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A 2SLS and GMM Estimation

A.1 Asymptotic properties

Under the maintained assumptions, it follows by similar arguments as in Kelejian and

Prucha (2010) that

√
n(θ̂2sls − θ)

d→ N(0, [plimn→∞n
−1(X ′P ∗X)−1X ′P ∗ΣP ∗X(X ′P ∗X)−1]−1),

where P ∗ = Z∗(Z∗′Z∗)−1Z∗′.

Furthermore, let

Ω =

 Z∗′ΣZ∗ 0

0 tr(ΣG∗ΣG∗) + tr(ΣG∗ΣG∗′)


and

D =

 Z∗′G(In − λG)−1(β0ιn +Xβ1 + X̄β2) Z∗′ιn Z∗′X Z∗′X̄

tr[(G∗ +G∗′)G(In − λG)−1Σ] 0 0 0


where S = In − λG. It follows by similar arguments as in Lin and Lee (2010) that

√
n(θ̂gmm − θ)

d→ N(0, (plimn→∞n
−1D′Ω−1D)−1).

A.2 Monte Carlo experiments

To investigate the finite sample performance of the proposed estimators, we conduct some

simulation experiments. In the experiments, the outcome equation is given by

y = λGy +Xβ + u,
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and the corresponding network g is realized with the probability

Pr(g) =
exp[Q(g)]∑
g̃∈Gn exp[Q(g̃)]

.

The potential function Q(g) takes the form

Q(g) =
n∑
i=1

n∑
j=1

gij [δ0 +Wijδ1 + δ2
∑
k 6=i,j

gik + ηi + ηj ],

where Wij = 2 − (Xi −Xj)
2 measures the similarity between agents i and j in exogenous

characteristics. We generate Xi independently from the standard normal distribution. We

generate vi and ηi jointly from a bivariate normal distribution

 vi

ηi

 ∼ N


 0

0

 ,
 1 σ12

σ12 1


 ,

and ui = σivi, where σi takes the value of {1,
√

2,
√

3} with equal probability. In the data

generating process, we set λ = 0.1, β = 0.5, δ0 = 0, δ1 = 0.5 and δ2 = −0.5, and experiment

with different values for σ12.

Let

ĝij =
exp(δ̂0 +Wij δ̂1)

1 + exp(δ̂0 +Wij δ̂1)

where δ̂0 and δ̂1 are obtained from a logistic regression of gij on Wij , and let Ĝ = [ĝij/d̂],

where d̂ = max{maxi
∑n

j=1 ĝij ,maxj
∑n

i=1 ĝij}. The McFadden’s pseudo-R2 of the logistic

regression is about 0.04. We consider the following estimators: (a) “2SLS-1”, the conven-

tional 2SLS estimator with the IV matrix Q = [X,GX]; (b) “2SLS-2”, the 2SLS estimator

defined in Equation (10) with the IV matrix Q̂ = [X, ĜX]; and (c) “GMM”, the GMM

estimator defined in Equation (11). The estimation results are reported in Table A.1. We

use robust measures of central tendency and dispersion, namely, the median, the median of

the absolute deviations (Med. AD), the difference between the 0.1 and 0.9 quantile (Dec.

Rge) in the empirical distribution of the estimates from 1000 simulation replications. There
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are two main observations from the experiment. First, the conventional 2SLS estimator,

namely “2SLS-1”, is biased when the adjacency matrix is endogenous. The “2SLS-1” es-

timate of λ is upwards biased and the “2SLS-1” estimate of β is downwards biased. As

σ12 increases, the magnitude of the bias increases. By contrast, “2SLS-2” and “GMM”

estimates are essentially unbiased for all cases considered. Second, The “GMM”estimator

substantially reduces the dispersion (in terms of Med. AD and Dec. Rge) of the “2SLS-1”

and “2SLS-2”estimators.

B DMH Algorithm

We assign the prior distributions of model parameters and unknown variables as follows:

1. Individual latent variable: ηi ∼ N(0, σ2ηIn), with σ2η ∼ κInvχ2(α). The hyper-

parameters κ and α are to be specified by the user.

2. Parameters in the link formation: δ ∼ N(µδ, σ
2
δI).

The DMH algorithm takes the following steps:

Step I. Simulate η̃i from p(η̃i|g, δ, η−i) by the DMH algorithm, for i = 1, · · · , n.

I.1. Propose η̃i from a random walk proposal density qη(η̃i|ηi).

I.2. Simulate auxiliary data g̃ by R runs of Algorithm 1, starting from the observed

g.

I.3. Accept η̃i according to the acceptance probability

αη = min

{
1,
π(g|δ, η̃)

π(g|δ, η)
·
p(η̃i|σ2η)
p(ηi|σ2η)

· π(g̃|δ, η)

π(g̃|δ, η̃)

}

= min

{
1,

exp[Q(g|δ, η̃)]

exp[Q(g|δ, η)]
·
p(η̃i|σ2η)
p(ηi|σ2η)

· exp[Q(g̃|δ, η)]

exp[Q(g̃|δ, η̃)]

}
,

where p(ηi|σ2η) denotes the density function of N(0, σ2ηIn).
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Step II. Simulate σ̃2η from [κ+
∑n

i=1(η̃i)
2]Invχ2(α+ n) by a standard Gibbs sampler.

Step III. Simulate δ̃ from p(δ̃|g, Y, η̃) by the DMH algorithm.

III.1. Propose δ̃ from a random walk proposal density qδ(δ̃|δ).

III.2. Simulate auxiliary data g̃ by R runs of Algorithm 1, starting from the observed

g.

III.3. Accept δ̃ according to the acceptance probability

αδ = min

{
1,
π(g|δ̃, η̃)

π(g|δ, η̃)
· p(δ̃)
p(δ)

· π(g̃|δ, η̃)

π(g̃|δ̃, η̃)

}

= min

{
1,

exp[Q(g|δ̃, η̃)]

exp[Q(g|δ, η̃)]
· p(δ̃)
p(δ)

· exp[Q(g̃|δ, η̃)]

exp[Q(g̃|δ̃, η̃)]

}
.
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Table A.1: Monte Carlo Simulation Results
n = 200 n = 400

λ = 0.1 β = 0.5 λ = 0.1 β = 0.5

σ12 = 0.4
2SLS-1 0.113(0.053)[0.337] 0.479(0.113)[0.474] 0.108(0.035)[0.199] 0.483(0.095)[0.387]
2SLS-2 0.101(0.045)[0.271] 0.492(0.109)[0.525] 0.100(0.029)[0.180] 0.504(0.083)[0.402]
GMM 0.101(0.020)[0.074] 0.503(0.076)[0.311] 0.099(0.011)[0.040] 0.504(0.054)[0.204]

σ12 = 0.6
2SLS-1 0.112(0.046)[0.260] 0.477(0.104)[0.450] 0.110(0.027)[0.171] 0.483(0.078)[0.337]
2SLS-2 0.101(0.029)[0.173] 0.497(0.098)[0.410] 0.100(0.019)[0.113] 0.503(0.073)[0.294]
GMM 0.101(0.013)[0.047] 0.503(0.072)[0.290] 0.100(0.007)[0.026] 0.503(0.052)[0.193]

σ12 = 0.8
2SLS-1 0.117(0.040)[0.217] 0.482(0.107)[0.429] 0.112(0.025)[0.137] 0.483(0.078)[0.316]
2SLS-2 0.101(0.022)[0.122] 0.496(0.090)[0.349] 0.100(0.015)[0.085] 0.503(0.066)[0.263]
GMM 0.100(0.010)[0.035] 0.503(0.070)[0.278] 0.100(0.005)[0.019] 0.502(0.052)[0.192]

Median (Med. AD) [Dec. Rge]
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