### Influence of Organic Structure-Directing Agents on Fluoride

## **Dynamics in As-Synthesized Silicalite-1**

Michael Fischer

Crystallography Group, Department of Geosciences, University of Bremen, Klagenfurter Straße 2-4, D-28359 Bremen, Germany

and

MAPEX Center for Materials and Processes, University of Bremen, Germany

michael.fischer@uni-bremen.de

# SUPPORTING INFORMATION

**Content:** 

- 1) Description of preliminary optimizations using the DREIDING force field
- 2) DFT-optimized models of MFI-type systems
- 3) Comparison of RDFs of MFI\_(TPA,F) and MFI\_(MTPA,F)
- 4) Guide to other supplementary files

#### 1) Description of preliminary optimizations using the DREIDING force field

Structure models of MFI\_(TMA,F), MFI\_(TEA,F), and MFI\_(TBA,F) were constructed using the DFT-optimized structure of MFI\_(TPA,F) as starting point. The alkyl chain length was modified using the *Materials Studio Visualizer* (© DS BIOVIA), and hydrogen atoms were added using an automated placement procedure ("Adjust hydrogen"). Prior to the DFT calculations, a force-field based optimization of the OSDA coordinates was performed using *Materials Studio Forcite*. In these calculations, the positions of the framework atoms as well as the lattice parameters were held fixed. The structure optimizations used a mixed optimization algorithm ("Smart": cascade of steepest descent, adjusted basis set Newton-Raphson, and quasi-Newton algorithms) and the following convergence criteria ("Fine" settings according to *Materials Studio* default settings):

- Energy convergence: 10<sup>-4</sup> kcal mol<sup>-1</sup>
- Force convergence: 5.10<sup>-3</sup> kcal mol<sup>-1</sup> Å<sup>-1</sup>
- Displacement convergence: 5.10-5 Å

For MFI\_(TBA,F), a simulated annealing was carried out using *Materials Studio Forcite* in order to obtain a realistic initial configuration of the butyl chains. This simulated annealing was performed for 20 molecular dynamics cycles with an initial temperature of 300 K and a mid-cycle temperature of 1000 K (*NVE* ensemble). Each cycle consisted of 200,000 steps (time step 1 fs). The structure obtained at the end of each cycle was optimized using the same routine as described above, and the lowest-energy structure was then taken as starting point for the DFT optimization of MFI\_(TBA,F).

All force field calculations described above used parameters from the DREIDING force field (S. L. Mayo, B. D. Olafson, W. A. Goddard, *J. Phys. Chem.* **1990**, *94*, 8897), employing the atom types N\_3, C\_3, and H\_ for OSDA atoms, and Si3, O\_3, and F\_ for framework atoms. A cutoff of 15.5 Å was used for the Lennard-Jones potentials representing van der Waals interactions. Electrostatic interactions were not considered.

### 2) DFT-optimized models of MFI-type systems

|                                     | a / Å  | b / Å  | c / Å  | α/deg | <b>6</b> / deg | γ/deg | V / Å <sup>3</sup> |
|-------------------------------------|--------|--------|--------|-------|----------------|-------|--------------------|
| Calcined Silicalite-1 <sup>a)</sup> | 20.053 | 19.73  | 13.357 | 91.14 | 90             | 90    | 5284               |
| MFI_(TMA,F)                         | 19.860 | 19.672 | 13.407 | 90    | 90             | 90    | 5238               |
| MFI_(TEA,F)                         | 19.913 | 19.795 | 13.423 | 90    | 90             | 90    | 5291               |
| MFI_(TPA,F) <sup>b)</sup>           | 19.842 | 19.775 | 13.487 | 90    | 90             | 90    | 5292               |
| MFI_(TBA,F)                         | 20.151 | 20.011 | 13.531 | 90    | 90             | 90    | 5456               |
| MFI_(MTBA,F)                        | 20.036 | 19.887 | 13.468 | 90    | 90             | 90    | 5366               |
| MFI_(ETBA,F)                        | 20.028 | 19.879 | 13.474 | 90    | 90             | 90    | 5364               |
| MFI_(PTBA,F)                        | 20.047 | 19.926 | 13.477 | 90    | 90             | 90    | 5383               |
| MFI_(MTPA,F)                        | 19.866 | 19.795 | 13.400 | 90    | 90             | 90    | 5270               |

Table S1: DFT-optimized unit cell parameters of MFI-type systems.

**a)** Experiment: *a* = 20.107 Å, *b* = 19.879 Å, *c* = 13.369 Å, *α* = 90.67 deg

(H. van Koningsveld, J. C. Jansen, H. van Bekkum, Zeolites 1990, 10, 235)

**b)** Experiment: *a* = 20.003 Å, *b* = 19.993 Å, *c* = 13.392 Å

(E. Aubert, F. Porcher, M. Souhassou, V. Petříček, C. Lecomte J. Phys. Chem. B 2002, 106, 1110)



Figure S1: DFT-optimized structure of calcined Silicalite-1.



Figure S2: DFT-optimized structure of MFI\_(TMA,F).



Figure S3: DFT-optimized structure of MFI\_(TEA,F).



**Figure S4:** DFT-optimized structure of MFI\_(TPA,F).



Figure S5: DFT-optimized structure of MFI\_(TBA,F).



Figure S6: DFT-optimized structure of MFI\_(MTBA,F). The methyl chain is shown in green.



Figure S7: DFT-optimized structure of MFI\_(ETBA,F). The ethyl chain is shown in green.



Figure S8: DFT-optimized structure of MFI\_(PTBA,F). The propyl chain is shown in green.



**Figure S9:** DFT-optimized structure of MFI\_(MTPA,F). The methyl chain is shown in green.

#### 3) Comparison of RDFs of MFI\_(TPA,F) and MFI\_(MTPA,F)



**Figure S10:** a) Si-F and b) N-F radial distribution functions obtained for MFI\_(TPA,F) (turquoise) and MFI\_(MTPA,F) (purple) for a temperature of 373 K. The inset in the upper panel shows the distance range between the first and second maximum in the Si-F RDF, and the top part of the lower panel shows the integrated N-F RDFs.

#### 4) Guide to other supplementary files

- **RMSDs\_RDFs\_SuppInfo.xlsx:** EXCEL file containing RMSDs (sorted by elements) and Si-F and N-F RDFs
- MFI\_opti.inp: Sample CP2K input file for a structure optimization
- MFI\_MD.inp: Sample CP2K input file for an AIMD calculation
- **MFI\_YYY\_PBE-D3.cif:** DFT-optimized structures of OSDA-free Silicalite-1 (YYY = noOSDA) and OSDA-containing MFI models (YYY = X\_F, where X = OSDA)