
Supporting Information for libmolgrid: GPU

Accelerated Molecular Gridding for Deep

Learning Applications

Jocelyn Sunseri and David R. Koes∗

Department of Computational and Systems Biology, University of Pittsburgh, 3501 Fifth

Ave., Pittsburgh, PA 15260, United States

E-mail: dkoes@pitt.edu

Grids

Figure S1 illustrates the behavior of ManagedGrids (S1a) and Grids (S1b). ManagedGrids

can migrate data between devices, and they create a copy when converting to or from other

objects that have their own memory. Grids do not own memory, instead serving as a view

over the memory associated with another object that does; they do not create a copy of

the buffer, rather they interact with the original buffer directly, and they cannot migrate it

between devices.

The explicit specialization of a grid exposed in the Python molgrid API has a nam-

ing convention that specifies its dimensionality, underlying data type, and in the case of

Grids, the device where its memory buffer is located. The structure of the naming conven-

tion is [GridClass][NumDims][DataType]["CUDA" if GridClass=="Grid" and DataLoc

== "GPU"]. Since ManagedGrids can migrate their data from host to device, their names do

not depend on any particular data location. For example, a 1-dimensional ManagedGrid of

S1

dkoes@pitt.edu

(a) (b)

Figure S1: ManagedGrids manage their own memory buffer, which can migrate data between
the CPU and GPU and copy data to a NumPy array as shown in (a). Grids are a view over
a memory buffer owned by another object; they may be constructed from a Torch tensor, a
ManagedGrid, or an arbitrary data buffer with a Python-exposed pointer, including a NumPy
array as shown in (b).

type float is an MGrid1f, a 3-dimensional Grid of type float is a Grid3f, and a 5-dimensional

Grid of type double that is a view over device data is a Grid5dCUDA.

Atom Typing

Table S1 provides an example of performing atom typing via a user-defined callback function.

This example creates a vector atom typer using this method, but index typers are created

in exactly the same manner, returning a single value rather than a vector.

ExampleProvider

Table S2 shows the options that can be set via the ExampleProvider constructor. Ran-

domization is enabled with the shuffle option; oversampling of underrepresented classes

to provide equal representation from all available classes categorized by the Example la-

bel is enabled with balanced; resampling based on a specific molecule associated with an

Example (determined by the first filename encountered on a given metadata line) comes

from stratify receptor (as the name suggests, this is often used to sample equally from

S2

Table S1: Examples of performing atom typing with a user-provided callback function.

create simple molecule, for demonstration purposes

m = pybel.readstring('smi','C')

m.addh()

atom typing based on atomic number and valence, with a constant radius of 1.5

def mytyper(atom):

if hasattr(atom, 'GetValence'):

return ([atom.GetAtomicNum(),atom.GetValence()], 1.5)

else:

return ([atom.GetAtomicNum(),atom.GetExplicitDegree()], 1.5)

create the typer; the explicit names may be omitted, in which case numerical names

will be automatically created

t = molgrid.PythonCallbackVectorTyper(mytyper, 2, ["anum","valence"])

get types for our simple molecule using our typer

types = [t.get_atom_type_vector(a.OBAtom) for a in m.atoms]

Table S2: Available arguments to ExampleProvider constructor, along with their default
values.

exprovider = molgrid.ExampleProvider(shuffle=False, balanced=False,

stratify_receptor=False, labelpos=0, stratify_pos=1, stratify_abs=True, stratify_min=0,

stratify_max=0, stratify_step=0, group_batch_size=1, max_group_size=0,

cache_structs=True, add_hydrogens=True, duplicate_first=False, num_copies=1,

make_vector_types=False, data_root="", recmolcache="", ligmolcache="")

S3

Examples associated with different receptors); labelpos specifies the location of the binary

classification label on each line of the metadata file, in terms of an index starting from 0 that

numbers the entries on a line; stratify pos similarly specifies the location of a regression

target value that will be used to stratify Examples for resampling (for example a binding

affinity); stratify abs indicates that stratification of Examples based on a regression value

will use the absolute value, which is useful when a negative value has a special meaning

such as with a hinge loss; and stratify min, stratify max, and stratify step are used

to define the bins for numerical stratification of Examples.

Additional options provide customization for interpreting examples and optimizations for

data I/O. When using a recurrent network for processing a sequence of data, such as the

case of training with molecular dynamics frames, group batch size specifies the number

of frames to propagate gradients through for truncated backpropagation through time and

max group size indicates the total number of Examples associated with the largest Example

group (e.g. the maximum number of frames). add hydrogens will result in protonation of

parsed molecules with OpenBabel. duplicate first will clone the first CoordinateSet

in an Example to be separately paired with each of the subsequent CoordinateSets in

that Example (e.g., a single receptor structure is replicated to match different ligand poses).

num copies emits the same example multiple times (this allows the same structure to be pre-

sented to the neural network using multiple transformations in a single batch). make vector types

will represent types as a one-hot vector rather than a single index. cache structs will keep

coordinates in memory to reduce training time. data root allows the user to specify a shared

parent directory for molecular data files, which then allows the metadata file to specify the

filenames as relative paths. Finally, recmolcache and ligmolcache are binary files that

store an efficient representation of all receptor and ligand files to be used for training, with

each structure stored only once. These are created using the create caches2.py script from

https://github.com/gnina/scripts. Caches combine many small files into one memory

mapped file resulting in a substantial I/O performance improvement and reduction in mem-

S4

https://github.com/gnina/scripts

Table S3: Available arguments to the GridMaker constructor, along with their default values.

gmaker = molgrid.GridMaker(resolution=0.5, dimension=23.5, binary=False,

radius_type_indexed=False, radius_scale=1.0, gaussian_radius_multiple=1.0)

ory usage during training.

GridMaker

Table S3 shows the available arguments to the GridMaker constructor. GridMaker op-

tions include the grid resolution; dimension along each side of the cube; whether to constrain

atom density values to be a binary indicator of overlapping an atom, rather than the default

of a Gaussian to a multiple of the atomic radius (call this grm) and then decaying to 0

quadratically at 1+2grm2

2grm
; whether to index the atomic radius array by type id (for vector

types); a real-valued pre-multiplier on atomic radii, which can be used to change the size

of atoms; and, if using real-valued atomic densities (rather than the alternative binary den-

sities), the multiple of the atomic radius to which the Gaussian component of the density

extends.

Transform

In order to provide some more detail about specialized use of molgrid::Transform, Fig-

ure S2 shows the behavior of Transform::forward, taking an input Example and returning

a transformed version of that Example in transformed example. Usage examples for the

Transformer constructors are shown in Table S4.

S5

1 for data in batch:

2 t = molgrid.Transform(center=(0,0,0), random_translate=2.0, random_rotation=True)

3 t.forward(data, transformed_data, dotranslate=True)

4 # do something with transformed_data

Figure S2: An illustration of molgrid::Transform usage, applying a distinct random ro-
tation and translation to each of ten input examples. These transformations can also be ap-
plied separately to individual coordinate sets. Transformations to grids being generated via a
molgrid::GridMaker can be generated automatically by specifying random rotation=True

or random translation=True when calling Gridmaker::Forward.

(a) (b) (c)

Figure S3: Loss per iteration while training a simple model, with input gridding and trans-
formations performed on-the-fly with libmolgrid and neural network implementation per-
formed with (a) Caffe, (b) PyTorch, and (c) Keras with a Tensorflow backend.

S6

Table S4: Available Transform constructors.

Usage 1: specify a center, maximum distance for random translation,

and whether to randomly rotate

transform1 = molgrid.Transform(center=molgrid.float3(0.0,0.0,0.0), random_translate=0.0,

random_rotation=False)

qt = molgrid.Quaternion(1.0, 0.0, 0.0, 0.0)

center = molgrid.float3(0.0, 0.0, 0.0)

translate = molgrid.float3(0.0, 0.0, 0.0)

Usage 2: specify a particular rotation, to be performed around the molecule's center

transform2 = molgrid.Transform(qt)

Usage 3: specify a particular rotation and the center around which it will be performed

transform3 = molgrid.Transform(qt, center)

Usage 4: specify a particular rotation and center, along with a specific translation

transform4 = molgrid.Transform(qt, center, translate)

Results

Figure S3 shows successful training of a basic feed-forward network on a toy dataset using

each of these three deep learning frameworks to perform binary classification of active versus

inactive binding modes. Timing calculations for the main text performance figures were per-

formed using GNU time, while memory utilization was obtained with nvidia-smi -q -i 1

-d MEMORY -l 1. The Caffe data was obtained using caffe train with the model at https:

//github.com/gnina/models/blob/master/affinity/affinity.model with the affinity

layers removed; the PyTorch data was obtained using https://gnina.github.io/libmolgrid/

tutorials/train_basic_CNN_with_PyTorch.html, run for 10,000 iterations; and the Keras

data was obtained using https://gnina.github.io/libmolgrid/tutorials/train_basic_

CNN_with_Tensorflow.html, run for 10,000 iterations. The metadata file for training is at

https://github.com/gnina/libmolgrid/blob/master/test/data/small.types, using struc-

tures found at https://github.com/gnina/libmolgrid/tree/master/test/data/structs.

The Cartesian reduction example can be found at https://gnina.github.io/libmolgrid/

tutorials/train_simple_cartesian_reduction.html.

S7

https://github.com/gnina/models/blob/master/affinity/affinity.model
https://github.com/gnina/models/blob/master/affinity/affinity.model
https://gnina.github.io/libmolgrid/tutorials/train_basic_CNN_with_PyTorch.html
https://gnina.github.io/libmolgrid/tutorials/train_basic_CNN_with_PyTorch.html
https://gnina.github.io/libmolgrid/tutorials/train_basic_CNN_with_Tensorflow.html
https://gnina.github.io/libmolgrid/tutorials/train_basic_CNN_with_Tensorflow.html
https://github.com/gnina/libmolgrid/blob/master/test/data/small.types
https://github.com/gnina/libmolgrid/tree/master/test/data/structs
https://gnina.github.io/libmolgrid/tutorials/train_simple_cartesian_reduction.html
https://gnina.github.io/libmolgrid/tutorials/train_simple_cartesian_reduction.html

