1	Supporting Information for
2	
3	
4	Synthesis and Evaluation of Halogenated
5	5-(2-Hydroxyphenyl)pyrazoles as Pseudilin Analogues Targeting the
6	Enzyme IspD in the MEP Pathway
7	
8	Jili Wang, Yaqing Zhou, Xiuwen Wang, Lixia Duan, Jiang Duan, Weiguo Li,* and
9	Aidong Zhang*
10	
11	Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, College
12	of Chemistry, Central China Normal University, Wuhan 430079, PR China
13	
14	
15	
16	
1/	*Convegnancing Authorse
18	Tal: $\pm 86.27.67867635$; Eax: $\pm 86.27.67867141$
19	E = mail: adabang@mail.acmu.adu.an: waiguali@mail.acmu.adu.an
20	E-man. adznang@man.cenu.edu.en, werguon@man.cenu.edu.en
21	

23 Contents

24		
25	1. Table S1. X-ray crystal structure of compound 6c and single crystal data	2
26	2. <i>At</i> IspD expression and inhibition activity assay	3
27	3. Model plant inhibition activity assay	3
28	4.Table S2 . EC ₅₀ values of target compounds against model plants	4
29	5. Chemical structures, physical properties, and the data of ¹ H NMR, ¹³ C NMR,	and HRMS of
30	compounds 5a-h, 5j-q, 6a-h, 6j-q	5
31	6. Spectra of ¹ H NMR, ¹³ C NMR of compounds 5a-h, 5j-q, 6a-h, 6j-q	15
32	7. Figure S1. HRMS spectrum of compound 5a	47
33	8. Figure S2. HRMS spectrum of compound 6b	47
34		

1. Table S1. X-ray crystal structure of compound **6c** and single crystal data

Name	Value	
Empirical formula	$C_{10}H_3Cl_4F_3N_2O$	
Formula weight	365.94	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 7.553(3) Å	$\alpha = 64.713(6)^{\circ}$.
	b = 8.979(4) Å	$\beta = 84.956(6)^{\circ}.$
	c = 10.372(4) Å	$\gamma = 77.125(5)^{\circ}$.
Volume	620.0(4) A3	
Z	2	
Density (calculated)	1.960 Mg/m ³	
Absorption coefficient	0.986 mm ⁻¹	
F(000)	360	
Crystal size	0.120 x 0.100 x 0.100 mm ³	
Theta range for data collection	2.172 to 25.999°.	
Index ranges	-9<=h<=9, -11<=k<=	=10, -12<=1<=12
Reflections collected	4246	
Independent reflections	2363 [R(int) = 0.066]	5]
Completeness to theta = 25.242°	97.1 %	
Absorption correction	None	
Refinement method	Full-matrix least-squ	ares on F ²
Data / restraints / parameters	2363 / 0 / 182	
Goodness-of-fit on F ²	1.053	
Final R indices [I>2sigma(I)]	R1 = 0.0607, wR2 =	0.1603
R indices (all data)	R1 = 0.0704, wR2 =	0.1713
Extinction coefficient	n/a	
Largest diff. peak and hole	0.784 and -0.692 e.Å	-3

40 **2**. *At*IspD expression and inhibition activity assay

The cloning and expression of AtIspD (gene fragment 76-302) was performed 41 according to a reported method, and with it, a high-throughput screening protocol was 42 established. The protocol follows the principle that AtIspD catalyzes cytidilation of 43 MEP to CDP-ME in coupling with pyrophosphatase and releases monophosphate. 44 Monophosphate reacts with the malachite green-ammonium molybdate complex, and 45 the color change can be colorimetrically monitored to determine the AtIspD activity. 46 To do this, a buffer reaction system was first made, which contained 1.0 mM DTT, 47 1.0 mM MgCl2, 0.5 mM CTP, 0.1 U inorganic pyrophosphatase, and 89.7 µM AtIspD 48 protein in 100 mM Tris-HCl buffer solution (pH = 7.5), and then allotted to a 96-well 49 plate with 30 µL in each well and the solutions of inhibitors in DMSO ranging from 50 0.01 to 100 µM were separately added to the wells. Next, the substrate MEP dissolved 51 in 100 mM Tris-HCl buffer (pH = 7.5) was added to each well with a final 52 concentration of 0.5 mM to initiate the reaction. After incubation for 10 min at 37 °C, 53 54 the reaction was quenched with 1.0 M HClO₄, followed by adding 450 µL mixed solution of 0.045 % malachite green and 4.2 % ammonium molybdate (v/v 3: 1) to 55 develop the color reaction. The absorbance at 620 nm was measured by the 56 SpectraMax M5 microplate reader, and the inhibition curve was plotted and fitted for 57 each inhibitor to obtain the IC50 value. Each experiment was triplicated and the 58 59 average value reported.

60 **3.** Model plant inhibition activity assay

The pre-emergence inhibition activity was determined on model plants including 61 monocotyledon barnyard grass and dicotyledon rape with the standard Petri dish test. 62 The compounds were dissolved in DMF and emulsified with Tween-80, and the 63 solutions were diluted with water to a concentration of 1000 mg/L, named concentrate 64 solutions, parts of which were further diluted to a gradient of 100, 50, 25, 10 and 1 65 mg/L for use. The solutions of the references pentabromo pseudilin and PIX were also 66 made as the positive controls. The test solutions of 9 mL were added to Petri dishes (9 67 cm diameter) lined with a filter paper on which 10-15 seeds of each of the two model 68 plants were placed. The growth culture was performed in the incubator with a 69 humidity of 75% at 25 °C, in which first in the dark for 3 days then in the alternating 70 light (10 Klux) and dark for 12 h/day each till for 5 days. The inhibition rates were 71 calculated using the equation $E = (C-T)/C \times 100\%$, where E is the inhibition rate of 72 the root or stalk, C and T are the root or stalk lengths of the blank control and the 73 group treated with the test solution, respectively. Each target compound was assayed 74 for the growth inhibition on root and stalk of the model plants using five 75 concentrations as a gradient, and the effective concentration with an inhibitory 76 activity of 50% was calculated, expressed as EC₅₀. For the complete list of all the 77 target compounds and their EC50 values (Table S2), the test was triplicated and 78 79 average values reported.

	EC ₅₀ (mg/L)				
Compounds	Rape		Barnyard grass		
	root	stalk	root	stalk	
5a	5.76 ± 0.11	7.71 ± 0.18	11.91 ± 0.21	<1	
5b	9.22 ± 0.17	28.78 ± 0.31	2.53 ± 0.08	3.59 ± 0.28	
5c	22.49 ± 0.36	49.96 ± 0.87	10.43 ± 0.25	3.59 ± 0.12	
5d	>100	>100	11.51 ± 0.24	14.09 ± 0.17	
5e	5.97 ± 0.26	>100	29.11 ± 0.59	2.26 ± 0.19	
5f	2.81 ± 0.05	9.75 ± 0.09	9.65 ± 0.25	1.38 ± 0.16	
5g	13.89 ± 0.41	>100	11.58 ± 0.87	12.03 ± 0.62	
5h	>100	>100	24.22 ± 0.55	27.35 ± 0.22	
5j	5.19 ± 0.13	>100	6.92 ± 0.12	9.33 ± 0.27	
5k	27.45 ± 0.32	40.47 ± 0.37	25.50 ± 0.48	12.26 ± 0.10	
51	11.16 ± 0.14	>100	23.87 ± 0.78	27.23 ± 0.17	
5m	18.75 ± 0.17	>100	24.42 ± 0.52	18.55 ± 0.28	
5n	15.98 ± 0.28	>100	25.66 ± 0.36	4.33 ± 0.13	
50	2.48 ± 0.09	13.71 ± 0.51	5.62 ± 0.31	15.17 ± 0.57	
5p	11.06 ± 0.40	>100	22.79 ± 0.12	11.28 ± 0.61	
5q	34.19 ± 0.39	>100	3.41 ± 0.06	22.69 ± 0.19	
6a	21.49 ± 0.58	11.38 ± 0.28	2.48 ± 0.09	6.92 ± 0.15	
6b	10.63 ± 0.13	21.16 ± 0.25	8.35 ± 0.11	<1	
6c	9.75 ± 0.18	27.45 ± 0.64	9.43 ± 0.08	2.58 ± 0.12	
6d	2.36 ± 0.08	22.46 ± 0.08	2.53 ± 0.17	<1	
6e	28.00 ± 0.68	>100	11.16 ± 0.16	24.74 ± 0.33	
6f	3.34 ± 0.21	24.52 ± 2.68	16.70 ± 0.27	4.74 ± 0.20	
6g	3.44 ± 0.19	28.10 ± 0.63	23.44 ± 0.29	27.88 ± 0.16	
6h	59.94 ± 1.68	>100	22.79 ± 0.16	29.41 ± 0.25	
6j	17.57 ± 0.51	>100	10.08 ± 0.07	1.28 ± 0.17	
6k	3.46 ± 0.21	15.19 ± 0.61	7.25 ± 0.41	2.58 ± 0.15	
61	10.45 ± 0.35	28.98 ± 0.49	10.33 ± 0.30	3.22 ± 0.02	
6m	15.72 ± 0.25	20.51 ± 0.53	3.11 ± 0.07	3.34 ± 0.07	
6n	30.46 ± 0.10	>100	15.22 ± 0.16	25.88 ± 0.68	
60	11.28 ± 0.19	19.43 ± 0.65	31.16 ± 0.55	25.72 ± 0.53	
6р	<1	>100	34.62 ± 0.51	14.52 ± 0.28	
6q	38.22 ± 0.71	>100	19.88 ± 0.23	28.95 ± 0.16	
Pseudilin	7.25 ± 0.13	11.69 ± 0.41	14.61 ± 0.23	2.09 ± 0.12	
PIX	9.26 ± 0.32	10.08 ± 0.30	12.58 ± 0.15	1.59 ± 0.08	

81	4.Table S2.	EC ₅₀ values	of target	compounds	against	model	plants
----	-------------	-------------------------	-----------	-----------	---------	-------	--------

- 5. Chemical structures, physical properties, and the data of ¹H NMR, ¹³C NMR, and
- 87 HRMS of compounds 5a-h, 5j-q, 6a-h, 6j-q

4-Bromo-5-(3,5-dibromo-2-hydroxyphenyl)-3-trifluoromethyl-1H-pyrazole (5a): 90 Yield: 88%. Light yellow solid. m.p. 194.3-195.1 °C. ¹H NMR (600 MHz, DMSO- d_6) 91 δ 14.26 (s, 1H), 10.16 (s, 1H), 7.93 (s, 1H), 7.56 (s, 1H). ¹³C NMR (150 MHz, 92 DMSO- d_6) δ 151.7, 138.9, 136.2, 133.0, 121.1 (d, J = 268.8 Hz), 118.6, 113.2, 110.8, 93 91.9. ¹⁹F NMR (376 MHz, DMSO- d_6) δ -56.07 (s). HRMS (Dual ESI): Calcd for 94 C₁₀H₄Br₃F₃N₂O [M-H]⁻⁴60.7753. Found 460.7756.

95

96 4-Bromo-5-(3,5-dibromo-4-fluoro-2-hydroxyphenyl)-3-trifluoromethyl-1H-pyrazole

97 (**5b**): Yield: 78%. Brown solid. m.p. 182.2-183.5 °C. ¹H NMR (600 MHz, DMSO-*d*₆)

98δ 14.26 (s, 1H), 10.72 (s, 1H), 7.76 (d, J = 7.8 Hz, 1H). 13 C NMR (150 MHz,99DMSO- d_6) δ 156.4 (d, J = 245.2 Hz), 153.8, 138.5, 133.7 (d, J = 14.0 Hz), 121.17 (d,100J = 269.0 Hz), 114.17, 100.77 (d, J = 23.0 Hz), 97.87 (d, J = 23.2 Hz), 92.2.¹⁹F NMR

101 (376 MHz, DMSO- d_6) δ -56.08 (s), -89.66 (s). HRMS (Dual ESI): Calcd for 102 C₁₀H₄Br₃F₄N₂O [M-H]⁻479.7737. Found 479.7730.

Br N CI OH Br

103

104 *4-Bromo-5-(4-chloro-3,5-dibromo-2-hydroxyphenyl)-3-trifluoromethyl-1H-pyrazole*

105 (**5c**): Yield: 76%. Light yellow solid. m.p. 192.5-193.8 °C. ¹H NMR (600 MHz, 106 DMSO-*d*₆) δ 14.28 (s, 1H), 10.57 (s, 1H), 7.82 (s, 1H). ¹³C NMR (150 MHz, 107 DMSO-*d*₆) δ 153.2, 138.4, 135.8, 133.8, 121.1 (d, J = 269.4 Hz), 116.7, 114.37, 108 111.5, 92.1. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -56.06 (s). HRMS (Dual ESI): Calcd 109 for C₁₀H₃Br₃ClF₃N₂O [M–H]⁻ 494.7363. Found 494.7359.

1114-Bromo-5-(3,4,5-tribromo-2-hydroxyphenyl)-3-trifluoromethyl-1H-pyrazole(5d):112Yield: 82%. White solid. m.p. 208.9-209.8 °C. ¹H NMR (600 MHz, DMSO-d₆) δ11314.22 (s, 1H), 10.54 (s, 1H), 7.81 (s, 1H). ¹³C NMR (150 MHz, DMSO-d₆) δ 152.8,114138.6, 133.7, 129.4, 121.1 (d, J = 269.0 Hz), 117.1, 116.9, 114.0, 92.1. ¹⁹F NMR (376115MHz, DMSO-d₆) δ -56.05 (s). HRMS (Dual ESI): Calcd for C₁₀H₃Br₄F₃N₂O [M-H]⁻116538.6858. Found 538.6851.

1184-Bromo-5-(3,5-dibromo-4-methoxy-2-hydroxyphenyl)-3-trifluoromethyl-1H-pyrazole119(5e): Yield: 89%. Light yellow solid. m.p. 202.6-203.9 °C. ¹H NMR (600 MHz,120DMSO-d₆) δ 14.20 (s, 1H), 10.22 (s, 1H), 7.65 (d, J = 1.1 Hz, 1H), 3.85 (s, 3H).¹³C121NMR (150 MHz, DMSO-d₆) δ 155.6, 153.3, 138.8, 133.4, 121.2 (d, J = 269.4 Hz),122114.1, 108.9, 106.4, 91.9, 60.4. ¹⁹F NMR (376 MHz, DMSO-d₆) δ -56.08 (s). HRMS123(Dual ESI): Calcd for C₁₁H₆Br₃F₃N₂O₂ [M-H]⁻ 490.7859. Found 490.7865.

124

125 4-Bromo-5-(3-bromo-5-fluoro-2-hydroxyphenyl)-3-trifluoromethyl-1H-pyrazole (5f): Yield: 66%. Claybank solid. m.p. 146.7-147.9 °C. ¹H NMR (600 MHz, DMSO-d₆) δ 126 14.28 (s, 1H), 9.88 (s, 1H), 7.71 (dd, J = 7.8, 2.8 Hz, 1H), 7.33 (dd, J = 8.4, 2.8 Hz, 127 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ 154.7 (d, J = 240.6 Hz), 148.9, 139.3, 121.4 128 (d, J = 25.6 Hz), 121.2 (d, J = 268.0 Hz), 117.5 (d, J = 8.4 Hz), 117.25 (d, J = 23.8 129 Hz), 112.4 (d, J = 10.6 Hz), 91.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.46 (s), -119.40 130 (s). HRMS (Dual ESI): Calcd for $C_{10}H_4Br_2F_4N_2O$ [M–H]⁻ 400.8554. Found 131 400.8561. 132

4-*Bromo-5-(3-bromo-5-chloro-2-hydroxyphenyl)-3-trifluoromethyl-1H-pyrazole* (**5g**): Yield: 68%. Light yellow solid. m.p. 178.8-179.9 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ 14.29 (s, 1H), 10.13 (s, 1H), 7.84 (s, 1H), 7.46 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 151.3, 139.0, 133.7, 130.27, 123.7, 121.1 (d, J = 268.6 Hz), 118.1, 112.8, 91.9. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.82 (s). HRMS (Dual ESI): Calcd for C₁₀H₄Br₂ClF₃N₂O [M–H]⁻ 416.8258. Found 416.8249.

140

1414-Bromo-5-(3-bromo-5-methyl-2-hydroxyphenyl)-3-trifluoromethyl-1H-pyrazole (**5h**):142Yield: 58%. Light yellow solid. m.p. 166.4-167.6 °C. ¹H NMR (400 MHz, DMSO-d₆)143 δ 14.16 (s, 1H), 9.50 (s, 1H), 7.53 (s, 1H), 7.14 (s, 1H), 2.26 (s, 3H). ¹³C NMR144(100 MHz, DMSO-d₆) δ 149.6, 140.3, 139.0 (d, J = 35.8 Hz), 134.8, 131.1, 130.4,145121.3 (d, J = 268.8 Hz), 116.8, 111.8, 91.3, 19.5. ¹⁹F NMR (376 MHz, DMSO-d₆) δ 146-60.83 (s). HRMS (Dual ESI): Calcd for C₁₁H₇Br₂F₃N₂O [M-H]⁻ 396.8805. Found147396.8813.

148

155

1494-Chloro-5-(3,5-dichloro-2-hydroxyphenyl)-3-trifluoromethyl-1H-pyrazole(6a):150Yield: 65%. White solid. m.p. 194.5-196.1 °C. ¹H NMR (600 MHz, DMSO-d₆) δ15114.24 (s, 1H), 10.40 (s, 1H), 7.72 (d, J = 2.4 Hz, 1H), 7.47 (d, J = 2.4 Hz, 1H). ¹³C152NMR (150 MHz, DMSO-d₆) δ 150.3, 137.0, 130.8, 129.4, 123.4, 122.9, 121.0 (d, J =153268.8 Hz), 117.6, 106.6. ¹⁹F NMR (376 MHz, DMSO-d₆) δ -56.19 (s). HRMS (Dual154ESI): Calcd for C₁₀H₄Cl₃F₃N₂O [M-H]⁻ 328.9269. Found 328.9261.

156 *4-Chloro-5-(3,5-dichloro-4-fluoro-2-hydroxyphenyl)-3-trifluoromethyl-1H-pyrazole*

157 (**6b**): Yield: 68%. White solid. m.p. 184.6-185.8 °C. ¹H NMR (600 MHz, DMSO-*d*₆)

158 δ 14.22 (s, 1H), 10.98 (s, 1H), 7.67 (dd, J = 8.1, 3.2 Hz, 1H). ¹³C NMR (150 MHz,

159 DMSO- d_6) δ 154.7 (d, J = 249.6 Hz), 152.2, 136.6, 130.0, 121.0 (d, J = 268.6 Hz),

160 112.9, 111.1 (d, J = 18.4 Hz), 110.9 (d, J = 18.2 Hz), 106.8. 19 F NMR (376 MHz,

161 DMSO- d_6) δ -56.23 (s), -106.20 (s). HRMS (Dual ESI): Calcd for C₁₀H₃Cl₃F₄N₂O

162 [M–H][–] 346.9174. Found 346.9172.

163

1644-Chloro-5-(3,4,5-trichloro-2-hydroxyphenyl)-3-trifluoromethyl-1H-pyrazole(6c):165Yield: 60%. Yellow solid. m.p. 210.1-211.8°C. ¹H NMR (400 MHz, DMSO- d_6) δ16616614.30 (s, 1H), 10.86 (s, 1H), 7.74 (s, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ 151.5,136.5, 132.3, 129.9, 122.7, 122.5, 121.0 (d, J = 269.0 Hz), 115.8, 106.9. ¹⁹F NMR168(376 MHz, DMSO- d_6) δ -56.21 (s). HRMS (Dual ESI): Calcd for C₁₀H₃Cl₄F₃N₂O169[M-H]⁻ 362.8879. Found 362.8873.

170

171 *4-Chloro-5-(4-bromo-3,5-dichloro-2-hydroxyphenyl)-3-trifluoromethyl-1H-pyrazole*

(6d): Yield: 60%. Light yellow solid. m.p. 214.7-215.8 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ 14.30 (s, 1H), 10.79 (s, 1H), 7.71 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 151.1, 136.6, 129.8, 125.0, 124.8, 124.5, 121.0 (d, J = 269.0 Hz), 116.3, 106.8. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -56.19 (s). HRMS (Dual ESI): Calcd for C₁₀H₃BrCl₃F₃N₂O [M-H]⁻ 406.8374. Found 406.8371.

4-Chloro-5-(3,5-dichloro-4-methoxy-2-hydroxyphenyl)-3-trifluoromethyl-1H-pyrazole
(6e): Yield: 71%. White solid. m.p. 169.3-170.4 °C. ¹H NMR (600 MHz, DMSO-d₆) δ
14.19 (s, 1H), 10.43 (s, 1H), 7.54 (d, J = 4.3 Hz, 1H), 3.88 (s, 3H). ¹³C NMR (150 MHz, DMSO-d₆) δδ 153.6, 151.7, 137.0, 130.0, 121.0 (d, J = 269.2 Hz), 118.1, 117.8,

182 112.7, 106.5, 60.6. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -56.21 (s). HRMS (Dual ESI):

4-*Chloro-5-(3-chloro-5-fluoro-2-hydroxyphenyl)-3-trifluoromethyl-1H-pyrazole* (**6f**): Yield: 51%. Claybank solid. m.p. 148.8-150.1 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 14.26 (s, 1H), 9.99 (s, 1H), 7.62 (s, 1H), 7.34 (s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 154.5 (d, J = 239.4 Hz), 147.9, 147.9, 137.2, 122.5 (d, J = 11.4 Hz), 121.0 (d, J = 268.8 Hz), 118.6 (d, J = 26.0 Hz), 116.9 (d, J = 9.6 Hz), 116.4 (d, J = 23.8 Hz), 106.5. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.93 (s), -122.38 (s). HRMS (Dual ESI): Calcd for C₁₀H₄Cl₂F₄N₂O [M-H]⁻ 312.9564. Found 312.9558.

192

1934-Chloro-5-(5-bromo-3-chloro-2-hydroxyphenyl)-3-trifluoromethyl-1H-pyrazole (6g):194Yield: 60%. Light yellow solid. m.p. 204.8-205.9 °C. ¹H NMR (600 MHz, DMSO-d₆)195δ 14.22 (s, 1H), 10.38 (s, 1H), 7.83 (s, 1H), 7.57 (s, 1H). ¹³C NMR (150 MHz,196DMSO-d₆) δ 150.7, 136.9, 133.49, 132.2, 123.2, 121.0 (d, J = 268.8 Hz), 118.08,197110.48, 106.68. ¹⁹F NMR (376 MHz, DMSO-d₆) δ -60.91 (s). HRMS (Dual ESI):198Calcd for C₁₀H₄BrCl₂F₃N₂O [M-H]⁻ 372.8763. Found 372.8770.

199

 $200 \qquad 4-Chloro-5-(3-chloro-5-methoxy-2-hydroxyphenyl)-3-trifluoromethyl-1H-pyrazole$

201 (6h): Yield: 50%. Light yellow solid. m.p. 157.3-158.4 °C. ¹H NMR (400 MHz,

202 DMSO- d_6) δ 14.16 (s, 1H), 9.72 (s, 1H), 7.39 (s, 1H), 7.15 (s, 1H), 2.26 (s, 3H). ¹³C

203 NMR (150 MHz, DMSO- d_6) δ 148.7, 138.3, 137.2 (d, J = 37.0 Hz), 131.8 (d, J = 28.2

204 Hz), 129.9, 121.5, 121.1 (d, J = 269.2 Hz), 116.1, 106.0. ¹⁹F NMR (376 MHz,

205 DMSO- d_6) δ -60.95 (s). HRMS (Dual ESI): Calcd for C₁₁H₇Cl₂F₃N₂O [M–H]⁻

206 308.9815. Found 308.9806.

4-Bromo-5-(3,5-dibromo-2-hydroxyphenyl)-3-difluoromethyl-1H-pyrazole (**5j**): Yield: 60%. Light yellow solid. m.p. 215.2-216.8 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 13.89 (s, 1H), 10.06 (s, 1H), 7.91 (d, J = 2.3 Hz, 1H), 7.53 (s, 1H), 7.07 (t, J = 53.2Hz, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 151.7, 143.2, 138.0, 135.9, 132.8, 119.2, 113.2, 110.8, 91.7. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -113.43 (s). HRMS (Dual ESI): Calcd for C₁₀H₅Br₃F₂N₂O [M-H]⁻ 442.7847. Found 442.7837.

214

222

229

215 *4-Bromo-5-(3,5-dibromo-4-fluoro-2-hydroxyphenyl)-3-difluoromethyl-1H-pyrazole*

216 (5k): Yield: 59%. Light yellow solid. m.p. 198.3-199.5 °C. ¹H NMR (600 MHz,

217 DMSO- d_6) δ 13.89 (s, 1H), 10.63 (s, 1H), 7.71 (d, J = 7.6 Hz, 1H), 7.07 (t, J = 52.7

218 Hz, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ 156.3 (d, J = 244.4 Hz), 153.7, 143.2,

219 137.6, 133.5, 114.8, 100.7 (d, J = 20.8 Hz), 97.8 (d, J = 22.8 Hz), 91.9. 19 F NMR (376

220 MHz, DMSO- d_6) δ -94.79 (s), -113.43 (s). HRMS (Dual ESI): Calcd for

221 $C_{10}H_4Br_3F_3N_2O [M-H]^- 460.7753$. Found 460.7758.

223 4-Bromo-5-(4-chloro-3,5-dibromo-2-hydroxyphenyl)-3-difluoromethyl-1H-pyrazole

224 (5I): Yield: 58%. Light yellow solid. m.p. 202.1-203.3 °C. ¹H NMR (600 MHz, 225 DMSO-*d*₆) δ 13.95 (s, 1H), 10.52 (s, 1H), 7.78 (s, 1H), 7.08 (t, J = 52.9 Hz, 1H). ¹³C 226 NMR (150 MHz, DMSO-*d*₆) δ 153.2, 143.2, 137.7, 135.5, 133.6, 117.4, 114.3, 113.2 227 - 108.9 (m),111.5, 92.0. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -113.42 (s). HRMS (Dual 228 ESI): Calcd for C₁₀H₄Br₃ClF₂N₂O [M–H]⁻ 476.7458. Found 476.7452.

- 230 *4-Bromo-5-(3,4,5-tribromo-2-hydroxyphenyl)-3-difluoromethyl-1H-pyrazole* (**5m**):
- 231 Yield: 50%. Light yellow solid. m.p. 223.0-224.2 °C. ¹H NMR (600 MHz, DMSO-*d*₆)
- 232 δ 13.96 (s, 1H), 10.45 (s, 1H), 7.77 (s, 1H), 7.07 (t, J = 53.3 Hz, 1H). ¹³C NMR (100
- 233 MHz, DMSO-*d*₆) δ 152.8, 142.4, 138.3, 133.5, 128.9, 117.9, 116.9, 114.0, 111.2 (t, J
- 234 = 232.8 Hz), 91.9. ¹⁹F NMR (376 MHz, DMSO- d_6) δ -113.50 (s). HRMS (Dual ESI):

235 Calcd for $C_{10}H_4Br_4F_2N_2O$ [M–H]^{-520.6952}. Found 520.6959.

236

243

4-Bromo-5-(3,5-dibromo-4-methoxy-2-hydroxyphenyl)-3-difluoromethyl-1H-pyrazole (5n): Yield: 79%. Light yellow solid. m.p. 217.6-218.9 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 13.87 (s, 1H), 10.18 (s, 1H), 7.62 (s, 1H), 7.06 (t, J = 53.2 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 155.3, 153.3, 133.2, 114.8, 111.3 (t, J = 237.4 Hz), 108.8, 106.3, 91.7, 60.4. ¹⁹F NMR (376 MHz, DMSO- d_6) δ -113.50 (s).

242 HRMS (Dual ESI): Calcd for $C_{11}H_7Br_3F_2N_2O_2$ [M–H]⁻ 472.7953. Found 472.7958.

244 *4-Bromo-5-(3-bromo-5-fluoro-2-hydroxyphenyl)-3-difluoromethyl-1H-pyrazole* (**50**):

245 Yield: 55%. White solid. m.p. 170.5-171.9 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ

246 13.94 (s, 1H), 9.73 (s, 1H), 7.68 (d, J = 5.6 Hz, 1H), 7.31 (d, J = 6.9 Hz, 1H), 7.07 (t,

247 J = 53.1 Hz, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ 154.8 (d, J = 235.6 Hz), 148.9,

248 138.5, 121.1 (d, J = 26.4 Hz), 118.2, 116.9, 112.4, 111.3, 91.6. ¹⁹F NMR (376 MHz,

249 DMSO- d_6) δ -113.25 (s), -122.50 (s). HRMS (Dual ESI): Calcd for C₁₀H₅Br₂F₃N₂O

250 [M–H]⁻ 382.8648. Found 382.8629.

- 252 *4-Bromo-5-(3-bromo-5-chloro-2-hydroxyphenyl)-3-difluoromethyl-1H-pyrazole* (**5p**):
- 253 Yield: 49%. Light yellow solid. m.p. 194.0-195.7 °C. ¹H NMR (400 MHz, DMSO-*d*₆)
- δ 13.93 (s, 1H), 10.06 (s, 1H), 7.82 (s, 1H), 7.42 (s, 1H), 7.06 (t, J = 53.0 Hz, 1H). ¹³C
- 255 NMR (150 MHz, DMSO-*d*₆) δ 151.3, 143.2, 138.3, 133.33, 130.03, 123.7, 118.8,

256 112.88, 111.4, 91.7. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -113.41 (s). HRMS (Dual ESI):
257 Calcd for C₁₀H₅Br₂ClF₂N₂O [M–H]⁻ 398.8353. Found 398.8361.

258

4-Bromo-5-(3-bromo-5-methyl-2-hydroxyphenyl)-3-difluoromethyl-1H-pyrazole (**5q**): Yield: 58%. Light yellow solid. m.p. 167.5-168.9 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 13.86 (s, 1H), 9.49 (s, 1H), 7.55 (s, 1H), 7.12 (dd, J = 71.0, 35.2 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 149.6, 143.1, 139.5, 134.5, 131.0, 130.3, 117.4, 114.9, 111.8, 91.2, 19.6. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -113.32 (s). HRMS (Dual ESI): Calcd for C₁₁H₈Br₂F₂N₂O [M–H]⁻ 378.8899. Found 378.8889.

265

2664-Chloro-5-(3,5-dichloro-2-hydroxyphenyl)-3-difluoromethyl-1H-pyrazole(6j):267Yield: 52%. Light yellow solid. m.p. 171.0-171.9 °C. ¹H NMR (400 MHz, DMSO- d_6)268δ 13.89 (s, 1H), 10.28 (s, 1H), 7.71 (s, 1H), 7.43 (s, 1H), 7.09 (t, J = 52.9 Hz, 1H). ¹³C269NMR (150 MHz, DMSO- d_6) δ 150.3, 141.6, 136.26, 130.46, 129.36, 123.36, 122.9,270118.2, 106.4. ¹⁹F NMR (376 MHz, DMSO- d_6) δ -113.78 (s). HRMS (Dual ESI):

271 Calcd for $C_{10}H_5Cl_3F_2N_2O [M-H]^-310.9363$. Found 310.9361.

272

273 4-Chloro-5-(3,5-dichloro-4-fluoro-2-hydroxyphenyl)-3-difluoromethyl-1H-pyrazole

274 (6k): Yield: 62%. Light pink solid. m.p. 181.1-182.8 °C. ¹H NMR (400 MHz,

275 DMSO- d_6) δ 13.89 (s, 1H), 10.96 (s, 1H), 7.63 (d, J = 8.2 Hz, 1H), 7.10 (t, J = 53.0

- 276 Hz, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ 158.1 (d, J = 249.4 Hz), 156.0 (d, J =
- 277 10.4 Hz), 152.14, 136.0, 131.64, 111.94, 109.14(d, J = 18.2 Hz), 105.7, 104.6 (d, J =
- 278 23.2 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -112.11 (s), -113.76 (s). HRMS (Dual
- $\label{eq:estimate} 279 \qquad ESI): Calcd for \ C_{10}H_4Cl_3F_3N_2O \ [M-H]^- \ 328.9269. \ Found \ 328.9257.$

2814-Chloro-5-(3,4,5-trichloro-2-hydroxyphenyl)-3-difluoromethyl-1H-pyrazole (61):282Yield: 58%. Light yellow solid. m.p. 148.9-150.4 °C. ¹H NMR (600 MHz, DMSO- d_6)283δ 13.95 (s, 1H), 10.70 (s, 1H), 7.67 (s, 1H), 7.11 (t, J = 54.0 Hz, 1H). ¹³C NMR (100

284 MHz, DMSO- d_6) δ 154.9, 151.1, 135.7 (t, J = 612.4 Hz), 131.2, 124.7 (d, J = 33.6 Hz),

285 123.0 (d, J = 20.4 Hz), 120.7, 115.3, 111.3 (t, J = 232.6 Hz), 105.8. ¹⁹F NMR (376 286 MHz, DMSO- d_6) δ -113.79 (s). HRMS (Dual ESI): Calcd for C₁₀H₄Cl₄F₂N₂O

287 [M–H]⁻ 344.8973. Found 344.8982.

288

4-Chloro-5-(4-bromo-3,5-dichloro-2-hydroxyphenyl)-3-difluoromethyl-1H-pyrazole
(6m): Yield: 61%. Light yellow solid. m.p. 169.8-171.4 °C. ¹H NMR (400 MHz, DMSO-d₆) δ 13.93 (s, 1H), 10.73 (s, 1H), 7.67 (s, 1H), 7.11 (t, J = 52.8 Hz, 1H). ¹³C
NMR (100 MHz, DMSO-d₆) δ 154.9, 151.1, 135.7 (t, J = 612.4 Hz), 131.2, 124.7 (d, J

 $\begin{array}{l} \text{292} \\ = 33.6 \text{ Hz}), 123.0 \text{ (d, J} = 20.4 \text{ Hz}), 120.7, 115.3, 111.3 \text{ (t, J} = 232.6 \text{ Hz}), 105.8.^{19}\text{F} \\ \text{294} \\ \text{NMR} (376 \text{ MHz}, \text{ DMSO-}d_6) \ \delta \ -113.79 \text{ (s)}. \text{ HRMS} (\text{Dual ESI}): \text{ Calcd for} \\ \text{C}_{10}\text{H}_4\text{BrCl}_3\text{F}_2\text{N}_2\text{O} [\text{M}-\text{H}]^- 388.8468. \text{ Found } 388.8463. \end{array}$

296

2974-Chloro-5-(3,5-dichloro-4-methoxy-2-hydroxyphenyl)-3-difluoromethyl-1H-pyrazole298(6n): Yield: 69%. Light yellow solid. m.p. 187.6-188.9 °C. ¹H NMR (400 MHz,299DMSO-d₆) δ 13.85 (s, 1H), 10.41 (s, 1H), 7.51 (s, 1H), 7.10 (t, J = 53.2 Hz, 1H), 3.87300(s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 155.3, 153.25, 133.2, 114.8, 111.3, 108.8,301106.3, 91.7, 60.4. ¹⁹F NMR (376 MHz, DMSO-d₆) δ -113.50 (s). HRMS (Dual ESI):302Calcd for C₁₁H₇Cl₃F₂N₂O₂ [M-H]⁻ 340.9468. Found 340.9473.

304	4-Chloro-5-(3-chloro-5-fluoro-2-hydroxyphenyl)-3-trifluoromethyl-1H-pyrazole (60):
305	Yield: 63%. White solid. m.p. 163.9-165.2 °C. ¹ H NMR (400 MHz, DMSO- d_6) δ
306	13.91 (s, 1H), 9.95 (s, 1H), 7.57 (dd, $J = 8.1, 2.8$ Hz, 1H), 7.31 (d, $J = 8.4$ Hz, 1H),

- 307 7.11 (t, J = 53.0 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 154.5 (d, J = 239.4 Hz),
- 308 147.9, 141.6, 136.4, 122.5 (d, J = 11.6 Hz), 118.2 (d, J = 25.2 Hz), 117.6, 116.2 (d, J =
- 309 27.0 Hz), 111.3, 106.3. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -113.80 (s), -122.44 (s).
- 310 HRMS (Dual ESI): Calcd for $C_{10}H_5Cl_2F_3N_2O$ [M–H]⁻ 294.9658. Found 294.9651.

311

4-Chloro-5-(5-bromo-3-chloro-2-hydroxyphenyl)-3-difluoromethyl-1H-pyrazole (6p):
 Yield: 58%. White solid. m.p. 188.7-190.0°C. ¹H NMR (400 MHz, DMSO-d₆) δ 13.89

314 (s, 1H), 10.31 (s, 1H), 7.80 (s, 1H), 7.53 (s, 1H), 7.10 (t, J = 52.4 Hz, 1H). ¹³C NMR

315 (150 MHz, DMSO-*d*₆) δ 150.7, 141.8, 136.1, 133.1, 132.0, 123.2, 118.7, 110.4, 106.4.

316 ¹⁹F NMR (376 MHz, DMSO- d_6) δ -113.75 (s). HRMS (Dual ESI): Calcd for

317 $C_{10}H_5BrCl_2F_2N_2O [M-H]^-$ 354.8858. Found 354.8862.

318 4-Chloro-5-(3-chloro-5-methyl-2-hydroxyphenyl)-3-difluoromethyl-1H-pyrazole (6q) 319 Yield: 53%. Light yellow solid. m.p. 163.5-165.9 °C. ¹H NMR (400 MHz, DMSO-*d*₆) 320 δ 7.82 (d, J = 2.8 Hz, 1H), 7.68 (d, J = 2.4 Hz, 1H), 7.11 (t, J = 52.8 Hz, 1H), 1.99 (s, 321 3H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 149.6, 143.1, 139.5, 134.5, 131.0, 130.3, 322 117.4, 114.9, 111.8, 91.2, 19.6. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -113.32 (s). HRMS 323 324 (Dual ESI): Calcd for C₁₁H₈Cl₂F₂N₂O [M–H]⁻290.9909. Found 290.9901. 325 326 327 328 329

330 6. Spectra of ¹H NMR, ¹³C NMR of compounds 5a-h, 5j-q, 6a-h, 6j-q

399 **8. Figure S2**. HRMS spectrum of compound **6b**

