihood, and ExponentialLikelihood likelihoods. One can
write their own custom prior and likelihood functions by writing a new
class that inherits from the parent Prior or Likelihood, respectively. The
user only needs to define how the new prior or likelihood is instantiated and
calculated, with all other house-keeping logic being abstracted away from
the user.

The prior and likelihood are passed to the function run_sampler,
which allows the user to quickly change the sampler method between
any of the pre-wrapped samplers, and to define specific run-time re-
quirements such as the number of live points, number of walkers, etc.
Pre-packaged samplers include Markov Chain Monte Carlo Ensemble
samplers emcee (Foreman-Mackey et al., 2013), ptemcee (Vousden, Farr &
Mandel, 2016), PyMC3 (Salvatier, Wiecki & Fonnesbeck, 2016), and Nested
samplers (Skilling, 2004; Skilling, 2006) MultiNest (Feroz & Hobson, 2008;
Feroz, Hobson & Bridges, 2009; Feroz et al., 2013) (through the PYTHON
implementation pyMultiNest (Buchner, 2014)), Nestle (Barbary, 2015),
Dynesty (Speagle, 2019), and CPNest (Veitch, 2017). The Sampler class again
allows users to specify their own sampler by following the other examples.

Despite the choice of sampler, the output from BILBY is universal: an hdf5
file (The HDF Group, 1997) that contains all output including posterior sam-
ples, likelihood calculations, injected parameters, evidence calculations, etc.
The Result object can be used to load in these output files, and also perform
common operations such as generating corner plots, and creating plots of the
data and maximum posterior fit.

The gw package

The gw package provides the core functionality for parameter estimation spe-
cific to transient gravitational waves. Building on the core package, this
provides prior specifications unique to such problems, e.g., a prior that is
uniform in co-moving volume distance, as well as the standard likelihood
used when studying gravitational-wave transients (Veitch et al., 2015 and
Eq. 6.1), defined as the GravitationalWaveTransient class. The gw package
also provides an implementation of current gravitational-wave detectors in
the detector module, including their location and orientation, as well as dif-
ferent noise power spectral densities for both current and future instruments.
Standard waveform approximants are also included in the source module,
which are handled through the LALSIMULATION package (Lalsuite).
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The gw package also contains a set of tools to load, clean and anal-
yse gravitational-wave data. Many of these functions are built on
the GWpy (Macleod et al., 2018) code base, which are contained within
bilby.gw.detector and primarily accessed by instantiating a list of
Interferometer objects. This functionality also allows one to im-
plement their own gravitational-wave detector by instantiating a new
Interferometer object—we show an explicit example of this in Sec. 6.4.5.

The hyper package

The hyper package contains all required functionality to perform hierarchical
Bayesian inference of populations. This includes both a Model module and a
HyperparameterLikelihood class. This entire package is discussed in more
detail in Sec. 6.6.

6.4 Compact Binary Coalescence

In this section, we show a suite of BILBY examples analyzing binary black
hole and binary neutron star signals.

We employ a standard Gaussian noise likelihood L for strain data d given
source parameters θ (van der Sluys et al., 2008a; van der Sluys et al., 2008b;
Veitch & Vecchio, 2008):

lnL(d|θ) = −1
2 ∑

k

{
[dk − µk(θ)]

2

σ2
k

+ ln
(

2πσ2
k

)}
, (6.1)

where k is the frequency bin index, σ is the noise amplitude spectral density,
and µ(θ) is the waveform. The waveform is a function of the source param-
eters θ, which consist of (at least) eight intrinsic parameters (primary mass
m1, secondary mass m2, primary spin vector ~S1, secondary spin vector ~S2)
and seven extrinsic parameters (luminosity distance dL, inclination angle ι,
polarization angle ψ, time of coalescence tc, phase of coalescence φc, right
ascension and declination ra and dec, respectively. Table 6.1 shows the de-
fault priors implemented for binary black hole systems. We show how these
priors can be called in Secs. 6.4.1 and 6.4.2. Unless otherwise specified, µ(θ)
is given using the IMRPhenomP approximant (Hannam et al., 2014). However,
the approximant can be easily changed; see Secs. 6.4.2 and 6.4.3. Moreover, it
is relatively simple to sample in different parameters than those listed above
(e.g., chirp mass and mass ratio instead of m1 and m2); examples for doing
this are provided in the git repository (Ashton et al., 2018b).

6.4.1 GW150914: the onset of gravitational wave astronomy

The first direct detection of gravitational waves occurred on the 14th of
September, 2015, when the two LIGO detectors (Aasi, 2015) in Hanford,
Washington and Livingston, Louisiana detected the coalescence of a binary
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variable unit prior minimum maximum
m1,2 M� uniform 5 100
a1,2 - uniform 0 0.8
θ1,2 rad. sin 0 π

δφ, φJL rad. uniform 0 2π
dL Mpc comoving 102 5× 103

ra rad. uniform 0 2π
dec rad. cos −π/2 π/2

ι rad. sin 0 π
ψ rad. uniform 0 π
φc rad. uniform 0 2π

TABLE 6.1: Default binary black hole priors. The intrinsic variables are the two
black hole masses m1,2, their dimensionless spin magnitudes a1,2, the tilt angle
between their spins and the orbital angular momentum θ1,2, and the two spin
vectors describing the azimuthal angle separating the spin vectors δφ and the
cone of precession about the system’s angular momentum φJL. The extrinsic pa-
rameters are the luminosity distance dL, the right ascension ra and declination
dec, the inclination angle between the observers line of sight and the orbital an-
gular momentum ι, the polarisation angle ψ, and the phase at coalescence φc. The
phase, spins, and inclination angles are all defined at some reference frequency.
We do not set a default prior for the coalescence time tc. ‘sin’ and ‘cos’ priors
are uniform in cosine and sine, respectively, and ‘comoving’ implies uniform in

comoving volume.

black hole system (Abbott, 2016h). The gravitational waves swept through
the two detectors with a 6.9+0.5

−0.4 ms time difference which, when combined
with polarization information, allowed for a sky-location reconstruction cov-
ering an annulus of 590 deg2 (Abbott, 2016h). The initially-published masses
of the colliding black holes were given as 36+5

−4 M� and 29+4
−4 M� (Abbott,

2016i). Subsequent analyses with more accurate precessing waveforms con-
strained the masses to be 35+5

−3 M� and 30+3
−4 M� at 90% confidence (Abbott,

2016g). The distance to the source is determined to be 440+160
−180 Mpc (Abbott,

2016g).
In this example, we use BILBY to reproduce the parameter estimation

results for GW150914. The data for published LIGO/Virgo events is made
available through the Gravitational Wave Open Science Center (Vallisneri et
al., 2015). Built-in BILBY functionality downloads and parses this data. We
begin with the following two lines.

>>> import bilby
>>> interferometers = bilby.gw.detector.get_event_data("GW150914")

The first line of code imports the BILBY code-base into the PYTHON environ-
ment. The second line returns a set of objects that contain the relevant data
segments and associated data products relevant for the analysis for both the
LIGO Hanford and Livingston detectors. By default, BILBY downloads and
windows the data. A local copy of the data is saved along with diagnostic
plots of the gravitational-wave strain amplitude spectral density.
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In addition to the data, the two key ingredients for any Bayesian inference
calculation are the likelihood and the prior. Default sets of priors can be
called from the gw.prior module, and we also employ the default Gaussian
noise likelihood (Eq. 6.1).

>>> prior = bilby.gw.prior.BBHPriorDict(filename="GW150914.prior")
>>> likelihood = bilby.gw.likelihood.get_binary_black_hole_likelihood(
>>> interferometers)

The above code calls the GW150914 prior, which differs from the priors de-
scribed in Tab. 6.1 in two main ways. Firstly, to speed up the running of the
code it restricts the mass priors to between 30 and 50 M� for the primary
mass, and 20 and 40 M� for the secondary mass. Moreover, this prior call
restricts the time of coalescence to 0.1 seconds before and after the known
coalescence time. One can revert to the priors in Tab. 6.1 by replacing the
above file call with filename="binary_black_holes.prior", but this would
require separately setting a prior for the coalescence time. We show how this
can be done in Sec. 6.4.2.

The next step is to call the sampler:

>>> result = bilby.core.sampler.run_sampler(likelihood, prior)

This line performs parameter inference using the sampler default
DYNESTY (Speagle, 2019), with a default 500 live points. This number can
be increased by passing the nlive= keyword argument to run_sampler().
The sampler returns a list of posterior samples, the Bayesian evidence,
and metadata, which is stored in an hdf5 file. One may plot a corner plot
showing the posterior distribution for all parameters in the model using the
command

>>> result.plot_corner()

The above example code produces posterior distributions that by eye,
agree reasonably well with the parameter uncertainty associated with the
published distributions for GW150914. The shape of the likelihood for the ex-
trinsic parameters presents significant challenges for samplers, due to strong
degeneracy’s between different sky locations, distances, inclination angles,
and polarization angles (see e.g., Raymond & Farr, 2014; Farr et al., 2014). For
more accurate results, we use the nested sampling package CPNEST (Veitch,
2017), which is invoked by changing the run_sampler function above to in-
clude the additional argument sampler=’cpnest’. We also change the num-
ber of live points by adding nlive=5000 to the same function, and spec-
ify a keyword argument maxmcmc=5000, which is the maximum number of
steps the sampler takes before accepting a new sample. To resolve the is-
sue with the phase at coalescence, we analytically marginalize over this pa-
rameter (Farr, 2014) by adding the optional phase_marginalization=True
argument to the instantiation of the likelihood. BILBY has built in analytic
marginalization procedures for the time of coalescence (Farr, 2014) and dis-
tance (Singer & Price, 2016; Singer, 2016), which can both be invoked using
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FIGURE 6.1: Marginalised posterior source-mass distributions for the first binary
black hole merger detected by LIGO, GW150914. We show the posterior distri-
butions recovered using BILBY (blue), and those using LALINFERENCE (orange),
using open data from the Gravitational Wave Open Science Centre (Vallisneri et
al., 2015). The five lines of BILBY code required for reproducing the posteriors are

shown in Section 6.4.1.

time_marginalization=True and distance_marginalization=True, respec-
tively. These decrease the run time of the code by minimizing the dimension-
ality of the parameter space. Posterior distributions can still be determined
for these parameters by reconstructing them analytically from the full set of
posterior samples e.g., see Thrane & Talbot, 2019.

Using BILBY we can plot marginalized distributions by simply passing
the plot_corner function the optional parameters=... argument. In
Fig. 6.1 we show the marginalized, two-dimensional posterior distribu-
tion for the masses of the two black holes as calculated using the above
BILBY code (shown in blue). In orange we show the LIGO posterior
distributions from (Abbott, 2016b), calculated using the LALINFERENCE
software (Veitch et al., 2015), and hosted on the Gravitational Wave Open
Science Center (Vallisneri et al., 2015).

In Fig. 6.2 we show the marginalized posterior distribution of the lumi-
nosity distance and inclination angle, where the BILBY posteriors are again
shown in blue, and the LALINFERENCE posteriors in orange. Figure 6.3
shows the sky localisation uncertainty for both BILBY and LALINFERENCE.

The above example does not make use of detector calibration uncertainty,
which is an important feature in LIGO data analysis. Such calibration uncer-
tainty is built in to BILBY using the cubic spline parameterization (Farr, Farr
& Littenberg, 2014), with example usage in the BILBY repository.
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FIGURE 6.2: Marginalized posterior distributions on the binary inclination angle
and luminosity distance for the first binary black hole merger detected by LIGO,
GW150914. We show the posterior distributions recovered using BILBY (blue),
and those using LALINFERENCE (orange), using open data from the Gravita-

tional Wave Open Science Centre (Vallisneri et al., 2015).

6.4.2 Binary black hole merger injection

BILBY supports both the analysis of real data as in the previous section, as
well as the ability to inject simulated signals into Monte Carlo data. In the
following two sections we inject a binary black hole signal and a binary neu-
tron star signal, respectively, showing how one can easily inject and recover
signals and their astrophysical properties.

In this first example4, we create a binary black hole signal with parame-
ters similar to GW150914 (Abbott, 2016i), albeit at a luminosity distance of
dL = 2 Gpc (cf. dL ≈ 400 Mpc for GW150914). We inject the signal into a
network of LIGO-Livingston, LIGO-Hanford (Aasi, 2015) and Virgo interfer-
ometers (Acernese, 2015), each operating at design sensitivity. When doing
examples of this nature, it is time intensive to sample over all fifteen parame-
ters in the waveform model. Therefore, to get quick results that can be run on
a laptop, we only sample over four parameters in the waveform model: the
two black-hole masses m1,2, the luminosity distance dL, and the inclination
angle ι. BILBY supports simple functionality to limit or extend the number of
parameters included in the likelihood calculation, as shown below.

We begin by setting up a WaveformGenerator object using a fre-
quency domain strain model that takes the signal injection parameters
and specific waveform arguments such as the waveform approximant as

4This example is found in the BILBY git repository at https://git.ligo.org/Monash/
bilby/blob/master/examples/injection_examples/basic_tutorial.py.

https://git.ligo.org/Monash/bilby/blob/master/examples/injection_examples/basic_tutorial.py
https://git.ligo.org/Monash/bilby/blob/master/examples/injection_examples/basic_tutorial.py
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FIGURE 6.3: Sky localisation uncertainty for GW150914. The blue marginalized
posterior distributions are those recovered using BILBY, and the orange are those
recovered using LALINFERENCE, using open data from the Gravitational Wave

Open Science Center (Vallisneri et al., 2015).

arguments. The WaveformGenerator also takes data duration and sampling
frequency as input parameters. With the source model defined, we now
instantiate an interferometer object that takes the strain signal from
the WaveformGenerator and injects it into a noise realisation of the three
interferometers. One could choose to do a zero-noise simulation by simply
including the flag zero_noise=True.

Priors are set up as in the previous open data example, except we call
the binary_black_holes.prior file instead of the specific prior file for
GW150914. Moreover, to hold all but four of the parameters fixed, we set
the value of the prior for those other parameters to the injection value. For
example, setting

>>> prior["a_1"]=0
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sets the prior on the dimensionless spin magnitude of the primary black hole
to a delta-function at zero.

In general, we can change the prior for any parameter with one line of
code. For example, to change the prior on the primary mass to be uniform
between m1 = 25 M� and 35 M�, say, one includes

>>> prior["mass_1"]=bilby.core.prior.Uniform(
>>> minimum=25, maximum=35, unit=r"$M_\odot$")

BILBY knows about many different types of priors that can all be called in
this way. For this example we are also required to define priors on the
coalescence time, which we define to be a uniform prior with minimum and
maximum one second either side of the injection time.

The likelihood is again set up similarly to the open-data example
of Sec. 6.4.1, although this time we must pass the interferometer,
waveform_generator, and prior. Finally, the sampler can be called in the
same way as Sec. 6.4.1; for this example we use the pyMultiNest nested
sampler (Buchner, 2014).

Figure 6.4 shows the recovered posterior distributions (blue) and the in-
jected parameter values (orange). For this example, using the PYMULTI-
NEST (Buchner, 2014) nested sampling package with 6000 live points took
approximately 30 minutes on a laptop to sample fully the four-dimensional
parameter space. The parameters in Fig. 6.4 are recovered well with the usual
degeneracy present between the luminosity distance and inclination angle of
the source, dL and ι, respectively.

6.4.3 Measuring tidal effects in binary neutron star coales-
cences

The first detection of binary neutron star coalescence GW170817 was a land-
mark event signalling the beginning of multimessenger gravitational-wave
astronomy (Abbott, 2017i; Abbott, 2017j). Gravitational-wave parameter es-
timation of the inspiral is what ultimately determined that both objects were
likely neutron stars, and provides the best-yet constraints on the nuclear
equation of state of matter at supranuclear densities (Abbott, 2017i; Abbott,
2017j; Abbott, 2017e).

One of the key measurements in determining the equation of state from
binary neutron star coalescences is that of the tidal parameters. The dimen-
sionless tidal deformability

Λ =
2k2

3

(
c2R
Gm

)5

, (6.2)

is a fixed parameter for a given equation of state and neutron star mass. Here,
k2 is the second Love number, R and m are the neutron star radius and mass,
respectively. The binary neutron star merger GW170817 provided constraints
of Λ1.4 = 190+390

−120 (Abbott, 2018d; De et al., 2018), where the subscript denotes
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FIGURE 6.4: Injecting and recovering a binary black hole gravitational-wave
signal with BILBY. We inject a signal into a three-detector network of LIGO-
Livingston, LIGO-Hanford, and Virgo and perform parameter estimation. The
posterior distributions are shown in blue and the injected values in orange. To
speed up the simulation we only search over the two black hole masses m1 and

m2, the luminosity distance dL, and the inclination angle ι.

this is the estimate on Λ assuming a 1.4 M� neutron star, and the uncertainty
is the 90% credible interval.

BILBY can be used to study neutron star coalescences in both real and
simulated data. We inject a binary neutron star signal using the TaylorF2
waveform approximant into a three-detector network of the two LIGO de-
tectors and Virgo, all operating at design sensitivity5. Our injected signal is
an m1 = 1.3 M�, m2 = 1.5 M� binary at dL = 50 Mpc with dimensionless
spin parameters a1,2 = 0.02, and tidal deformabilities Λ1,2 = 400. Setting up
such a system in BILBY is equivalent to doing the binary black hole injection

5This example is found in the BILBY git repository at https://git.ligo.org/Monash/
bilby/blob/master/examples/injection_examples/binary_neutron_star_example.py.

https://git.ligo.org/Monash/bilby/blob/master/examples/injection_examples/binary_neutron_star_example.py
https://git.ligo.org/Monash/bilby/blob/master/examples/injection_examples/binary_neutron_star_example.py
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variable unit prior minimum maximum
m1,2 M� uniform 1 2
a1,2 - uniform -0.05 0.05
Λ1,2 - uniform 0 3000
dL Mpc comoving 10 500
ra rad. uniform 0 2π

dec rad. cos −π/2 π/2
ι rad. sin 0 π
ψ rad. uniform 0 π
φc rad. uniform 0 2π

TABLE 6.2: Default binary neutron star priors. Λ1,2 are the tidal deformability pa-
rameters of the primary and secondary neutron star defined in Eq. 6.2. For other
variable definitions, see Tab. 6.1. Note our commonly-used waveform approxi-
mant does not allow misaligned neutron star spins, implying we do not require

priors on those spin parameters.

study of Sec. 6.4.2, except we call the lal_binary_neutron_star source func-
tion, which requires the additional Λ1,2 arguments. We also have specific
binary neutron star priors; the default set can be called using

>>> priors = bilby.gw.prior.BNSPriorDict()

The standard set of binary neutron star priors are shown in Tab. 6.2. In this
example we use the Dynesty sampler (Speagle, 2019).

The tidal deformability parameters Λ1 and Λ2 are known to be highly
correlated. The terms that appear explicitly due to the tidal corrections in the
phase evolution are instead Λ̃ and δΛ̃ (Flanagan & Hinderer, 2008) (for defi-
nitions of these parameters, see Eqs. (14) and (15) of Lackey & Wade, 2015).
We therefore sample in Λ̃ and δΛ̃, instead of Λ1 and Λ2. Although we sam-
ple in all binary neutron star parameters, we show only the two-dimensional
marginalized posterior distribution for Λ̃ and δΛ̃ in Fig. 6.5. The correspond-
ing injected values of Λ̃ and δΛ̃ are shown as the orange vertical and hori-
zontal lines, respectively.

6.4.4 Implementing New Waveforms

The preceding subsections have only given a flavour of what can be achieved
with BILBY for compact binary coalescences. It is trivial to implement more
complex signal models that include, for example, higher order modes, eccen-
tricity, gravitational-wave memory, non-standard polarizations. Examples
showing different signal models are included in the git repository (Ashton et
al., 2018b). BILBY has already been used in one such application: testing how
well the orbital eccentricity of binary black hole systems can be measured
with Advanced LIGO and Advanced Virgo (Lower et al., 2018). An example
script reproducing those results can be found in the git repository (Ashton
et al., 2018b).

If a signal model exists in the LAL software (Lalsuite), then calling that
signal model and defining which parameters to include in the sampler is
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FIGURE 6.5: Injecting and recovering a binary neutron star gravitational-wave
signal with BILBY. We inject a signal into the three-detector network, and show
here only the marginalized two-dimensional posterior on the two tidal deforma-

bility parameters (blue) with the injected values shown in orange.

as simple as the above examples. In Sec. 6.5 we also show how to include
a user-defined source model. Moreover, one is free to define and sample
models in either the time or frequency domain. We include examples for
both cases in the git repository. The latter case of using a time-domain
source model requires doing little more than selecting the argument
time_domain_source_model in the WaveformGenerator, rather than selecting
frequency_domain_source_model.

Of course, one may also want to set up the injection and the sampler
using two different waveform models, for example to inject a numerical
relativity signal into Monte Carlo data and recover it with a waveform
approximant (see also Sec. 6.5.1). This is possible by simply instantiating
two WaveformGenerators, injecting with one and passing the other to the
likelihood.

6.4.5 Adding detectors to the network

The full network of ground-based gravitational-wave interferometers will
soon consist of the two LIGO detectors in the US, Virgo, LIGO-India (Iyer et
al., 2011) and the KAGRA detector in Japan (Aso, 2013), all of which are im-
plemented in BILBY. A gravitational-wave interferometer is specified by its
geographic coordinates, orientation, and noise power spectral density. By de-
fault, BILBY includes descriptions of current detectors including LIGO, Virgo,
and KAGRA, as well as proposed future detectors, A+ (Miller et al., 2015),
Cosmic Explorer (Abbott, 2017c), and the Einstein Telescope (Punturo et al.,
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2010). It is also possible to define new detectors, which is useful for develop-
ing the science case for proposals and to optimize the design and placement
of new detectors. Among other things, this can be used in developing the
science-case for interferometer design and placement.

BILBY provides a common interface to define detectors by their geome-
try, location, and frequency response. By way of example, we place a new
four-kilometer-arm interferometer in the Shire of Gingin, located outside of
Perth, Australia; the current location of the Australian International Gravita-
tional Observatory (AIGO). We assume a futuristic network configuration of
the Australian Observatory together with the two LIGO detectors in Hanford
and Livingston, all operating at A+ sensitivity (Miller et al., 2015). We gener-
ate A+ power spectral densities in the same script used to run BILBY by using
the PYGWINC software (LIGO Laboratory, 2018), which creates an array con-
taining the frequency and noise power spectral density6 (one could equally
use more sophisticated software such as FINESSE (Brown & Freise, 2014) to
create more detailed interferometer sensitivity curves). We then create a new
Interferometer object using bilby.gw.detector.Interferometer(), which
takes numerous arguments including the position and orientation of the de-
tector, minimum and maximum frequencies, and the power or amplitude
noise spectral density. The noise spectral density can be passed as an ascii
file containing the frequency and spectral noise density. With the new detec-
tor defined, one can again calculate a noise realisation and signal injection in
a manner similar to what is done in Sec. 6.4.

In this example we inject a GW150914-like binary black hole inspiral sig-
nal at a luminosity distance of dL=4 Gpc, and recover the masses, sky loca-
tion, luminosity distance and inclination angle of the system. In this exam-
ple we use the Nestle sampler (Barbary, 2015). Figure 6.6 shows the two-
dimensional marginalized posterior for the sky-location uncertainty when
including (blue) and not including (orange) the Australian detector in Gin-
gin. In this instance, the sky localisation uncertainty decreases by approxi-
mately a factor four when including the third detector.

While this example includes three detectors, it is straightforward to ex-
tend this analysis to an arbitrary detector network. The likelihood evalua-
tion simply loops over the number of detectors passed to it and multiplies
the likelihood for each detector to get a combined likelihood for each point
in the parameter space.

6.5 Alternative signal models

Section 6.4 focuses on compact binary coalescences. However, the BILBY gw
package enables parameter estimation for any type of signal for which a sig-
nal model can be defined. In this section, we show two illustrative examples:
the injection and recovery of a core-collapse supernovae signal, and a much-
simplified model of a hypermassive neutron star following a binary neutron

6This example is found in the BILBY git repository at https://git.ligo.org/Monash/
bilby/blob/master/examples/injection_examples/Australian_detector.py.

https://git.ligo.org/Monash/bilby/blob/master/examples/injection_examples/Australian_detector.py
https://git.ligo.org/Monash/bilby/blob/master/examples/injection_examples/Australian_detector.py
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FIGURE 6.6: Sky location uncertainty when including a gravitational-wave de-
tector in Gingin, Australia. Shown are the sky localisations (marginalized two-
dimensional posterior distributions) for an injected binary black hole signal using
a two-detector network of gravitational-wave interferometers Hanford and Liv-
ingston (orange) and a three-detector network that also includes the Australian

detector (blue).

star merger. The former example highlights two key pieces of infrastruc-
ture; the ability to inject numerical relativity signals, and to develop ones
own source model that is not built into BILBY. The latter example highlights
the use of a different likelihood function that only uses the amplitude of the
signal, and throws away the phase information.

6.5.1 Supernovae

Gravitational-wave signals from core-collapse supernovae are complicated
and not well understood in terms of their specific phase evolution. Numer-
ous techniques have been developed to deal with both detection and param-
eter estimation. One such method for the latter problem involves principal
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component analysis (Logue et al., 2012; Powell et al., 2016; Powell, Szczep-
anczyk & Heng, 2017), where the signal is reconstructed using a weighted
sum of orthonormal basis vectors. In this example, we inject a gravitational-
wave signal from a numerical relativity simulation (Müller, Janka & Wong-
wathanarat, 2012) and recover the principal components using BILBY7.

The injection is performed by defining a new signal class that, in this case,
simply reads in an ascii text file containing the gravitational-wave strain
time series. The injection is then performed in a way akin to the binary
black hole and binary neutron star examples in Sec. 6.4. We inject signal
L15 from Müller, Janka & Wongwathanarat, 2012, which comes from a three-
dimensional simulation of a non-rotating core-collapse supernova with a 15
M� progenitor star. The signal is injected at a distance of 5 kpc in the di-
rection of the galactic center. The amplitude spectral density of the injected
signal is shown in Fig. 6.7 as the orange trace.

The signal is reconstructed using principal component analysis, such that
the strain is expressed as

h̃( f ) = A
k

∑
j=1

β jUj( f ), (6.3)

where A is an amplitude factor, β j and Uj are the complex principal com-
ponent amplitudes and vectors, respectively. Equation (6.3) is implemented
into BILBY as another new signal model that takes the β j coefficients, lumi-
nosity distance (which is a proxy for A), and sky location as inputs. Priors for
each of the new parameters are established in the same way as the example
with the mass in Sec. 6.4.2. In this case, we set k = 5 and use uniform priors
between -1 and 1 for each of the β j’s.

Figure 6.7 shows the injected (orange) and recovered (blue) gravitational-
wave signal in the frequency domain. The dark blue curve shows the maxi-
mum likelihood curve, and the shaded blue region is a superposition of many
reconstructed waveforms from the posterior samples.

6.5.2 Neutron star post-merger remnant

There are a number of physical scenarios that can occur following the merger
of two neutron stars, including the existence of short- or long-lived neutron
star remnants. In the early phases post-merger (.1 s), these neutron stars
are highly dynamic, and can emit significant gravitational radiation poten-
tially observable by Advanced LIGO and Virgo at design sensitivity out to
∼ 50 Mpc e.g., Clark et al., 2014, and references therein. While the ultimate
fate of binary merger GW170817 is unknown, no gravitational waves from
a post-merger remnant were found (Abbott, 2017k; Abbott, 2019c), which is
not surprising given the interferometers were not operating at design sensi-
tivity and the distances involved.

7This example is found in the BILBY git repository at https://git.ligo.org/Monash/
bilby/blob/master/examples/supernova_example/supernova_example.py.

https://git.ligo.org/Monash/bilby/blob/master/examples/supernova_example/supernova_example.py
https://git.ligo.org/Monash/bilby/blob/master/examples/supernova_example/supernova_example.py
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FIGURE 6.7: Parameter estimation reconstruction of a numerical relativity super-
nova signal. A numerical relativity supernovae signal (orange) is injected into
a three-detector network of the two Advanced LIGO detectors and Advanced
Virgo, all operating at design sensitivity. The maximum likelihood reconstruction
of the signal is shown in dark blue, and the blue light band shows the superposi-

tion of many reconstructed waveforms from the posterior samples.

Providing the sensitivity of gravitational-wave interferometers continues
to increase, it is possible a gravitational-wave signal from a post-merger rem-
nant could be detected in the relative near future. Such a detection would
provide an excellent opportunity to understand the nuclear equation of state
of matter at extreme densities, as well as the rich physics of these exotic ob-
jects (e.g., Shibata & Taniguchi, 2006; Baiotti, Giacomazzo & Rezzolla, 2008;
Read, 2013). Parameter inference of such short-lived signals is in its in-
fancy see, e.g., Chatziioannou et al., 2017, largely due to the paucity of re-
liable waveforms (Clark et al., 2016; Easter et al., 2019). This is an ongoing
challenge due to the expensive nature of numerical relativity simulations and
the complex physics that must be included in such simulations.

Simple models that provide approximate gravitational-wave signals fit
to a handful of numerical relativity waveforms exist (Messenger et al., 2014;
Bose et al., 2018; Easter et al., 2019), which may eventually be used for full
parameter inference. The phase evolution of such numerical relativity sim-
ulations is rapid, and very difficult to model (Messenger et al., 2014; Easter
et al., 2019). However, it is the frequency content of the signal that carries
information about the equation of state and the physics of the remnant e.g.,
Takami, Rezzolla & Baiotti, 2015, and references therein. It is therefore possi-
ble that parameter-estimation algorithms may require one to throw away in-
formation about the phase, and only keep amplitude spectral content. Such
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a process requires a different likelihood function than the one that has been
used to this point. This therefore provides good motivation for showing how
to include a different likelihood function in BILBY code.

We implement a power-spectral density (“burst”) likelihood

lnL(|d| | θ) =
N

∑
i=1

[
ln I0

( |h̃i(θ)||d̃i|
Sn( fi)

)
− |h̃i|2 + |d̃i|2

2Sn( fi)
+ ln |h̃i(θ)| − ln Sn( fi)

]
,

(6.4)

where I0 is the zeroth-order modified Bessel function of the first kind. This
requires setting up a new Likelihood class, that contains a log_likelihood
function that reads in the frequency array, noise spectral density and wave-
form model, and outputs a single likelihood evaluation. Having defined a
new likelihood function, one calls the remaining functions in the usual way;
the likelihood function is instantiated and passed to the run_sampler() com-
mand.

We inject a double-peaked Gaussian, shown in Fig. 6.8 as the solid orange
curve. We recover this signal using the same model (with a constant noise
spectral density), where we use uniform priors for the amplitudes, widths
and frequencies of each of the peaks. Figure 6.8 shows the waveform recon-
struction for each of the posterior samples, which can be seen to cover the
injected signal.

6.6 Population Inference: hyperparameterizations

Individual detections of binary coalescences can provide stunning insights
into various physical and astrophysical questions. Increased detector sen-
sitivities imply significantly more events will be detected, enabling state-
ments to also be made about ensemble properties of populations e.g., Abbott,
2016b; Talbot & Thrane, 2018; Wysocki et al., 2018; Smith & Thrane, 2018;
Farr, Holz & Farr, 2018; Taylor & Gerosa, 2018; Roulet & Zaldarriaga, 2019,
and references therein. Extracting information from a population of events
is performed using hierarchical Bayesian inference where the population is
described by a set of hyper-parameters, Λ. BILBY has built-in support for cal-
culating Λ from multiple sets of posterior samples from individual events.

BILBY implements the conventional method whereby the posterior sam-
ples θ

j
i for each event j are re-weighted according to the ratio of the popu-

lation model prior π(θ|Λ) and the sampling prior π(θ) to obtain the hyper-
parameter likelihood

L(h|Λ) =
N

∏
j

Zj

nj

nj

∑
i

π(θ
j
i |Λ)

π(θ
j
i )

. (6.5)

Here, Zj is the Bayesian evidence for the data given the original model and
nj is the number of posterior samples in the jth event.
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FIGURE 6.8: A proxy post-merger gravitational-wave signal from a short-lived
neutron star showing the implementation of a different likelihood function in
BILBY. The orange curve is an injected, double-peaked Gaussian signal injected
into a constant noise realisation. The blue band shows the waveform reconstruc-
tions from the posterior samples using a power-spectrum likelihood function; i.e.,

one that only uses the amplitude of the signal and ignores the phase.

The BILBY implementation requires the user to define π(θ|Λ) and
π(θ) which, along with the set of posterior samples θ

j
i , are passed to the

HyperparameterLikelihood in BILBY’s hyper package. The hyperparam-
eter priors are then set up in the usual way, and passed to the standard
run_sampler function.

As a demonstration8 of this method we reproduce results Talbot &
Thrane, 2018 recovering parameters describing a postulated excess of
black holes due to pulsational pair-instability supernovae (PPSN) (Heger
et al., 2003; Woosley & Heger, 2015). The posterior distribution for the
hyperparameters determining the abundance and characteristic mass of
black holes formed through this mechanism are shown in Fig. 6.9. The
hyperparameter λ is the fraction of binaries where the more massive black
hole formed through PPSN, µpp is the typical mass of these black holes and
σpp determines the width of the “PPSN graveyard”.

This model contains seven additional hyperparameters describing the
remainder of the distribution of black hole masses that we hold fixed for
the purposes of this example. Additional hyperparameters may be added
straightforwardly.

8This example is found in the BILBY git repository at https://git.ligo.org/Monash/
bilby/blob/master/examples/other_examples/hyper_parameter_example.py.

https://git.ligo.org/Monash/bilby/blob/master/examples/other_examples/hyper_parameter_example.py
https://git.ligo.org/Monash/bilby/blob/master/examples/other_examples/hyper_parameter_example.py
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FIGURE 6.9: Population modelling with BILBY hierarchical Bayesian inference
module. We show the recovery of parameters describing part of the mass distri-
bution of binary black holes using the model described in Talbot & Thrane, 2018.
The population parameters are drawn from values shown in orange, and the pos-
terior distributions for the hyperparameters shown in blue. Here, λ is the fraction
of binaries where the more massive black hole formed through pulsational pair-
instability supernovae, µpp and σpp are the typical mass of these black holes and

the width of the “PPSN graveyard”, respectively.
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6.7 Analysis of arbitrary data: an example

BILBY is more than a tool for gravitational-wave astronomy; it can also be
used as a generic and versatile inference package. In the documentation ex-
amples, we demonstrate how BILBY can be applied to generic time-domain
data from radioactive decay processes. Furthermore, BILBY is currently be-
ing used to analyse radio and x-ray data from neutron stars, and to study
multi-messenger signals associated with binary neutron star mergers. Here
we show an example that calculates posterior distributions for one of the let-
ters in the BILBY logo.

We import an image file containing the letter, map this to an x-y coordi-
nate system and sample in both dimensions with likelihood

lnL ∝
−1
xy

, (6.6)

assuming uniform priors on both variables. Figure 6.10 shows the posterior
distribution for the “B” in the BILBY logo. All letters are shown in Fig 6.11,
where the axis labels have been removed. The code for making this plot,
and all other posterior distributions in the logo, are available with the git
repository (Ashton et al., 2018b) in sample_logo.py.

6.8 Conclusion

Gravitational-wave astronomy is fast becoming a data-rich field. With the
significantly increased activity in the field, there is a developing need for ro-
bust, easy-to-use inference software that is also modular and adaptable. We
present BILBY: the Bayesian inference library for gravitational-wave astron-
omy. BILBY is open-source software that can be used to perform Bayesian
inference. It is easily applied to data from LIGO/Virgo, including open data
available from the Gravitational Wave Open Science Center. We access and
manipulate LIGO data using GWPy (Macleod et al., 2018). Alternatively, BILBY
may be used to study simulated data. BILBY can also be used to perform hi-
erarchical Bayesian inference for population studies.

We present examples highlighting BILBY’s functionality and usability, in-
cluding examples using open data from the first gravitational-wave detection
GW150914. Only five lines of code are required to reconstruct the astrophys-
ical parameters of GW150914. One can redo the analysis using different pri-
ors, alternative waveform models, and/or a different sampling method with
only modest changes. We show how to inject binary black hole and binary
neutron star signals into Monte Carlo noise. We show how to define new
gravitational-wave detectors.

We emphasise that BILBY is a front-end system that provides a unified
interface to a variety of samplers, which are a primary workhorse of
Bayesian inference. While numerous off-the-shelf samplers are implemented
(see Sec. 6.3.2), to the best of our knowledge there is no universal sampling
solution to gravitational-wave parameter estimation problems. BILBY is
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FIGURE 6.10: The ‘B’ from the BILBY logo, generated using the BILBY package;
see Sec. 6.7
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FIGURE 6.11: All letters from the BILBY logo, generated using the BILBY package;
see Sec. 6.7

therefore only as good as the implemented samplers; initial studies show
that CPNest (Veitch, 2017), Dynesty (Speagle, 2019), and emcee (Foreman-
Mackey et al., 2013; Vousden, Farr & Mandel, 2016) sample the extrinsic
parameters of binary coalescences more accurately than Nestle (Barbary,
2015) and pyMultiNest (Buchner, 2014). A systematic comparison of all
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off-the-shelf and boutique samplers is currently underway using BILBY.
BILBY is designed so as to be applicable to arbitrary signal models, not just

compact binary coalescences. To this end we show two examples: one of an
injected numerical relativity supernova waveform that we reconstruct using
principal component analysis, and another using a proxy for a neutron star
post-merger waveform. The former example highlights how one can include
their own signal models to perform both injections and signal recoveries,
while the latter example demonstrates the ability to add a likelihood function
that is different from the standard gravitational-wave transient likelihood.

Addendum

Since the publication of this paper additional compact binary coalescences
have been observed and significant progress has been made in theoretical
and observational analysis. The reader is directed to Chapters 1 and 8 for an
overview of the field at the time of writing. I note that due to a KDE artefact
in the plotting routines Figure 6.1 appears to show support for primary mass
> secondary mass, which is forbidden by the prior.
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Parallelized Inference for
Gravitational-Wave Astronomy

Published as:
Talbot, C., Smith, R., Thrane, E. & Poole, G. B., Phys. Rev. D, 98, 064031
(2019).

Abstract

Bayesian inference is the workhorse of gravitational-wave astronomy, for ex-
ample, determining the mass and spins of merging black holes, revealing
the neutron star equation of state, and unveiling the population properties
of compact binaries. The science enabled by these inferences comes with a
computational cost that can limit the questions we are able to answer. This
cost is expected to grow. As detectors improve, the detection rate will go
up, allowing less time to analyze each event. Improvement in low-frequency
sensitivity will yield longer signals, increasing the number of computations
per event. The growing number of entries in the transient catalog will drive
up the cost of population studies. While Bayesian inference calculations
are not entirely parallelizable, key components are embarrassingly parallel:
calculating the gravitational waveform and evaluating the likelihood func-
tion. Graphical processor units (GPUs) are adept at such parallel calculations.
We report on progress porting gravitational-wave inference calculations to
GPUs. Using a single code—which takes advantage of GPU architecture if it
is available—we compare computation times using modern GPUs (NVIDIA
P100) and CPUs (Intel Gold 6140). We demonstrate speed-ups of ∼ 50×
for compact binary coalescence gravitational waveform generation and like-
lihood evaluation, and more than 100× for population inference within the
lifetime of current detectors. Further improvement is likely with continued
development. Our python-based code is publicly available and can be used
without familiarity with the parallel computing platform, CUDA.
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7.1 Introduction

In the first two observing runs of Advanced LIGO/Virgo, ten binary black
hole mergers were detected along with one binary neutron star inspiral (Ab-
bott, 2019b). These observations allowed us to measure the Hubble parame-
ter (Abbott, 2017a), to study matter at extreme densities (Abbott, 2018d), and
to probe the underlying distribution of black holes in merging binaries (Ab-
bott, 2019a). Within the lifetime of advanced detectors, we conservatively
estimate that hundreds of such observations will be made given inferred
merger rates and projected sensitivity (Abbott, 2016j).

Compact binary coalescences are analyzed with Bayesian inference (see,
e.g. Gelman et al., 2013 for a general introduction or Thrane & Talbot, 2019
for applications to gravitational waves.). We distinguish between two kinds.
We refer to inferring the properties (e.g., the masses, spins, and location) of
individual binaries as single-event inference. Hierarchical Bayesian inference
is then used to infer the ensemble properties (e.g. the shape of the binary
black hole mass distribution) of the observed binaries in population inference.
These are typically performed with stochastic sampling algorithms such as
Markov Chain Monte Carlo (MCMC) (Metropolis et al., 1953; Hastings, 1970)
or Nested Sampling (Skilling, 2004). These algorithms generate samples from
the posterior distribution and possibly a Bayesian evidence which can be
used for model selection.

Both single-event inference and population inference require the compu-
tation of likelihood functions consisting of many independent operations.
For single-event inference, the number of operations per likelihood evalua-
tion is determined by the length of the signals being analyzed, see, Eq. 7.1.
As the low-frequency sensitivity of detectors increases, binaries will spend
longer in our sensitive frequency range, leading to fast-increasing computa-
tional demands. For population inference, the number of operations required
per likelihood calculation is proportional to the number of binaries in the
population, see, Eq. 7.3. The growing number of observations and the grow-
ing duration of the longest signals in the catalog require improved speed for
inference algorithms.

Most previous methods for accelerating inference for compact binary
coalescences have sped up calculations by reducing the amount of data
required to represent the gravitational-wave signal, thereby reducing the
number of operations required to evaluate the likelihood, e.g., reduced
order methods (Pürrer, 2014; Canizares et al., 2015; Smith et al., 2016), multi-
banding (Vinciguerra, Veitch & Mandel, 2017), and relative binning (Zackay,
Dai & Venumadhav, 2018). Another approach, which we investigate here,
is to parallelize the most time-consuming calculations in the likelihood
evaluation. While it is difficult to parallelize the actual sampling algorithm,
there are embarrassingly parallel calculations within the likelihoods. In
this paper, we explore how astrophysical inference can be accelerated by
executing parallelizable calculations on graphical processor units.

While we focus here on inference using stochastic samplers, e.g., (Veitch
et al., 2015; Biwer et al., 2019; Ashton et al., 2019), it bears mentioning that
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there are alternative inference schemes, which also face computational chal-
lenges, e.g., iterative fitting (Pankow et al., 2015; Lange, O’Shaughnessy &
Rizzo, 2018) is one such alternative. This method evaluates far fewer grav-
itational waveforms, which can significantly reduce computation times for
inference when the waveform evaluation is very time-consuming. Recently,
it has been shown that this algorithm can also be significantly accelerated by
parallelization (Wysocki et al., 2019).

Modern computation is mostly performed on either a central processing
unit (CPU) or a graphics processing unit (GPU). CPUs consist of a relatively
small number of cores optimized to perform all the tasks necessary for a com-
puter in serial. GPUs, on the other hand, consist of hundreds or thousands
of cores, enabling evaluation of many numerical operations simultaneously.
This makes them ideal for embarrassingly parallel operations such as manip-
ulating large arrays of numbers. Low-level GPU programming is carried out
using the parallel computing platform, CUDA. In this work, we take advan-
tage of the library, CUPY (Okuta et al., 2017).

We present python packages with parallelized versions of the likelihoods
necessary for performing both single-event and population inference. The
code is designed to run on either a CPU or a GPU, depending on the
available hardware. Our GPU-compatible code for single-event inference
is available at github.com/colmtalbot/gpucbc, our CUDA compatible
version of IMRPHENOMPV2 at https://github.com/ADACS-Australia/
ADACS-SS18A-RSmith. Our GPU population inference code GWPOPULA-
TION is available from the python package manager PYPI and from git at
github.com/colmtalbot/gwpopulation.

Using our GPU-accelerated code, we investigate the speed-up achieved
carrying out gravitational-wave inference calculations using GPUs versus
traditional CPUs. We carry out a benchmarking study in which we compare
inference code using GPUs to identical code running on CPUs. We compare
the runtimes for various tasks including: (i) evaluating a gravitational wave-
form, (ii) evaluating the single-event likelihood, and (iii) evaluating popula-
tion likelihood. To carry out this comparison, we use NVIDIA P100 GPUs
and Intel Gold 6140 CPUs available on the OzStar supercomputing cluster.

In Section 7.2 we describe methods for parallelizing the evaluation of
gravitational waveforms. In section 7.3 we use these parallelized waveforms
to consider the possible acceleration for single-event inference. In section 7.4,
we investigate the possible acceleration from parallelizing the population in-
ference likelihood. Finally, we provide a summary of our findings and future
work in section 7.5.

7.2 Waveform Acceleration

A key ingredient for single-event inference is a model for the waveform,
h̃( f , θ). Here, h̃ is the discrete Fourier transform of the gravitational-wave
strain time series, f is frequency, and θ is the set of parameters (typically 15-
17), which determine the waveform, e.g., the masses, spins, and orientation
of the binary. This theoretical waveform is compared with the data every

github.com/colmtalbot/gpucbc
https://github.com/ADACS-Australia/ADACS-SS18A-RSmith
https://github.com/ADACS-Australia/ADACS-SS18A-RSmith
github.com/colmtalbot/gwpopulation
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time the likelihood function is evaluated. Many commonly used waveform
models can be directly evaluated in the frequency domain and the value at
each frequency can be evaluated independently (e.g., Ajith et al., 2011; Han-
nam et al., 2014; Khan et al., 2016; Khan et al., 2019). This makes the wave-
form model evaluation embarrassingly parallel.

We design two different codes for performing waveform generation on
a GPU. First, we implement a GPU version of a simple, post-Newtonian
inspiral-only waveform TAYLORF2 (Ajith et al., 2011) directly in python us-
ing CUPY. Secondly, we convert the C code for a phenomenological wave-
form IMRPHENOMPV2 (Hannam et al., 2014) into CUDA1. Both of these
methods are then compared to the time required to evaluate the same wave-
form implemented in C within LALSUITE (Lalsuite).

Technically, the CUDA version of IMRPHENOMPV2 does not adhere
to our philosophy of keeping the GPU programming entirely “under the
hood,”, however, writing custom CUDA kernels allows increased optimiza-
tion of the GPU code. We consider the effect of pre-allocating a reusable
memory “buffer” on the GPU. During parameter estimation waveforms of
the same length will be generated many times as a waveform evaluation is
required for every likelihood evaluation. Since the waveform always has the
same size a predefined spot in memory can be reused for every waveform.

In Fig. 7.1, we plot the speed-up (defined as the CPU computation time di-
vided by the GPU computation time) for both of our waveforms. The dashed
line indicates no speedup. In blue we show the comparison of our TAYLORF2
waveform using CUPY with the C version available in lalsuite (Lalsuite). We
find that, for signals longer than ∼ 10 s, we achieve faster waveform evalu-
ation. The speed-up scales roughly linearly with signal duration so that the
waveforms of duration 100 s are sped up by a factor of ≈ 10. For signals
longer than ∼ 1000 s the GPU queue saturates and the rate of increase of the
speedup decreases.

In orange, we plot the speedup for our CUDA implementation of IMR-
PhenomPv2 compared to the C implementation of the same waveform model
in lalsuite. The solid curve includes the use of a pre-allocated memory buffer,
while the dashed curve does not. We find that pre-allocating memory buffer
increases the performance when the number of frequencies is . 105 and
leads to accelerations for all waveforms when the number of frequency bins
is larger than 100. This suggests that the performance of our CUPY waveform
could be similarly improved for short signal durations using more sophisti-
cated waveform allocation.
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FIGURE 7.1: Speedup comparing our GPU accelerated waveforms with the equiv-
alent versions in LALSuite as a function of the number of frequencies. The cor-
responding signal duration is shown for comparison assuming a maximum fre-
quency of 2048 Hz. The blue curve shows the comparison of our CUPY imple-
mentation of TAYLORF2 with the version available in lalsuite. The GPU version
is slower for shorter waveform durations, this is likely because of overheads in
memory allocation in CUPY. For binary neutron star inspirals the signal duration
from 20 Hz is ∼ 100 s, at which signal durations, we see a speedup of ∼ 10×. For
even longer signals we find an acceleration of up to 80×. The orange curves show
a comparison of our CUDA implementation of IMRPhenomPv2, the solid curve
reuses a pre-allocated memory buffer while the dashed line does not. We see that

the memory buffer makes the GPU waveform faster for shorter signals.

7.3 Single-event Likelihood acceleration

The standard likelihood used in single-event inference is

L(d|θ) =
Ndet

∏
i

M

∏
j

1
2πSij

exp

(
− 2

T
|d̃ij − h̃ij(θ)|2

Sij

)
, (7.1)

where d is the detector strain data, θ are the binary parameters, h̃ is the tem-
plate for the response of the detector to the gravitational-wave signal as de-
scribed in Section 7.2, S is the strain power spectral density, the products
over i and j are over the M frequency bins and Ndet detectors in the network
respectively.

1Specifically, we rewrite in CUDA the function lalsimula-
tion.SimIMRPhenomPFrequencySequence branched from LALSuite at SHA:8cbd1b7187
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FIGURE 7.2: Speedup of the compact binary coalescence likelihood as a function
of the number of frequencies with and without a GPU using our accelerated Tay-
lorF2. The corresponding signal duration is shown for comparison assuming a
maximum frequency of 2048 Hz. We see similar performance as for the wave-

form generation. We find a speedup of an order of magnitude for 128s signals.

Different signals have different durations, and thus, different values for
the number of frequency bins M. The more frequency bins, the more em-
barrassingly parallel calculations to perform, and the more we expect to gain
from the use of GPUs. For example, systems with lower masses produce
longer duration signals than systems with higher masses, all else equal. In
previously published observational papers, the minimum frequency is typ-
ically set to 20 Hz for binary black holes, although a larger minimum fre-
quency was used in the analysis of GW170817 (Abbott, 2017i). For high mass
binary black holes, this corresponds to M = 4,000− 32,000 bins. Binary neu-
tron star signals are much longer in duration, requiring M ≈ 106 bins. When
current detectors reach design sensitivity, frequencies down to 10 Hz will be
used, leading to substantially longer signals and therefore many times more
bins. Future detectors are expected to be sensitive to frequencies as low as
5 Hz (Yu et al., 2018).

During each likelihood evaluation, the most expensive step is usually cal-
culating the template. The next most expensive operation is applying a time
translation to the frequency domain template in order to align the template
with the merger signal. To do this, the frequency-domain waveform is multi-
plied by a factor of exp (−2iπ f δtdet) where tdet is different for each detector
in the network. This becomes increasingly expensive (with linear scaling) as
more detectors are added to the network.
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In Fig. 7.2 we show the speedup achieved evaluating the single-event like-
lihood function using our TAYLORF2 implementation compared to the LAL-
SIMULATION implementation. We find a speedup of an order of magnitude
for a 128 s-long signal, the typical duration for binary neutron star analysis
with a minimum frequency of 20 Hz. This reduces the total calculation time
from a few weeks to a few days.

When the number of frequency bins is relatively small M < 105, we see a
slowdown rather than a speedup. This is due to the same overheads as seen
in Section 7.2. Using the CUDA implementation of IMRPHENOMPV2, we
would expect to see an acceleration for much shorter signal durations.

In order to demonstrate the improvement achieved analyzing longer-
duration signals, we analyze a synthetic binary neutron star inspiral two
different ways. First we analyze the final 128 s of inspiral from a frequency
of 30 Hz as was done for the LIGO/Virgo analysis of GW170817 (Abbott,
2017i). Then we repeat the same analysis including 512 s worth of inspiral
with a minimum frequency of 15 Hz.

The one- and two-dimensional posterior distributions for chirp mass and
effective aligned spin χeff are shown in Fig. 7.3. Observing more of the early
inspiral improves our measurement of both of these parameters. A factor of
∼ 2 improvement of the effective spin will facilitate future comparisons with
the galactic pulsar population (Zhu et al., 2018).

7.4 Population acceleration

In population inference, we are interested in measuring hyper-parameters,
Λ, describing a population of binaries (e.g., minimum/maximum black hole
mass) rather than the parameters, θ, of each of the individual binaries. The
population properties are often described by either phenomenological mod-
els (e.g., Vitale et al., 2017b; Talbot & Thrane, 2017; Fishbach & Holz, 2017;
Kovetz et al., 2017; Wysocki, 2017; Talbot & Thrane, 2018; Fishbach, Holz &
Farr, 2018; Wysocki, Lange & O’Shaughnessy, 2019; Roulet & Zaldarriaga,
2019; Gaebel et al., 2019) or by the results of detailed physical simulations,
e.g., population synthesis or N-body dynamical simulations (e.g., Mandel &
O’Shaughnessy, 2010; Stevenson, Ohme & Fairhurst, 2015; Belczynski et al.,
2016; Gerosa & Berti, 2017; Fishbach, Holz & Farr, 2017; Stevenson, Berry
& Mandel, 2017; Zaldarriaga, Kushnir & Kollmeier, 2018; Zevin et al., 2017;
Wysocki et al., 2018; Barrett et al., 2018; Qin et al., 2018). In this work, we
use the former for examples. However, our methods apply equally to both.
The formalism for hierarchical inference including a discussion of selection
effects is briefly described below, see, e.g., Farr et al., 2015; Thrane & Talbot,
2019; Mandel, Farr & Gair, 2019 for detailed derivations.

In order to analyze a population of binary black holes, we typically use
the following likelihood (Farr et al., 2015),

Ltot({di}|Λ, R) = RNe−RVT(Λ)
N

∏
i

∫
dθiL(di|θi)p(θi|Λ). (7.2)



122 CHAPTER 7. PARALLELIZED INFERENCE

FIGURE 7.3: Posterior distributions for the chirp mass and effective spin of a
binary neutron star inspiral similar to GW170817 when beginning the analysis at
30 Hz (blue) and 15 Hz (orange). Analyzing more of the early inspiral enables
better measurement of the chirp mass, which leads to an improved measurement

of the neutron star spins.

Here, L(di|θ) is the likelihood of obtaining strain data di given binary pa-
rameters θi as in Eq. 7.1, p(θ|Λ) is our population model, and VT(Λ) is the
total observed spacetime volume if the population is described by Λ. See,
e.g., (Finn & Chernoff, 1993; Dominik et al., 2015; Wycoski & O’Shaughnessy,
2018; Tiwari, 2018) for discussions of methods to calculate VT(Λ).

Within GWPOPULATION we currently support the calculation of VT on a
regular grid with GPU acceleration. The calculation of VT does not depend
on the number of events. However, this grid-based integration is limited
to small dimensional spaces, and so the subdominant effects of spin on de-
tectability cannot be included in this method. This is mitigated by perform-
ing monte carlo integration. However, the cost of this compation scales as
O(N) (Farr, 2019). We are currently developing a method which will enable
spin-effects to be included in the calculation of VT wih no increase in cost at
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runtime (Talbot, in prep.). For the benchmarking performed in this work, we
ignore this quantity, but it may be added back in without significant impact
on performance.

Since L(di|θ) is independent of the population model, it can be evaluated
independently for each observed binary, as described in Section 7.3. Since
we are interested in evaluating an integral of the likelihood over the binary
parameters, it is convenient to perform a Monte Carlo integral using samples
from the likelihood. This process is known as “recycling”.

The Bayesian inference algorithms used for single-event inference typi-
cally generate samples from the posterior distribution. Therefore, it is nec-
essary to weight each of the samples by the prior probability distribution
p(θij|∅) used during the initial inference step. This yields the following like-
lihood

Ltot({di}|Λ, R) ∝ RNe−RVT(Λ)
N

∏
i

ni

∑
j

p(θij|Λ)

p(θij|∅)
. (7.3)

Where {θj}i is a set of ni samples drawn from the posterior distribution
p(θi|di). The evaluation of the population model for each of the posterior
samples is embarrassingly parallel.

The first step is to draw an equal number of samples from each posterior
so that for each binary parameter we have a single N× ni array. These arrays
are then transferred to the GPU to evaluate the probabilities, sums, and log-
arithms. We then need to only transfer a single number, the (log-)likelihood,
back to the CPU when the likelihood is evaluated.

We calculate the likelihood evaluation time as a function of the number of
posterior samples being recycled. The tests performed in this work use the
mass distribution proposed in Talbot & Thrane, 2018, the spin magnitude dis-
tribution from Wysocki, Lange & O’Shaughnessy, 2019, and the spin orien-
tation model from Talbot & Thrane, 2017. Fig. 7.4 shows the expected linear
scaling in the speedup obtained by using the GPU. At around 3× 106 sam-
ples, the GPU likelihood evaluation time begins increasing and the growth
of the relative speedup slows. This is due to GPU queue saturation.

The data released after the second observing run of advanced
LIGO/Virgo includes ten binary black hole systems and the shortest
posterior contains ∼ 2× 104 posterior samples. Using 2× 105 samples the
GPU code is ≈ 10× faster, reducing runtimes from a week to less than a day.

During Advanced LIGO/Virgo’s third observing run, beginning April
2019, we can expect to detect tens more binary black hole mergers (Abbott,
2016j). Given the current performance, we would expect the relative speed
of the GPU code and the CPU code to continue to scale linearly with the size
of the observed population. Within the lifetime of current detectors, we can
conservatively assume that we will detect hundreds of events. At this stage
using a GPU will accelerate population inference by more than two orders of
magnitude.
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FIGURE 7.4: Ratio of the likelihood evaluation time (top) and likelihood evalu-
ation time (bottom) on CPU and GPU as a function of number of samples. The
vertical lines indicate (left to right): the number of samples released as part of the
GWTC-1 data release, the anticipated number of samples at design sensitivity,
the number of samples for a week of data. With the number of samples avail-
able as part of GWTC-1, the speedup is ∼ 10× . When the number of samples
exceeds 4 million we reach the limits of the available GPUs and the likelihood
evaluation time begins to increase. As GPU technology improves we expect that

the maximum speedup over single-threaded code will continue to increase.

7.5 Discussion

As the field of gravitational-wave astronomy grows, the quantity of data to
be analyzed is rapidly increasing. Thus, it is necessary to constantly improve
and accelerate inference algorithms. In this paper, we demonstrate multiple
ways in which GPUs can aid in this endeavor. We show that multiple or-
ders of magnitude speedup can be achieved within the lifetime of current
detectors in three areas:

• waveform evaluation.

• CBC likelihood evaluation.

• population inference.

Most of these improvements use CUPY, a python interface to CUDA, which
acts as a GPU wrapper for existing C code. CUPY has also recently been
used for other parameter estimation methods in gravitational-wave astron-
omy (Wysocki et al., 2019).

We provide two complementary GPU versions of commonly used
waveforms, a CUDA implementation of IMRPHENOMPV2 and a python
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implementation of TAYLORF2. We find that the performance of the CUDA
waveform exceeds that of the pure-python waveform for short waveforms
when efficient memory allocation is vital. For longer waveforms, memory
allocation is less important and the python waveforms give similar or greater
speedups than the CUDA implementation. The CUDA implementation
of IMRPHENOMPV2 is available at2. Future development of parallelized
waveforms may enable rapid evaluation of waveforms encoding more of the
phenomenology of general relativity, e.g., higher-order modes (Blackman
et al., 2017), gravitational-wave kicks (Gerosa, Hébert & Stein, 2018), or
gravitational-wave memory (Talbot et al., 2018).

Other than waveform evaluation, the dominant cost for the likelihood
used in inference for compact binary coalescences are exponentials to per-
form frequency domain time-shifts. This is another operation which dras-
tically benefits from parallelization. Using these two methods, we reduce
the likelihood evaluation time for binary neutron star mergers by an order of
magnitude at current sensitivity and more when current detectors reach their
design sensitivity. The code for performing GPU-accelerated single-event pa-
rameter estimation can be found at3.

Other methods for speeding up likelihood evaluation for long signals in-
clude reduced order quadrature methods (Smith et al., 2016) and relative bin-
ning (Cornish, 2010; Zackay, Dai & Venumadhav, 2018). These methods rely
on the waveform being sufficiently well described by a small set of unevenly
sampled frequencies. For binary neutron star mergers like GW170817, the
signal from∼ 30 Hz to the merger can be described with only∼ 103 frequen-
cies. Additionally, these methods do not require computing any exponentials
at run time. GPU waveforms will have less of a benefit for these cases. How-
ever, we may be able to accelerate parameter estimation by an additional
factor of a few. This will facilitate more rapid production of sky maps for
electromagnetic observers following up on gravitational-wave events.

The computational cost of performing population inference increases lin-
early with the size of the observed population. Using a GPU to perform
the embarrassingly parallel likelihood evaluation we find an acceleration of
∼ 10× using the data in GWTC-1 (Abbott, 2019b) compared to the CPU code.
We additionally find that the GPU implementation will outperform the CPU
code by more than two orders of magnitude during the lifetime of current
detectors. We therefore present GWPOPULATION4: a CPU/GPU agnostic
framework for performing gravitational-wave population inference. Both
of these packages use the framework available within BILBY (Ashton et al.,
2019).

Within GWPOPULATION, we include CPU/GPU tools for performing
population inference. We provide:

• implementations of many previously proposed binary black hole pop-
ulation models.

2adacs-ss18a-rsmith-python.readthedocs.io/en/latest/
3github.com/ColmTalbot/gpucbc
4github.com/ColmTalbot/gwpopulation, GWPOPULATION is also available through

PYPI.

https://adacs-ss18a-rsmith-python.readthedocs.io/en/latest/
https://github.com/ColmTalbot/gpucbc
https://github.com/ColmTalbot/gwpopulation
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• the likelihoods commonly used in gravitational-wave population infer-
ence.

• methods for computing selection biases.

Using our GPU-enabled implementation of a binary neutron inspiral
waveform we demonstrate that beginning the analysis at lower frequencies
will improve our measurements of the intrinsic parameters of the system.
While these results present a tantalizing glimpse of the physics that will be
enabled through GPU acceleration, more work is required to realize these
gains.

1. When analyzing signals for many minutes it will be necessary to in-
clude the effect of the Earth’s rotation in our analysis. Including the
effect of the Earth’s rotation will improve sky localization since the
movement of the detector allows triangulation from data taken at dif-
ferent times. While progress on this front has been made in recent years,
e.g., (Marsat & Baker, 2018; Liang et al., 2019), a working implementa-
tion is not available at this time.

2. Central to the likelihood we use (Eq. 7.1) is an assumption of gaussian-
ity and stationarity of the noise. These assumptions are not generally
valid over the lengths of time considered in this paper.

The improvements between current sensitivity and the projected design
sensitivities of advanced LIGO/Virgo are largest at low frequencies, so
additional upgrades may be required in order to achieve the improvements
shown here with real data.

As we enter “the data era” of gravitational-wave astronomy, optimizing
Bayesian inference codes become ever more important. When the likelihood
evaluation requires a large number of independent operations, GPUs can
yield significant benefits.

Addendum

Since the publication of this paper additional compact binary coalescences
have been observed and significant progress has been made in theoretical
and observational analysis. The reader is directed to Chapters 1 and 8 for an
overview of the field at the time of writing.



Chapter 8

Conclusion

In this thesis, I have developed theoretical models for astrophysical popula-
tions of compact binaries and created frameworks for enabling astrophysical
inference. In this final chapter, I will describe recent results using these mod-
els and methods and provide an outlook on future measurements that can be
made and development that will be needed to realise them.

8.1 Astrophysical population inference

During the first two observing runs of Advanced LIGO/Virgo, we ob-
served ten binary black hole mergers and a single binary neutron star
coalescence (Abbott, 2019b). Subsequent searches for gravitational-wave
transients by groups outside of the LIGO/Virgo collaborations have in-
dependently identified these events along with a set of new significant
triggers (e.g., Nitz et al., 2018a; Zackay et al., 2019; Venumadhav et al.,
2019a; Nitz et al., 2019). During the first half of Advanced LIGO/Advanced
Virgo’s third observing run (O3a) 40 public alerts were released for triggers
surpassing a once per month false alarm rate1. Seven of these triggers were
subsequently retracted due to data quality issues, however, many of the
remaining are likely to be confirmed as gravitational-wave transients in the
coming months. Given this rate of triggers, we can expect to have many
tens, possibly a hundred binary black hole mergers observed by the end of
the third observing run.

8.1.1 Binary black holes

In Abbott, 2019a I applied the methods described in Chapters 3 and 4 to the
binary black holes in Abbott, 2019b. The main result of this paper is the in-
ference that 99% in binary black hole systems the more massive companion
is less massive than 45M�. This is consistent with predictions about the loca-
tion of a mass cutoff due to (pulsational) pair-instability supernovae. We also
identified a low significance, ln BF ≈ 2, preference for the presence of a Gaus-
sian deviation from a power-law distribution of black hole masses around

1At the time of writing 32 alerts have been issued since the beginning of O3b with 14
retractions
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∼ 35M�. This represents the first evidence that the black hole mass distri-
bution does not follow a power-law mass distribution. A power-law distri-
bution is often assumed as the base model because the stellar initial mass
function follows a power-law over the relevant mass range (e.g., Kroupa et
al., 2013). The location of this excess is less massive than most predictions
of the location of black holes forming through pulsational pair-instability su-
pernovae which is expcted to be & 40M� (e.g., Farmer et al., 2019). This
suggests that either our models of these supernovae are inadequate, or that
another effect is at play. This is a tantalising glimpse of the astrophysical
measurements we will be able to make in the coming years.

Additionally, we can rule out the hypothesis that all black holes have
large spins or spins exactly aligned with the orbital angular momentum, but
cannot make strong statements about the fraction of events with misaligned
spins. We found that the distribution of spin magnitudes is skewed towards
small spin magnitudes using a parameterisation from Wysocki, Lange &
O’Shaughnessy, 2019. Using a model for the evolution of the binary black
hole merger rate with redshift (Fishbach, Holz & Farr, 2018), we can say that
the merger rate increases from z = 0 to z = 0.9 with 93% probability.

8.1.2 Binary neutron stars

The binary neutron star coalescence GW170817 rapidly became one of the
most widely observed astronomical transients in recent years, leading to rich
new information about the neutron star equation of state (Abbott, 2018d),
confirmation that binary neutron stars are progenitors of short gamma-ray
bursts (Abbott, 2017e), and a new independent measurement of the rate of
expansion of the Universe (Abbott, 2017a). However, this is just the begin-
ning of the physics which will be possible in the coming years as we begin
to routinely observe such inspirals. Hernandez Vivanco et al., 2019 used ran-
dom forest regression to combine multiple binary neutron star observations
to infer the neutron star equation of state. Assuming current rate estimates
and projected sensitivities, we estimate that we can constrain the radius of a
1.4M� neutron star to within 10% by then of the fourth observing run.

8.1.3 Future work

To avoid biasing future population studies, it will be necessary to allow
for the possibility that our transient catalogues contain terrestrial, as well
as astrophysical, transients. Progress has recently been made towards this
through two methods. Gaebel et al., 2019 demonstrate a method to include
an expected fraction of terrestrial transients due to lowering the threshold for
population inference. Smith & Thrane, 2018 suggest performing parameter
estimation on all gravitational-wave data to make a statistical measurement
of the binary black hole merger rate. Preliminary studies suggest that this
method can be updated to allow the distribution of binary black holes to be
measured simultaneously with this statistical measurement.
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It is common practice to assign each trigger a probability that it is of
astrophysical origin, pastro (e.g., Kapadia et al., 2019; Zackay et al., 2019).
Galaudage, Talbot & Thrane, 2019 developed a method to use pastro as com-
puted by the compact binary search pipelines to model the impurity of our
catalogues and thus allow us to include more low significance events in our
inference.

A current limiting factor in population analyses such as those performed
in Abbott, 2019a is evaluating the observational selection function. The quan-
tity typically used

V(Λ) =
∫

dtdθpdet(θ)π(θ|Λ), (8.1)

often referred to as “VT” is the total observed spacetime volume given the
population model, π(θ|Λ) requires integrating the probaility of detecting
any source over the entire observing time. The quantity pdet is the proba-
bility of detecting a binary with parameters θ. At first order, V(Λ) depends
on the assumed model for the mass and redshift distribution of binary black
hole mergers. The next most important parameters for computing V are the
aligned components of the component spins (e.g., Campanelli, Lousto & Zlo-
chower, 2006; Scheel et al., 2015; Ng et al., 2018). The effect of spin-orbit
precession, tidal deformability, and eccentricity on the observed volume has
not been well studied aa they are not included in searches for compact bi-
naries (e.g., Allen et al., 2012; Hooper et al., 2012; Adams et al., 2016; Mes-
sick et al., 2017; Nitz et al., 2018b; Venumadhav et al., 2019b; Sachdev et al.,
2019), although unmodeled searches can perform better in searches for these
binaries (e.g., Klimenko et al., 2016). The other “extrinsic” parameters are
assumed to follow known, geometric, distributions.

Current methods for evaluating V(Λ) rely on performing a numerical in-
tegral for each likelihood evaluation, using either Gaussian quadrature (e.g.,
Wycoski & O’Shaughnessy, 2018) or Monte Carlo methods based on injec-
tions into real data (e.g., Tiwari, 2018). The number numerical operations
to maintain a constant resolution with Gaussian quadrature scales exponen-
tially with the dimensionality and so including subdominant effects, e.g.,
spin, in the integral is not possible. Monte Carlo integration scales better
with increasing dimensionality, however, the number of elements in the sum
scales linearly with the number of observed events (Farr, 2019), and by ex-
tension the number of numerical operations. This method can be parallelised
as described in Chapter 7.

Additionally, I am developing a method to use machine learning to evalu-
ate V(Λ) at runtime in O(ms). This is done by performing an offline training
step where V(Λ) is computed in advance through either Gaussian quadra-
ture or Monte Carlo integration for a large number of samples to generate
a training set. A neural network is then trained to estimate V(Λ) from this
training set. Generating the training data can be arbitrarily parallelised over
many computational nodes.
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8.2 Accelerating inference

The work in Chapter 7 represents just one attempt at accelerating astrophys-
ical inference to keep pace with our increasing computational demands.
Payne, Talbot & Thrane, 2019 applied importance sampling to the likelihood
used in compact binary parameter estimation to perform the analysis with a
waveform model which is prohibitively expensive for traditional sampling
methods. We used this method to perform the first analysis of all ten
binary black hole mergers in GWTC-1 using a waveform which contained
“higher-order” waveform modes. This method has subsequently been
adapted to search for eccentricity in the same catalogue (Romero-Shaw,
Lasky & Thrane, 2019).

8.3 Gravitational-wave memory

Using the waveform model developed in Chapter 5 and the method
from Payne, Talbot & Thrane, 2019, we performed the first search for
gravitational-wave memory using gravitational-wave transients Hübner
et al., 2020. While this initial sample of events was insufficient to identify
the presence of gravitational-wave memory in the signal, we expect that this
prediction of general relativity can be confirmed or falsified within in the
next decade. Assuming a detection of gravitational-wave memory is made
in the future, we can use the nature of the memory signal analogously to
the “inspiral-merger-ringdown consistency tests” currently performed on
binary black hole mergers (e.g., Abbott, 2019e).



Appendix A

Windowing effects in parameter
estimation

Abstract

The noise power spectral densities of gravitational-wave detectors contain
sharp features known as “lines”. Due to the presence of these lines, it is nec-
essary to apply a “window” to time-domain data before performing a fast
Fourier transform to avoid spectral leakage. This windowing leads to a re-
duction in power of Gaussian noise by a known, window-dependent factor.
To account for this loss of power, it is common to multiply the analysed data
by a correction factor. However, this must be done carefully to avoid inadver-
tant amplification of astrophysical signals. In this appendix, I describe how
we compute the correct factor and how it can be safely applied when per-
forming parameter estimation on gravitational-wave transients. Addition-
ally, I show how previous misapplication of these factors has led to a biased
recovery of the luminosity distance of the first gravitational-wave transients
analysed with LALINFERENCE.
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A.1 Background

We measure strain data d(t) in an interferometer. If the data contain an as-
trophysical signal, we can write this as

d = n + hø, (A.1)

where hø is the gravitational wave strain, and n is the noise in the detector.
In both LALINFERENCE (Veitch et al., 2015) and BILBY (Ashton et al., 2019)
we analyse this data in the frequency domain. We, therefore, have to take a
fast Fourier transform (FFT) of the data

d̃( f ) = FFT(d(t)). (A.2)

However, to minimise spectral leakage and edge effects, a window func-
tion w(t) is applied to the data before performing the FFT. This means that
we have the convolution of the frequency domain strain and the frequency
domain window

d̃′( f ) = FFT(d(t)w(t)) = d̃( f ) ∗ w̃( f ) (A.3)

rather than d̃. We assume that the signal is not windowed in the frequency
band, i.e.,

h̃′ø = h̃ø. (A.4)

This can be achieved by choosing the segment duration and prior for coales-
cence time such that the signal is not affected by the window.

The standard likelihood we wish to evaluate is

lnL = −|d̃− h̃|2
2P

− ln(2πP), (A.5)

where P is the noise power spectral density (PSD) of n, and h̃ is our tem-
plate which approximates the frequency-domain gravitational-wave strain.
We note that generally h̃ 6= h̃′ø. However, if our template perfectly matches
the true signal, h̃ = h̃′ø, this reduces to

lnLø = −|ñ|
2

2P
− ln(2πP). (A.6)

In addition to this expected behaviour of the likelihood, it is generally ac-
cepted that the real and imaginary components of the “whitened residual”,
ñR,I/P1/2, should independently follow a unit normal distribution, i.e.,

ñR,I

P1/2 ∼ N (µ = 0, σ2 = 1). (A.7)

However, applying the window reduces the power in the signal due to
the part of the noise which is reduced at the edges from windowing. Using
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Parseval’s theorem, this power loss factor can be shown to be

w2 =
〈

w(t)2
〉

(A.8)

Equation A.6 can therefore be written

lnLø = −1
2
|ñ′|2
w2P

− ln(2πP), (A.9)

lnL = −1
2
|d̃′ − h̃|2

w2P
= −1

2
|ñ′ + h̃ø − h̃|2

w2P
− ln(2πP). (A.10)

A.2 Window choice

The window most commonly used for gravitational-wave data analysis is the
Tukey window (Harris, 1978),

w(t− t0, δt) =





1
2

[
1 + cos

(
π
( t

δt − 1
))]

0 ≤ t ≤ δt,
1 δt ≤ t ≤ T − δt,
1
2

[
1 + cos

(
π
( t−T

δt + 1
))]

T − δt ≤ t ≤ T.
(A.11)

The “roll-off” parameter, δt, is the duration over which the window rises
from the beginning of the segment and rolls-off at the end of the segment.
The parameter T is the duration of the analysis segment. The Tukey window
is often instead parameterised by the fraction of the window in the rise and
roll-off, α ≡ 2δt/T.

For this window, we can analytically integrate and calculate the exact cor-
rection factor that we should apply

〈
ω̄2
〉
=

1
T

∫ T

0
dtw2(t, δt) = 1− 5δt

4T
= 1− 5α

8
(A.12)

In Table A.1 I show
〈

ω̄2
〉

for δt = 0.2 and a range of commonly used
durations.

A.3 Implementation

There are two common ways that factors of w2 can be included when per-
forming our analysis.

A.3.1 PSD correction

Depending on how P is calculated, the window factor may or may not be
included in the definition of P. This is the case for many off-the-shelf estima-
tion routines, including those implemented in SCIPY and MATPLOTLIB, which
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T [s] α
〈

ω̄2
〉

1−
〈

ω̄2
〉0.5

4 0.1 0.9375 3.175× 10−2

8 0.05 0.96875 1.575× 10−2

16 0.025 0.984375 7.843× 10−3

32 0.0125 0.9921875 3.914× 10−3

64 0.00625 0.99609375 1.955× 10−3

128 0.003125 0.998046875 9.770× 10−4

TABLE A.1: Window normalisation factors for various segment durations assum-
ing a roll-off of δt = 0.2s. The columns show: segment duration, the Tukey
parameter (α), the power-reduction factor (

〈
ω̄2
〉
), and the fractional change in

amplitude.

are used in BILBY (Chapter 6)1. In the previous section, we assumed that this

factor is not included. However, if it is included, then the factor of w2−1
also

has to be added to the likelihood manually, leading to cancellation with the
factor included in Equation A.102. Since we do not apply the correction to
the data segment, it should not be applied to the template.

A.3.2 Template correction

It is tempting to apply the correction directly to the data after taking the FFT:

d̃ = d̃′/
√

w2. (A.13)

However, this leads to an undesirable amplification of the signal since there
is no power loss in the signal due to windowing; (recall, we were careful to
make sure the signal did not overlap with the window edge). It is the noise
that we must correct, not the signal. We must, therefore, apply the same
factor to our template. In this case, we see that we recover the previous like-
lihood

lnL = −1
2
|d̃− h̃/

√
w2|2

P
(A.14)

= −1
2
|d̃′/

√
w2 − h̃/

√
w2|2

P
(A.15)

= −1
2
|d̃′ − h̃|2

w2P
. (A.16)

This is the method used in LALINFERENCE. During the development
of BILBY, I noticed that the luminosity distances returned by the two codes
differed by the analysis segment duration-dependent factor described above,

1This factor is applied automatically when the user calls
bilby.Interferometer.power_spectral_density_array.

2Another point of caution here is that the window applied when estimating the PSD must
be identical to the window applied to the analysis segment to avoid other sources of bias.
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see, e.g., Fig. 6.2. The reason for this difference was because LALINFERENCE
uses method 2 to perform this correction, correcting the frequency-domain
data and template independently. However, the correction was only being
applied to the template if it was calculated in the time-domain.

The bug was resolved by merge request3. This means that the distance
estimated in any analysis of time-domain data (real or simulated) performed
before this commit with a frequency-domain waveform model was biased
by a known factor, given by the final column of Table A.1. The O1/O2 cata-
logue paper, GWTC-1, was published after this bug was fixed, therefore the
distances in the final official data release are unaffected, however, initial data
releases were, along with source estimates for all papers published before
GWTC-1.

A.4 Tests

We can test the correctness of windowing procedures in two different ways,
in order to identify errors associated with the two implementation methods
described.

A.4.1 Data whitening

As mentioned in Section A.1, our aim is for the power spectral density to
correctly whiten the data, i.e.,

ñR,I

w21/2
P1/2

∼ N (µ = 0, σ = 1). (A.17)

Here ñR,I are the real and imaginary components of the frequency-domain
noise. If the term w2 is omitted entirely the noise will be “over-whitened,”
which will change the standard deviation.

Several methods are used to assess how well the data is whitened by the
PSD. The first is a visual comparison of a histogram of the whitened strain, an
example of this is shown in Figure A.1. In this figure I show the distribution
of the whitened strain when: applying a rectangular window, and applying
a Tukey window with α = 0.5 with and without including the w2 factor.

A more quantitative approach is to compute the Anderson-Darling statis-
tic for the whitened strain,

A2 = N
∫ ∞

−∞
dF

(Fs − F)2

F(1− F)
. (A.18)

Here F is the expected cumulative distribution, in our case, the cumulative
distribution of a unit normal distribution, and Fs is the cumulative distribu-
tion of the samples, and N is the number of samples. If the two distributions

3https://git.ligo.org/lscsoft/lalsuite/merge_requests/780

https://git.ligo.org/lscsoft/lalsuite/merge_requests/780
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FIGURE A.1: Whitened strain in three cases: no window applied (orange), win-
dow applied without accounting for power loss factor (green), and after applying

the factor (purple).

being compared are the same then the distribution of the Anderson-Darling
statistic should follow a predictable distribution.

When applying a rectangular window, the distribution of the Anderson-
Darling statistic is as expected. However, when we apply a Tukey window
with α & 0.0125 to the data, the distribution of the Anderson-Darling statis-
tic is twice as narrow as expected, telling us that the data appears to match
the unit normal distribution too well, see, Figure A.2. This effect was noticed
by Chatziioannou et al., 2019 where the authors attributed this to not resolv-
ing spectral lines when using short segment durations. However, the effect
can be explained by noting that windowing the data introduces an offset
in the amplitude and phase of the frequency domain strain, see Figure A.3.
This, in turn, effectively doubles the number of degrees of freedom as both
the original real and imaginary information is in each component. Hence we
should use 2N in Equation A.18. We note that when using sharply rising
windows, long segment durations in Fig. A.3, there is significant correlation
between the offsets at neighbouring frequencies, however, this does not ap-
pear to affect the Anderson-Darling statistic at the level tested here.

A.4.2 Signal recovery

If the correction factor is applied to the data without also applying that factor
to the template, we see the ill effects by recovering an injected signal with
known parameters in a zero noise realization. Specifically, if the template has
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FIGURE A.2: The distribution of the Anderson-Darling statistic for various seg-
ment durations.
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δR(ñ/P 1/2)

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

δI
(ñ
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FIGURE A.3: The change in the real and imaginary components of the whitened
strain after applying a range of windows. When applying a rectangular window
there is no deviation in the strain. For very sharply turning on windows, i.e.,
small α/long durations the neighbouring frequency bins are highly correlated,
leading to the features in the plot. For windows with a larger α, shorter duration,

the offsets appear random and uncorrelated.
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FIGURE A.4: Likelihood of data given distance for a zero-noise realisation when
not accounting for the amplification of the signal after correcting the power in the

frequency domain strain.

not been corrected to account for the amplification of the signal, the distance

will be underestimated by a factor of
√

w24.
An example posterior distribution for distance calculated using a range

of windows without applying the appropriate correction are shown in Fig-
ure A.4. This fractional bias in the maximum likelihood distance is shown in
the final column of Table A.1 for a range of windows and the corresponding
segment duration for a window roll-off of 0.2s. A real-world example of this
bias can be seen in Figure 6.2. The LALINFERENCE posterior for distance
is clearly shifted to smaller values compared to the posterior recovered by
BILBY.

4This is due to the signal amplitude scaling like 1/dL.
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