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Abstract

This thesis explores the problem of endogeneity in the trending time series regression

model. The nonstationary regressor in the model is assumed to follow a nonlinear

trend-stationary process instead of a unit root process. We introduce a magnitude

parameter that characterizes the strength of the trend in the nonstationary time series.

The time trend is termed a weak trend when such parameter is exactly one. While it is

called a strong trend when the parameter is greater than one.

The weak trend does not dominate the stationary error term in the regressor’s data

generating process so that the simple ordinary least squares estimator is biased and

inconsistent due to the problem of endogeneity. To fix this issue, we employ a control

function to decompose the endogenous correlation between the corresponding error

terms. To avoid potential model misspecification, we let the control function be non-

parametric. Replacing the regression error by such control function expression yields

a semi-parametric partially linear model. We show that the conventional estimator

remains valid (unbiased and
√
n-consistent), although we fail to satisfy the usual iden-

tifiability condition for the semi-parametric partially linear model.

On the contrary, the strong trend dominates the stationary error term that makes

the OLS estimator consistent when the sample size tends to infinity. However, the sta-

tistical inference on the regression coefficient is substantially affected by endogeneity

that the inference for the coefficients can be quite misleading unless we deal with the

endogeneity issue appropriately. We propose a bias-corrected estimator that adjusts

the endogeneity bias in the OLS estimator. The asymptotic results show that the new

xi
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estimator is unbiased and consistent. Meanwhile, the simulation results indicate that

the bias-correction method greatly improves the estimation accuracy as well as the

inference performance for the coefficients.

The regression models and the estimation methods are applied to investigate the

relationship between the logarithm of aggregate personal consumption and the loga-

rithm of aggregate personal disposable income as an illustrative example. The result

reveals significant endogenous correlations between the variables, and moreover, such

correlation is found to be nonlinear rather than linear.

To summarize, the main objective of this thesis is to explore the effects of endogene-

ity on the trending regression models with nonlinear trend-stationary processes and

propose effective methods to correct the endogeneity bias. In the process of achieving

these goals, we reveal some interesting facts, such as

(1) it is difficult to discriminate between a unit root process and a nonlinear trend-

stationary process;

(2) the strength of the trend matters a lot in the trending regression model;

(3) the behaviors and properties of certain conventional estimators are likely to be

different for the models with nonstationary time series compared to those with

stationary time series.



Chapter 1

Introduction

“No one understands trends, but everyone sees them in the data.”

Laws and Limits of Econometrics

— Peter C. B. Phillips (2003)

1.1 Background and overview

Time series regression models are widely used in the economic and financial analysis.

When estimating these models in practice, economists frequently encounter two major

challenges. The first problem is the nonstationary trending feature of the time series

data. As suggested in Andrews and McDermott (1995) and Krugman (1995), most of

the empirical data, especially the macroeconomic aggregates, exhibit linear or nonlin-

ear time trends. Such nonstationary characteristic violates the standard assumption

that the time series should be stationary over time. Endogeneity is the second prob-

lem that we need to deal with in practice. The correlation between the explanatory

variables and the regression error may lead to biased and inconsistent estimates of the

coefficients. Various reasons may cause the problem of endogeneity, such as simultane-

ity, measurement errors, omitted variables, selection bias, etc. A popular example is

1
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the linear regression model of income and consumption

ct = α + βyt + et, (1.1)

for t = 1,2, ...,n, where ct and yt represent the (logarithms of) aggregate personal con-

sumption expenditure and disposable income. A simple plot of the two time series

shows that both ct and yt exhibit upward trends, thus they are nonstationary across

time. Meanwhile, due to the simultaneous determination of income and consumption,

yt and et are believed to be endogenously correlated. Therefore, it induces the problem

of endogeneity. Since the assumptions for the classical linear regression (CLR) models

are not satisfied1, we cannot use the ordinary least squares (OLS) method to estimate

the marginal propensity to consume.

This thesis deals with both problems of nonstationarity and endogeneity. We con-

sider a general linear trending regression model formulated as

yt =α + x′tβ + et, (1.2)

xt =g(t) + vt, (1.3)

for t = 1,2, ...,n, where xt is a k ×1 vector of trending time series, g(·) is a k ×1 vector of

functions representing the deterministic time trends in xt. The problem of endogeneity

occurs when the stationary error terms et and vt are correlated.

The true form of the trend function in the generating process of the trending time

series is usually unknown. We let g(·) be a nonparametric function rather than a

pre-specified parametric form. Therefore, we avoid potential model misspecification,

which may induce inconsistency in the estimation of the coefficients. The nonpara-

metric form of g(·) provides sufficient flexibility to capture the nonstationary and non-

linear characteristics in the time trends. In this thesis, we use nonparametric ker-

nel methods to estimate the trend term.2 Since the estimation method is data-driven,

the nonparametric estimate of g(·) is adaptive to the changes in the levels and slopes

1Here, both assumptions of exogeneity and stationarity are not satisfied.
2Other nonparametric methods are also applicable, for example, the Sieve method.
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of the trends. In fact, equation (1.3) represents a class of nonlinear trend-stationary

time series. By definition, stationary is achieved after removing the nonlinear trends.

Moreover, as we will discuss later, it can be regarded as an alternative data generating

mechanism to the unit root process for the nonstationary time series data.

Equation (1.2) forms a linear trending regression model. Since we do not impose

constraints on the dependent variable yt, the interpretation of the coefficient vector β

depends on the nature of yt.

One scenario is that yt also contains a time trend as xt, then the coefficient vector

β represents the co-trending relationship between xt and yt. Hence, the equation (1.2)

is analogous to the co-integration model first studied in Engle and Granger (1987).

We also take into account the endogeneity problem, and the model investigated in

this thesis is similar to the one discussed in Phillips and Hansen (1990), in which the

authors studied the instrumental variable regressions for I(1) processes.

Another scenario is that yt is stationary, but the elements of xt have trends so that

co-trending occurs between the elements. A popular example is the predictive regres-

sion model commonly seen in the finance literature

yt = α + x′t−1β + et, (1.4)

where yt represents asset returns, xt−1 is a vector of predictors such as the dividend-

price ratio, the book-to-market ratio in Stambaugh (1999) and Welch and Goyal (2008).

The predictors are usually quite persistent, with first order autocorrelations close to 1.

In the literature, they are usually modeled as integrated processes with root equal

or near to unity; see Campbell and Yogo (2006), Cai and Wang (2014). As we will

address in detail later, it is also reasonable to model the predictors as (1.3) because

it is hard to distinguish between a unit root process and a nonlinear trend-stationary

process. When the predictors are modeled as (1.3), the persistence shown in the sample

autocorrelation coefficients may come from the low-frequency information in the data,

i.e., the nonlinear time trends. To balance both sides of equation (1.4), the coefficient

β should represent both the co-trending relationship and the predictability of xt. In
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other words, the linear combination x′t−1β itself forms a stationary process, which has

predictive power on yt.

As the endogeneity bias is caused only by the correlation between the stationary

error terms, the magnitude of the time trend matters a lot to the consistency and the

convergence rate of the simple OLS estimator. If the stationary term vt were dominated

by the time trend g(·), the endogeneity bias vanishes when the sample size goes to

infinity. Otherwise, we cannot obtain consistent estimations of the coefficients when

the time trends are weak.

The primary objective of this thesis is to establish the estimation and inference

methods for the coefficients in the trending regression model with endogeneity. We

propose two methods (the nonparametric control function approach and the bias-

correction method) to solve the problem of endogeneity in both cases with weak and

strong trends respectively. We will show the properties of these estimators as well as

some numerical and empirical examples in subsequent chapters.

1.2 The deterministic and stochastic trending time se-

ries

In the recent twenty years, nonstationary trending time series, as well as their regres-

sion models, have gained much attention. The challenges of the trending time series

econometrics have been extensively discussed in Phillips (2001, 2003, 2005, 2010) and

White and Granger (2011). As stated in these papers, trends are full of mysteries, and

the sentence ’No one understands trends, but everyone sees them in the data’ as quoted

at the beginning of this chapter has been one of the laws of modern econometrics.

Trends contain a vast amount of information, and they have significant implications

on various economic phenomena, such as the structural breaks, economic bubbles, and

business cycles.

The generating process of the time series data is crucial for estimating the time
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series models. Figure 1.1 shows the basic categorization of time series. The data can

either be stationary or nonstationary. Econometricians have established a systematic

framework with hundreds of models for the stationary time series data. However,

this thesis aims at constructing nonstationary time series models, in particular, the

regression models for the trending time series represented by area 3O.

Figure 1.1: The categorization of time series data.
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In the trending time series data, trends can be either/both deterministic or/and

stochastic. For the deterministic trend, it can be either linear or nonlinear. Area 1O in
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Figure 1.1 is the usual trend-stationary process, which is a stationary process around

a linear deterministic trend. Specifically, it can be written as

xt = a+ bt + vt, (1.5)

for t = 1,2, ..,n, where vt is a sequence of stationary innovations. Area 2O is the unit

root process. For instance, a random walk process with drift

xt = δ+ xt−1 + vt, (1.6)

for t = 1,2, ...,n, where δ , 0 is the drift term and vt is stationary as well. It is easy

to find that the non-zero drift term δ would form a linear deterministic time trend

because

xt = δt +
t∑
s=1

vs + x0, (1.7)

where x0 is the initial value.

Area 3O is the type of trending time series we are going to explore in this thesis. It

is a stationary process fluctuating around a nonlinear deterministic trend as equation

(1.3).

In practice, the true generating process of the empirical time series is usually un-

known and even unknowable. As suggested in Harvey (1997), the trend component

can hardly be specified as a linear function of time unless the length of the time series

is relatively short. In other words, nonlinear trends are often seen in the trending time

series with a relatively longer horizon. Also, in terms of model specification, it is too

restrictive to assume that the level and the slope parameters of the trend in the time

series are constants over a long time period. Consequently, it is necessary to adopt the

nonlinear time trend models to accommodate the nonlinear and nonstationary charac-

teristics in the data.

By definition, a deterministic trend always map a given time point to a determin-

istic value. Otherwise, the trend is stochastic since its position is random at time t.

Apparently, polynomial trends with constant coefficients are deterministic. For exam-

ple, a linear trend g(t) = 1 + 2t, or a quadratic trend g(t) = 1 + 2t + t2. On the contrary,
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stochastic trend appears when the level and slope parameters are not deterministic

over time. For instance,

xt = αt + βtt + v1t, (1.8)

where αt = αt−1+v2t,βt = βt−1+v3t, for t = 1,2, ...,n, vit
i.i.d.∼ N (0,σ2

i ), σ2
i > 0 for i = 1,2,3.

The most intensively studied stochastic trend process is the unit root process, typically

the random walk without drift

xt = xt−1 + vt, (1.9)

for t = 1,2, ...,n, where vt
i.i.d.∼ N (0,σ2

v ). The nonstationarity of the random walk process

originates from the growing unconditional variance of xt, i.e., var[xt] = tσ2
v , although

its unconditional mean is always a constant over time. In this case, the level and the

slope of the realized trend in xt are stochastic instead of deterministic at any given

time point t.

The structural form of a trend-stationary process is simply a stationary process

about a deterministic time trend. One can obtain a stationary time series by removing

such linear or nonlinear time trend. While for the unit root process, stationarity is

achieved after taking the difference of the time series. Therefore, it is also named the

difference-stationary process.

There are sharp differences between the economic interpretations of the two kinds

of data generating processes. As the time series fluctuates about a deterministic time

trend, the effects of the innovations in the trend-stationary process die out quickly, and

they only cause transitory changes to the time series. While in the unit root process,

the shocks cause permanent shifts to the time series as they are 100% accumulated

without any loss. Economists are interested in revealing the data generating process

of the empirical data, as it is critical to determining whether certain economic event

would cause temporary or permanent effects on the economic variable.

Since the 1980s, economists and econometricians have established various unit root

tests to statistically distinguish between the unit root process and the (trend-) station-

ary process. The Augmented Dickey-Fuller unit root test and the Phillips-Perron unit
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root test are the most widely used statistical tests; see Fuller (1976), Dickey and Fuller

(1979) and Phillips and Perron (1988). The null and the alternative hypothesis in these

tests are established as

H0 : xt has a unit root, (1.10)

H1 : xt is (trend) stationary, (1.11)

where xt is the time series to be tested. Note that a deterministic time trend can be

included in the test equation. Therefore the alternative hypothesis is allowed to be a

trend-stationary process3.

Testing for unit roots in the empirical time series data has been a necessary pro-

cedure before applying the time series models. Economists are aware that unlike in

the stationary case, the estimation and inference of the coefficients are greatly differ-

ent when the time series contain unit roots. In Nelson and Plosser (1982), fourteen

U.S. macroeconomic time series are examined using the ADF test, and for most of the

time series, the authors failed to reject the null hypothesis of unit root. This paper

has been cited frequently, and similar results are also found in Said and Dickey (1984)

and Perron (1988), where the error terms in the test equation are allowed to be serially

correlated.

In conducting the unit root tests, the probability of making the Type I error is con-

trolled by the significance level we choose, given that the tests do not suffer from size

distortions. For instance, under 5% significance level, the probability of incorrectly

rejecting H0, while in fact the null hypothesis is true, is less than 5%. Hence, it means

that rejecting the null hypothesis is usually a statistically reliable conclusion for the

hypothesis tests.

However, the probability of making the Type II error may be substantially large if

the unit root test has power problems. The ADF tests are found to have low power

against the alternative hypothesis of autoregressive process with roots near unity in

3In fact, the alternative hypothesis in the ADF test only allows for a linear deterministic time trend.
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DeJong et al. (1992). In other words, the null hypothesis is rarely rejected even though

the null hypothesis is false while the alternative hypothesis is true. Meanwhile, Rude-

busch (1993) found that the existence of a unit root is quite uncertain in the U.S. real

GNP. Diebold and Rudebusch (1991) found that the ADF test also has low power

against the alternative of fractionally integrated time series. Therefore, in such unit

root tests of (1.10) and (1.11), failing to reject the null hypothesis does not necessarily

imply the existence of unit root in the time series due to the power problems.

A straightforward way to fix this problem is swapping the null and alternative

hypothesis so that we are testing stationary against unit root. Kwiatkowski et al. (1992)

propose the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) unit root test, in which unit

root is taken as the alternative hypothesis. Thus, rejecting the null hypothesis strongly

supports the existence of unit root in the time series. In DeJong and Whiteman (1991),

the authors employ the Bayesian methods and find that only two of the Nelson-Plosser

series contain unit roots. Nevertheless, if we fail to reject both null hypothesis in the

ADF and KPSS tests, we are still ignorant about the existence of unit root in the data.

As discussed in the previous paragraphs, the unit root conclusion is questionable

due to the power problems of the unit root tests. In practice, if the data exhibits an

upward or downward trend, a linear function of time is usually included in the test

equation of the ADF type tests. Specifically,

∆xt = α0 + δt︸ ︷︷ ︸
linear trend

+ ρxt−1 +α1∆xt−1 + ...+αp∆xt−p + et, (1.12)

where α0 + δt is used to capture the linear deterministic trend in the data. However,

as mentioned at the beginning of this section, Harvey (1997) suggests that for the em-

pirical data, the deterministic trend is not necessarily linear. Perron (1989) establishes

a unit root test in which one trend break4 is allowed in both the null and the alter-

native hypotheses. Bierens (1997) uses Chebyshev polynomials to replace the linear

deterministic trend terms in the test equation so that the test allows for nonlinear de-

4It is a special case for nonlinear trends.
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terministic trends. Both papers find that for some time series in the Nelson-Plosser

data set, we should reject the null hypothesis of unit root, which, however, is not re-

jected by the usual ADF test with linear trends.

To conclude, since ’unit root’ is the null hypothesis to be tested and the power of

the ADF test is low in some cases, the unit root conclusion is not statistically reliable.

On the other hand, when the deterministic trend is allowed to be nonlinear functions

of time, it is more likely to reach the conclusion that the time series is nonlinear trend-

stationary rather than unit root. Therefore, it is reasonable to model the trending time

series as a nonlinear trend-stationary process as (1.3).

1.3 An illustrative example

In the previous section, we addressed some problems and conflicting results in deter-

mining the existence of unit roots. In this section, we illustrate this phenomenon by

an example with simulated time series as plotted in Figure 1.2.

The time series in the four subfigures are generated as the following steps.

(1) In the first subfigure, x1t is a simulated random walk process without drift, i.e.,

x1t = x1t−1 + vt, where vt
i.i.d.∼ N (0,1) for t = 1,2, ...,300. As the trend is stochas-

tic, for each realization, you may get different paths of the time series sequence.

Without loss of generality, we focus on one realization of the random walk pro-

cess as shown in the figure.

(2) We then suppose that the true data generating process of x1t is unknown and

approximate x1t using a time polynomial.5 Specifically, we run the following

regression

x1t = α0 +α1t + ...+α6t
6 + et, (1.13)

and obtain the least squares estimates of α0, ...,α6. The spuriously estimated time

5Alternatively, one can also use nonparametric methods to fit a time trend.
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Figure 1.2: Unit root process versus nonlinear trend-stationary process
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trend is ĝ(t) = α̂0 + α̂1t + ... + α̂6t
6, plotted as the red dashed line in the second

subfigure.

(3) We create a nonlinear trend-stationary process x2t in the third figure. The blue

solid line in the lower-left subfigure is x2t = ĝ(t) + ut, where ĝ(t) is the fitted

trend in the previous step and ut is a stationary AR(1) process. In particular, let

ut = 0.6ut−1 + ηt for u0 = 0 and ηt
i.i.d.∼ N (0,1), for t = 1,2, ...,300.

(4) Lastly, the unit root process x1t and the nonlinear trend-stationary process x2t

are plotted together in the fourth subfigure.

Visually, based merely on the fourth subfigure, one is hard to tell which line is a
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unit root process and which line represents a trend-stationary process as their paths

are very close to each other. Statistical tests also fail to distinguish between the two

processes. The ADF test, Phillips-Perron test and the KPSS test all suggest that both x1t

and x2t exhibit unit roots. On the other hand, removing the time trend (the red dashed

line) from both series gives two residual sequences, and all the unit root tests suggest

that they are stationary time series under the 5% significance level. This result leads

us to an opposite conclusion that the two sequences are nonlinear trend-stationary

processes.

To conclude, given a sequence of time series (especially when the sample size is

small), the unit root time series and the nonlinear trend-stationary time series are

hardly distinguishable. Therefore, it is apparently necessary to study the nonlinear

trend-stationary process as well as its regression models.

1.4 Detrending methods and their problems

As discussed in the first section, the stationary assumption for most of the time series

models is violated when the time series exhibit trends. In practice, economists usually

transform the non-stationary time series into stationary versions, and this process is

called ‘detrending’, or ‘the stationarization of the trending time series’.

Various detrending methods are investigated in Canova (1998). The author finds

that different detrending methods lead to different patterns of estimated trends and

cycles. In the section, I summarize some of the detrending methods and discuss their

problems.

(1) Fitting the polynomial functions of time

Fitting a polynomial trend is the simplest and the oldest method for detrending.

When the time series is trend-stationary, one only needs to approximate the se-

quence using a pre-specified polynomial function of time, and then subtract the
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estimated trend to obtain a stationary process. For example, suppose that

xt =
p∑
k=0

αkt
k + et, (1.14)

where the polynomial order p is known and et is a stationary process. We regress

xt over the polynomials of time and obtain the residuals as the detrended version

of the time series

êt = xt −
p∑
k=0

α̂kt
k ∼ I(0), (1.15)

where α̂k is the OLS estimate of αk for k = 0,1, ...,p. In most of the cases, we only

include a linear time trend and let p = 1.

(2) Taking difference

Taking difference6 is another commonly used method to eliminate the trends in

the nonstationary time series. When the series is an integrated process, for ex-

ample, an I(d) process with d being a positive integer, then taking the difference

of xt for d times gives a stationary process. That is, if xt ∼ I(d), then ∆dxt ∼ I(0).

(3) The Hodrick and Prescott’s filter

The HP-filter method was established in Hodrick and Prescott (1997), and it is

widely applied by macroeconomists. The HP-filter separates the trend and cycle

components by solving the optimization problem

min
g1,...,gt ,...,gn

n∑
t=1

(xt − gt)2 +λ
n∑
t=2

(
(gt+1 − gt)− (gt − gt−1)

)2
, (1.16)

where {gt}nt=1 is the trend sequence to be estimated. The smoothness of the es-

timated trend depends on the smoothing parameter, which is usually denoted

as λ. In practice, λ takes different values for different frequencies of the time

series. For example, λ = 100,1600,14400 for the yearly, quarterly and monthly

data respectively.

6Here we only consider time series data. Sometimes, differencing for the cross-sectional data are

quite useful in practice, see the first chapter of Yatchew (2003).
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Some other detrending methods are also discussed in Canova (1998), such as the Beveridge-

Nelson’s method, the frequency domain method, the unobserved component model, the one-

dimensional index model, the model of common deterministic trends, and the model of com-

mon stochastic trends.

Since we are usually ignorant about the true generating process of the time series

data, these detrending methods should be used with caution. At the same time, we

should be aware of the specific assumptions before using these methods. For example,

the Hodrick-Prescott filter can only be applied to an I(2) process. In the literature,

these methods are criticized in many research papers.

First, trend-elimination throws away a vast amount of information in the data.

Particularly, long-run information with low frequency is wiped out from the time se-

ries, and only short-run disturbances of high frequency information are left behind.

Rao (2010) argues that the regressions using the differenced variables are useless to

verify economic theories as they only reflect the relationship between short-run vari-

ables rather than the long term equilibrium relationships. As shown by an example

in Cochrane (2012), the relationship between the original nonstationary data is quite

significant, while the scatter plot shows little correlation between the differenced se-

quences. Moreover, the time series sometimes need to be differenced more than once

before achieving stationarity. Eventually, little information is maintained in the sta-

tionary time series after differencing for several times.

Second, as the true data generating process is unknown for most of the time, mis-

use of the detrending methods usually lead to severe statistical problems. Nelson and

Kang (1981) suggest that if we remove an estimated polynomial trend from an I(1) pro-

cess, we may introduce pseudo-periodic behavior in the detrended series. Therefore,

the regression results make no sense as we have artificially introduced the autocorre-

lations. Moreover, for a nonlinear trend-stationary process, one may need to take the

difference more than once to obtain a stationary process. For example, if xt = t2 + vt,

where vt is an I(0) process, the second order difference of xt contains moving average



1.5. NONSTATIONARY TRENDING TIME SERIES MODELS 15

unit roots as ∆2xt = 2 +∆2vt is a non-invertible process. For the time series with both

global and local trends as xt = a+ bt + g(t) + vt, where g(t) is a local weak trend and vt

is stationary, differencing only eliminates the strong global trend a+ bt, but the weak

local trend ∆g(t) still remains in ∆xt.

To conclude, the trend-elimination methods delete much more useful information

than expected. Meanwhile, they may cause other statistical issues that lead to com-

plicated econometric problems. To overcome these problems, we propose trending

regression models that directly deal with the nonstationary time series instead of their

stationarized versions.

1.5 Nonstationary trending time series models

As we discussed in the previous section, detrending the nonstationary time series may

cause unexpected problems. The verification of particular economic theories requires

the application of trending time series models that regress the nonstationary time se-

ries directly.

The prevalence of the unit root conclusions leads to the popularity of the co-integration

models, in which the combination of the integrated time series forms a stationary pro-

cess. Such combinations are considered as equilibrium relationships in economics.

Since the deviations from the equilibrium states are stationary over time, co-integration

indicates stable relationships in the long-run.

In the two influential papers by Granger (1981) and Engle and Granger (1987), the

authors investigate the representation, estimation, and testing of the co-integration

models. Specifically, a co-integration relationship between xt and yt takes the form as

yt = x′tβ + et, (1.17)

where {xt, yt} are integrated processes, et is an I(0) process, β is called the cointegrating

coefficient (vector).
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However, in practice, it is not easy to find the evidence of co-integration when the

length of the sample period is relatively long. That is because the true co-integration

coefficient (vector) may be time-varying, and a misspecified constant coefficient (vec-

tor) can hardly describe the changes in the cointegrating relationship. Hansen (1992)

and Quintos and Phillips (1993) established the Lagrange multiplier tests to examine

the parameter consistency in the co-integration models. To allow for the changes in

the coefficients, Park and Hahn (1999) developed the co-integration regression model

with time-varying coefficients of the form

yt = x′tβt +ut, (1.18)

where xt is a k-dimensional vector of I(1) processes, βt = β(t/n) is a smooth function

defined on [0,1] representing the slowly changing coefficients. 7 The paper also stud-

ied the U.S. automobile demand, and the authors showed that the time series data are

cointegrated with smoothly varying coefficients. However, they are not cointegrated

when the coefficients are restricted as constants for the whole sample period.

It is usually necessary to include nonlinear and nonparametric time trends in many

time series and panel data regression models. For example, Gao and Hawthorne (2006)

investigate the climate time series data using a semi-parametric model. In Cai (2007),

the author proposes a varying coefficient trending time series model, where the error

terms are allowed to be autocorrelated. However, both papers require the regressors

to be stationary. Hence, they can not deal with the regression between trending time

series.

In panel data models, nonlinear time trends are also taken into account to capture

the trending feature. Robinson (2012) considers a nonparametric trending regression

with cross-sectional dependence, where the error terms are allowed to be correlated

and heteroscedastic over the cross-section. Chen et al. (2012) study a semi-parametric

trending panel data model with cross-sectional dependence. By incorporating un-

known nonlinear deterministic trends in both the regression equation and the data
7Recently, Phillips et al. (2017) also consider the same model by a kernel approach.
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generating process, the model is capable of accommodating the nonstationarity in the

data. Unfortunately, none of these models considers the endogeneity issue, which we

will take into account in this thesis.

1.6 The endogeneity bias and the strength of the trend

The endogeneity problem affects the performance of the simple OLS estimator when it

occurs in the regression model. Specifically, in the univariate linear regression model

with stationary time series, the OLS estimator is defined as8

β̂OLS =

 n∑
t=1

x2
t


−1  n∑

t=1

xtyt

 = β +

1
n

n∑
t=1

x2
t


−1 1

n

n∑
t=1

xtet

 , (1.19)

where endogeneity suggests that E[xtet] , 0, hence β̂OLS is biased and inconsistent for

β as n→∞.

When xt is nonstationary as equation (1.3), the strength of the trend matters. Recall

that xt is generated by

xt = g(t) + vt,

where vt is stationary and E[vt] = 0,E[v2
t ] = σ2

v < ∞. Suppose that
∑n
t=1 g(t)2 = O(nd)

for some d ≥ 1. Then as n→∞, we have

1
nd

n∑
t=1

x2
t −→P Q, (1.20)

for some 0 < Q < ∞. The value of d is determined by the strength of the trend in xt,

i.e., stronger trends lead to larger values of d. Then the endogeneity bias in the OLS

estimator can be written as

β̂OLS − β =

 n∑
t=1

x2
t


−1  n∑

t=1

xtet

 =

 1
nd

n∑
t=1

x2
t


−1  1

nd

n∑
t=1

xtet

 , (1.21)

where d is the magnitude parameter for g(t). Therefore, the OLS estimator is consistent

when d > 1. In other words, when the trend is strong, n−d
∑n
t=1xtet =OP (n1−d) = oP (1),

8For simplicity, we only consider the univariate regression model.
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and the endogeneity bias vanished when n → ∞. Otherwise, it is inconsistent when

d = 1 because the trend is too weak to dominate the stationary component and the

endogenous correlation causes permanent bias in the estimator. Phillips and Hansen

(1990) study the endogeneity in the co-integration regression that the regressor follows

a pure random walk process. In their model, d = 2 and the OLS estimator is consistent.

However, the limit distribution of n(β̂OLS − β) is not centered around zero because of

endogeneity9. In this thesis, we propose two different estimation methods for the weak

trend regression when d = 1 and the strong trend regression when d > 1.

1.7 The relationship between income and consumption

In this thesis, we re-examine the relationship between the aggregate personal con-

sumption expenditure and the disposable income as an empirical example, which has

been extensively studied in many research papers. This simple regression is related to

the permanent income hypothesis (PIH), which has been a very popular topic since the

1970s in many research papers.

Hall (1978) solves the consumer’s optimization problem under the condition of ra-

tional expectations. He concludes that the consumption should follow a random walk

process that the changes are not predictable under the permanent income hypothe-

sis, given that the real interest rate is a constant value over time. In other words,

consumption tracks the permanent income, and it is not sensitive to the changes of

current income.

However, opposite conclusions are found in some other papers. Flavin (1981) de-

velops a structural econometric model of consumption to estimate the excess sensitiv-

ity of consumption to current income. Such excess sensitivity should be zero under

the permanent income hypothesis. The empirical result shows a strong effect of excess

9When the time series are I(1), the consistency of the OLS estimator is not affected by endogeneity

because the stochastic trend is very strong that dominates the time series. However, since the endoge-

nous correlation causes a bias in the limit distribution of n(β̂OLS − β), the inference is severely affected.
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sensitivity in the consumption to current income. Therefore, the permanent income

hypothesis is rejected. Similar results are also found in Flavin (1984) and Bernanke

(1985). While in these papers, they assume that the time series of income is a station-

ary process around a deterministic trend.

Mankiw and Shapiro (1985) noticed the statistical evidence in Nelson and Plosser

(1982) that income and consumption exhibit unit roots. They showed that excess sensi-

tivity was favorable if we ignored the unit root and conducted inappropriate detrend-

ing, which could bring spurious cycles in the transformed data; also see Nelson and

Kang (1981, 1984). Therefore, the Flavin’s conclusions are likely to be biased and not

reliable.

King et al. (1991) proposed a co-integration model with known cointegrating vector

(1,−1) for the logarithms of consumption and income, and the model is regarded as a

special version of the permanent income hypothesis. Han and Ogaki (1997) considered

the co-integration between both the stochastic trend and the deterministic trend, and

they find that both trends are cointegrated, implying that the post-war U.S. saving rate

is stable in the long-run.

Meanwhile, the estimation of such regression relationship of consumption over in-

come also suffers from the problem of endogeneity as both of them belong to a system

of simultaneous equations. Phillips and Hansen (1990) developed the bias-correction

method for the co-integration models with endogeneity. In Hansen and Phillips (1990),

they applied the bias-correction method to the co-integration model of the per capita

personal consumption over the per capita personal income. In their paper, the per-

manent income hypothesis is not rejected as unit coefficient 1 is included in the 95%

confidence interval of the estimated coefficient.

We also consider the relationship between income and consumption in this the-

sis. However, we treat the logarithms of income and consumption as nonlinear trend-

stationary time series. Also, we deal with the endogeneity issue using the proposed

methods when estimating the linear regression models.
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1.8 The contributions and the organization of the thesis

The main objective of this thesis is to establish an estimation method for the linear

trending time series models with endogeneity. The following items are the main con-

tributions of this thesis.

(1) The thesis explains in detail that it is difficult to distinguish between a unit root

process and a nonlinear trend-stationary process.

(2) The thesis studies the linear regression model with endogenous trending time

series, and the trending time series are assumed to be stationary processes about

nonlinear and nonparametric time trends.

(3) A trending magnitude parameter is defined to characterize the strength of the

trend. Therefore, the time trends are categorized into weak and strong kinds.

(4) For the weak trend case, we use a nonparametric control function to deal with

the endogenous correlation. I prove that the conventional estimator for the semi-

parametric partially linear model is still unbiased and consistent, although the

population version of the identifiability condition is not satisfied.

(5) For the strong trend case, we first discussed the asymptotic properties of the

simple OLS estimators and then propose a bias-corrected estimator to adjust the

endogeneity bias in the simple OLS estimator. The bias-correction procedure

significantly improves the performance of the t-tests in the inferences on the

coefficients.

(6) Both methods have the advantage that there is no need to find instrumental vari-

ables because we have used the information in the time trends. Another advan-

tage is that the limit distributions in the asymptotic results are normal distribu-

tions instead of non-standard distributions such as Brownian Motions for the co-

integration models. This brings much convenience in conducting the hypothesis

tests for the coefficients.
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The remaining parts of the thesis are organized as follows. Chapter 2 deals with

the endogeneity issue in the weak trending regression model by using a nonparametric

control function approach. Chapter 3 first explores the asymptotic properties of the

simple OLS estimators, and then introduces the bias-corrected estimator that adjusts

the endogeneity bias. The performances of the estimators in Chapter 2 and Chapter

3 are examined by Monte Carlo simulations in Chapter 4. The results are followed by

an empirical example to illustrate the implementation steps of the methods proposed

in this thesis. Chapter 5 concludes the thesis and several future research directions

are discussed in Chapter 6. Appendix A presents a ‘constructed instrumental variable

approach’ to solve the endogeneity problem. 10 The detailed mathematical proofs of

the main Theorems, as well as the Lemmas, are provided in the appendices.

10This method was considered in the first year of my PhD candidature when I started to study this

research topic. For the completeness of my PhD research, I include this method in the Appendix.
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Chapter 2

Endogeneity in the weak trending

regression

2.1 Weak trends and the control function approach

In this section, we consider the weak trending time series regression model with endo-

geneity. In the literature, the time trend term is commonly written as

xt = g(τt) + vt, (2.1)

for t = 1,2, ...,n, where τt = t/n and vt is a stationary I(0) process. Suppose that g(·) is a

continuous function defined on [0,1] and square integrable, then equation (2.1) forms

a nonstationary time series with weak trend since

1
n

n∑
t=1

g(τt)
2 −→

∫ 1

0
g(τ)2dτ <∞, (2.2)

as n→∞. Therefore, the trending parameter d = 1 and

1
n

n∑
t=1

x2
t −→P

∫ 1

0
g(τ)2dτ + σ2

v , (2.3)

where σ2
v is the variance of vt. The advantage of writing the weak trend as g(τt) is

that it allows for the accumulation of information on the compact interval [0,1]. In

23
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other words, for any τ ∈ [0,1], the information about the trend function g(·) in the

small neighborhood of τ grows with the sample size n. Therefore, the nonparametric

estimation of the trend function g(·) is getting more accurate. Therefore, the nonpara-

metric estimate of ĝ(τt) is consistent when n goes to infinity.

Remark 2.1.1. The function g(τt) is a standardized version of the form g̃(t) in the previ-

ous chapter1. In fact, we have re-defined the trend function g̃(t) as g(τt). It is straight-

forward that there is a one-to-one correspondence between g(τt) and g̃(t), hence, for

estimation purposes, there is no difference to estimate g(τt) instead of g̃(t).

With equation (2.1) as the data generating process of xt, we then set up the weak

trending regression model with endogeneity as

yt =α + x′tβ + et, (2.4)

xt =g(τt) + vt, (2.5)

where et and vt are endogenously correlated. The ordinary least square estimator is

defined as  α̂β̂
 =

 1 n−1∑n
t=1xt

n−1∑n
t=1xt n−1∑n

t=1xtx
′
t


−1  n−1∑n

t=1 yt

n−1∑n
t=1xtyt

 . (2.6)

Replacing yt by equation (2.4), we have α̂ −αβ̂ − β

 =

 1 n−1∑n
t=1xt

n−1∑n
t=1xt n−1∑n

t=1xtx
′
t


−1  n−1∑n

t=1 et

n−1∑n
t=1xtet

 . (2.7)

The problem of endogeneity implies that E[vtet] , 0. Since g(τt) is deterministic in

(2.5), the simple OLS estimators of α and β are biased and inconsistent in that by the

Law of Large Numbers, n−1∑n
t=1xtet does not converge to zero as the sample size n

goes to infinity.

To deal with the problem of endogeneity, we employ a nonparametric control func-

tion approach. The control function describes the endogenous correlation between the

1To discriminate the trend functions, g̃(t) here is the same as g(t) in the previous chapter.
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error terms of et and vt in equations (1.2) and (1.3). Specifically, we assume

et = λ(vt) +ut, (2.8)

where λ(vt) = E[et |vt] and ut = et −E[et |vt]. This approach is also followed by Amihud

and Hurvich (2004) and Cai and Wang (2014) for solving the endogeneity problem in

the predictive regression models. But they assume a linear functional form for λ(vt).

We aim to avoid any potential misspecification arising from this linearity assumption

and let the control function be an unspecified nonparametric form. Replacing et in

(1.2) with (2.8) yields a semi-parametric partially linear model

yt = α + x′tβ +λ(vt) +ut. (2.9)

Since ut is assumed to be uncorrelated with vt and xt, the problem of endogeneity

disappears in the augmented model. We also assume E[λ(vt)] = 0, so that we don’t

have the problem in identifying the intercept term α and the nonlinear term λ(vt) in

model (2.9). However, the cost of using the nonparametric control function is that

we need to assume some regularity conditions on vt since it is used as the smoothing

parameter in the nonparametric kernel estimation.

The semi-parametric partially linear model (2.9) has been extensively studied and

widely applied; see Robinson (1988), Härdle et al. (2000), Gao (2007), Li and Racine

(2007), as well as many other related papers. Our setting differs from those in the liter-

ature in two ways. First is that the disturbance vt is not observed and must be estimated

from xt. Second is that the regressors in (2.9), xt and vt, differ only by the deterministic

trend g(τt), implying that E(xt |vt) = xt and a potential identification problem for β —

in fact, the usual identification condition for β in partial linear models (see Robinson

(1988)) is not satisfied here. However, we show in the subsequent sections that the

conventional estimators remain valid for the trending time series regression since the

sample identifiability condition can be satisfied.
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2.2 Estimation method

2.2.1 Nonparametric kernel estimation method

The nonparametric kernel estimation method is commonly applied to estimate the

density functions and the regression functions. For example, in the nonparametric

regression model,

yt =m(xt) + et, (2.10)

m(xt) is the conditional mean E[yt |xt], and et is the usual stationary and ergodic er-

ror term. One can estimate the conditional mean function nonparametrically using

the local constant or local polynomial kernel estimation methods. The local constant

estimator (also called the Nadaraya-Watson estimator) is defined as

m̂(xt) = Êh[yt |xt] =
n∑
s=1

wns(t)ys, (2.11)

where

wns(t) =
K1

(
xs−xt
h

)
∑n
q=1K1

(xq−xt
h

) , (2.12)

for s = 1,2, ...,n, K1(·) is the kernel function and h is the bandwidth.

The nonparametric kernel method can also be applied to estimate the time trend in

the data generating process of (2.5).

Replacing xt by τt, we obtain the local constant estimator for the weak trend term

in (2.5)

ĝ(τt) =
n∑
s=1

w∗ns(t)xs, (2.13)

where

w∗ns(t) =
K2

(
τs−τt
b

)
∑n
q=1K2

(τq−τt
b

) , (2.14)

for s = 1,2, ...,n, K2(·) is another kernel function and b is another bandwidth.
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2.2.2 Model identification and estimation

In this section, we outline the estimation method for β in (2.9). Equation (2.9) has

the form of a partially linear regression model, with the additional complication that

vt is unobserved. Suppose first, however, that vt were observed. Then, following the

usual approach (Robinson (1988)) to partial linear estimation, taking the expectations

of (2.9) conditional on vt and subtracting this from (2.9) gives

yt −E[yt |vt] = (xt −E[xt |vt])′β + (ut −E[ut |vt]), (2.15)

leaving β as the coefficient in a linear regression of yt −E(yt |vt) on xt −E(xt |vt). In this

case there appears to be an identification problem because the deterministic nature of

the trends g(τt) implies that E[xt |vt] = xt, leading to β disappearing from the model

(2.15). However this apparent identification problem can be shown not to apply to

the sample version of (2.15). We do the subtraction with their sample versions of the

conditional means as (2.11) and obtain

yt − Êh[yt |vt] = (xt − Êh[xt |vt])′β + (λ(vt)− Êh[λ(vt)|vt]) + (ut − Êh[ut |vt]), (2.16)

which includes the additional estimation error λ(vt) − Êh[λ(vt)|vt] (shown to be neg-

ligible for sufficiently large n). In nonparametric analysis of stationary time series,

Êh[xt |vt] is consistent for E[xt |vt] as the sample size n goes to infinity, but this becomes

invalid when deterministic time trends are present in xt. To explain this inconsistency,

suppose that xt follows equation(2.1), and Ê[xt |vt] is the local constant kernel estimator

for the conditional mean E[xt |vt] defined as

Êh[xt |vt] =
n∑
s=1

wns(t)xs =
n∑
s=1

wns(t)g(τs) +
n∑
s=1

wns(t)vs = Êh[g(τt)|vt] + Êh[vt |vt]. (2.17)

Since vs for s = 1, ...,n is the smoothing variable in the weight function wns(t), whose

value is not linked with the time index, we then have

Êh[g(τt)|vt] =
n∑
s=1

wns(t)g(τs) −→P g , (2.18)
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Figure 2.1: The inconsistency of the conditional mean estimator.

−2 −1 0 1 2

−
2

−
1

0
1

2
3

v

x=
g+

v

Estimated Conditional mean of E(x | v)

45 degree line

where g =
∫ 1

0
g(τ)dτ . Graphically, we consider the scatter plot of xt versus vt in Figure

2.1. The red 45◦ solid line represents the function of m(v) = v. Therefore, each point

in the scatter plot of xt versus vt ends up with an upward shift from the 45◦ line

(suppose that the trend function g(·) is always positive). Again, since the value of vt is

not linked with the value of the time index t, the amount of the shift is random for a

given value of vt. Therefore, the sample version of the expected value of xt given vt = v

is approximately v +g , where g =
∫ 1

0
g(τ)dτ , which is the limit of the average of g(τt).

This implies that xt − Êh[xt |vt] is not a constant value of zero in (2.16), even though

the population expression shows that xt − E[xt |vt] = 0 for all t. Therefore, β can be
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identifiable in (2.16). The condition g(τt) is not a constant for all t is analogous to the

time trend g(τt) being a relevant instrumental variable for xt.

Formally, the identifiability condition for β in the partially linear models (Robinson

(1988), Gao (2007), Li and Racine (2007)) is that the matrix

Σ = E
[
(xt −E[xt |vt]) (xt −E[xt |vt])′

]
(2.19)

should be positive definite, but this does not hold in our context because E[xt |vt] = xt.

However, with further assumptions, the sample identifiability condition

Σ̃n =
1
n

n∑
t=1

(
xt − Êh[xt |vt]

)(
xt − Êh[xt |vt]

)′
−→P Q, (2.20)

can be satisfied with Q being positive definite, see Theorem 2.3.1 below. We wish to

emphasize this as it is the key condition that makes the conventional estimator work.

The smoothing operation over xt with respect to the sequence vt, for t = 1,2, ...,n, is

in fact an averaging process for g(τt), yielding g as n → ∞. From the perspective of

model estimation, the trending feature in xt provides additional information to help

with the estimation of the coefficients. In this way, the coefficients β can be identified

and estimated. Of course, further assumptions are necessary to guarantee that the

estimator is well-defined.

Based on the preceding discussion of identification, the estimation of β when vt is

observed could be based on the usual partial linear regression estimator

β̃ =

 n∑
t=1

(xt − Êh[xt |vt])(xt − Êh[xt |vt])′

−1 n∑

t=1

(xt − Êh[xt |vt])(yt − Êh[yt |vt]), (2.21)

which is the same as the one in Robinson (1988). The sample identifiability condition

(2.20), along with some regularity conditions given below, are sufficient for the consis-

tency of β̃. However, β̃ is infeasible since vt is not observable. Therefore we estimate

the trends g(τt) using nonparametric regression of xt on τt, and define the estimator of

vt as the residuals

v̂t = xt − Êb[xt |τt], (2.22)
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where τt = t/n and a different bandwidth b is used for the regression on τt. The feasible

estimator of β is then obtained by replacing vt in (2.21) using v̂t

β̂ =

 n∑
t=1

(xt − Êh[xt |v̂t])(xt − Êh[xt |v̂t])′

−1 n∑

t=1

(xt − Êh[xt |v̂t])(yt − Êh[yt |v̂t]). (2.23)

It is not necessary that the choice of kernels in the nonparametric regressions Êb[xt |τt],

Êh[xt |v̂t] and Êh[yt |v̂t] should be the same. Finally, the intercept term can be estimated

by

α̂ =
1
n

n∑
t=1

(yt − x′tβ̂). (2.24)

2.3 The main results

2.3.1 Assumptions

We first make the following assumptions for establishing the asymptotic results.

Assumption 2.3.1. Assume that g(τ) = (g1(τ), g2(τ), ..., gk(τ))′ is a k × 1 vector of func-

tions and each gi(·) is a continuous and bounded function defined on [0,1] with con-

tinuous derivatives of up to the second order for i = 1,2, ..., k. We also assume that

Q =
∫ 1

0

(
g(τ)−g

)(
g(τ)−g

)′
dτ, (2.25)

is a k × k positive definite matrix when k > 1 and a positive scalar when k = 1, where

g =
∫ 1

0
g(τ)dτ .

Assumption 2.3.1 regulates the weak trend components in the regressors. The pos-

itive definiteness of the Q matrix rules out the case of collinearity when k > 1. When

k = 1, Q is always positive as long as the trend g(τ) is not a horizontal line. This

condition ensures that the coefficients can be identified properly and the estimator is

well-defined.

Assumption 2.3.2. λ(·) is a continuous and differentiable function defined on Rk→ R1.

Denote the first order derivative of λ(·) as ζ(z) = λ′(z).
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Assumption 2.3.3. (i) The error term ut is a stationary α-mixing time series with

mixing-coefficient α(·) satisfying
∑∞
d=1α

δ
2+δ (d) <∞, for some δ > 0 such that E

[
|ut |2+δ

]
<

∞.

(ii) The error term vt is strictly stationary with zero mean and finite variance. The two

sequences ut and vs are independent for t, s = 1,2, ...n.

Assumption 2.3.3(i) contains the standard requirements for the stationary α-mixing

time series. The independence of ut and vt guarantees that the endogenous correla-

tion is separable and thereby can be represented by the control function (2.8). It is a

strong condition that ut and vs are independent for all t, s = 1,2, ...,n, however, we need

this assumption to prove the asymptotic results. Meanwhile, we address the follow-

ing restrictions on vt to regulate the weak dependence instead of using the mixing-

conditions.

Assumption 2.3.4. Let f (z) be the marginal distribution of the strictly stationary pro-

cess vt for t = 1,2, ...,n. Let ft1,...,tp(z1, ..., zp) be the joint probability density function of

vt1 ,vt2 , ...,vtp for p > 1. Assume that for p = 2,3, ...,6, the joint and marginal densities

satisfy

n∑
t1,t2,...,tp=1
t1,t2,...,tp

∫
...

∫ ∣∣∣∣∣∣∣∣ft1,t2,...,tp(z1, z2, ..., zp)−
p∏
i=1

f (zi)

∣∣∣∣∣∣∣∣dz1...dzp =O(np−1). (2.26)

In addition, we introduce the following technical assumptions that are useful for the

proofs.

1. max
t1,...,tp

∫ ft1,...,tp (z,...,z)

f (z)2 dz <∞, for p = 2,3.

2. max
t1,...,tp

∫ ζ(z)2ft1,...,tp (z,...,z)

f (z)4 dz <∞, for p = 3,5.

3. max
t1,...,t6

∣∣∣∣∣∫ ζ(z1)ζ(z2)f (4)(3,4,5,6)(z1,z2,z1,z2,z1,z2)
f (z1)2f (z2)2 dz1dz2

∣∣∣∣∣ <∞.

4.
∑
t1,...,t6

! ζ(z1)ζ(z2)
f (z1)2f (z2)2 |ft1,...,t6(z1, z1, z1, z2, z2, z2)− f (z1)3f (z2)3|dz1dz2 =O(n5).
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5. |
∫
ζ(z)f ′(z)dz| <∞.

6. When p = 6, we have

max
t5,t6

n∑
t1,t2,...,t4=1
t1,t2,...,t4

" ∣∣∣ft1,t2,...,t6(z1, z1, z1, z2, z2, z2)− f (z1)3f (z2)3
∣∣∣dz1dz2 = o(n4).

7. The partial derivatives satisfies

max
t1,t2,...,tp

" ∣∣∣∣∣f (p)(q1,q2,...qp)
t1,t2,...,tp

(z1, ..., z1, z2, ..., z2)
∣∣∣∣∣dz1dz2 <∞,

for p ≤ 6 and 1 ≤ q1 < q2 < ... < qp ≤ p.

It is a special situation that vt is unobserved in the nonparametric component λ(vt)

and it works as the smoothing variable in the nonparametric estimation when comput-

ing the conditional expectations. Therefore, instead of assuming that vt is a stationary

α-mixing process as ut, we place restrictions on its marginal and joint probability den-

sity functions for the convenience of proving the Theorems.

The restriction in Assumption 2.3.4 is reasonable for the weakly dependent time

series vt as the joint probability density converges to the product of marginal densities

when the distances between the time indexes become sufficiently large, i.e., they are

asymptotically independent.

The estimation process has two kernel functions and bandwidths involved. When

we estimate the conditional expectations using the smoothing variable vt, for example,

Êh[xt |vt] and Êh[yt |vt], the kernel function is denoted as K1(·) with bandwidth h. When

we estimate the nonparametric time trend ĝ(τt), the kernel function is represented

by K2(·) with bandwidth b. For the kernel functions and bandwidths, we have the

following assumptions.

Assumption 2.3.5. K1(·) and K2(·) are symmetric and continuous kernel functions. We

require that
∫
Ki(u)du = 1,

∫
uKi(u)du = 0,

∫
K2
i (u)du < ∞,

∫
uu′Ki(u)du < ∞, for i =

1,2.
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Assumption 2.3.6. As n → ∞, the bandwidths h and b satisfy h → 0,b → 0,nh2k →

∞,nb2→∞,nh5k <∞,nb5 <∞, and b/hk→ 0.

The conditions in Assumption 2.3.5 can be easily satisfied. For example, the Epanech-

nikov kernel functionK(u) = 0.75(1−u2)1(|u|≤1), or the Gaussian KernelK(u) = e−
u2
2 /
√

2π.

The conditions in Assumption 2.3.6 are reasonable when the bandwidth is selected as

the usual optimal bandwidth, which has the same order as Op(n−1/5). Meanwhile,

bandwidth b should converge to 0 faster than hk to ensure the consistency of the esti-

mators.

2.3.2 Asymptotic results

A special feature in our estimation of the semi-parametric partially linear model is that

the smoothing variable vt in the nonlinear component is unobservable. It is therefore

replaced by its estimated value v̂t in the estimator. Hence, in all the analysis below,

we follow a two-step procedure by first considering the properties of the infeasible

estimator β̃ and then address that the distance between the feasible estimator β̂ and

the infeasible estimator β̃ is a small quantity that converges to zero in probability as

n→∞. Thus β̂ follows exactly the same asymptotic properties of β̃ when the distance

between them converges to 0 sufficiently fast. Recall that the infeasible estimator is

defined as

β̃ =

1
n

n∑
t=1

x̃tx̃
′
t


−1 1

n

n∑
t=1

x̃tỹt

 ,
where x̃t = xt − Êh[xt |vt] and ỹt = yt − Êh[yt |vt] are the modified versions of xt and yt.

The first Theorem ensures that the estimator is well defined.

Theorem 2.3.1. Under Assumptions 2.3.1 to 2.3.6, as n→∞, we have

Σ̃n =
1
n

n∑
t=1

x̃tx̃
′
t −→P Q, (2.27)

where Σ̃n is defined as (2.20) and Q is defined in Assumption 2.3.1.
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Remark 2.3.1. In fact, Σ̂n can be regarded as a generalized version of the ’variance-

covariance matrix’ that measures the variation in the time trends. Particularly, in the

univariate case, a relatively flat time trend leads to a small value of Q, which indicates

relatively insufficient information in the trending component. Thus it causes relatively

large standard errors in the estimator.

Replacing ỹt in β̃ using (2.16), we have

β̃ − β = Bn +

 n∑
t=1

x̃tx̃
′
t


−1  n∑

t=1

x̃tũt

 , (2.28)

where Bn =
(∑n

t=1 x̃tx̃
′
t

)−1 (∑n
t=1 x̃tλ̃(vt)

)
, λ̃(vt) = λ(vt)−Êh[λ(vt)|vt] and ũt = ut−Êh[ut |vt].

Rearranging the equation and multiply both sides by
√
n, we obtain

√
n
(
β̃ − β −Bn

)
=

1
n

n∑
t=1

x̃tx̃
′
t


−1  1
√
n

n∑
t=1

x̃tũt

 . (2.29)

Lemma 2.3.1. Let Assumptions 2.3.3 to 2.3.6 hold. As n→∞, we have∣∣∣∣∣∣∣∣√nBn∣∣∣∣∣∣∣∣ = op(1). (2.30)

This Lemma indicates that the potential bias term is negligible in the asymptotic

results. It then leads to the following Theorem.

Theorem 2.3.2. Under Assumptions 2.3.1 to 2.3.6, as n→∞, we have

√
n
(
β̃ − β

)
−→D N (0,Ω), (2.31)

where Ω =Q−1Λu , and Λu is the long-run variance of ut.

According to Theorem 2.3.1 and in conjunction with Lemma 2.3.1, it is straightfor-

ward to show Theorem 2.3.2. In the next step, we pass the asymptotic properties of

the infeasible estimator to the feasible estimator by evaluating the distance between

the two versions of estimators. We first address in the following Lemma that the dis-

tance between the information matrices is negligible.
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Lemma 2.3.2. Let Σ̂n = n−1∑n
t=1 x̂tx̂

′
t, where x̂t = xt − Êh[xt |v̂t]. Under Assumptions

2.3.1 to 2.3.6, as n→∞, we have ∣∣∣∣∣∣∣∣Σ̂n − Σ̃n∣∣∣∣∣∣∣∣ = op(1). (2.32)

Equation (2.32) is the key intermediate result we need to prove. As the distance

between Σ̂n and Σ̃n is converging to zero in probability, we have

||Σ̂n −Q|| = ||Σ̂n − Σ̃n + Σ̃n −Q|| ≤ ||Σ̂n − Σ̃n||+ ||Σ̃n −Q|| −→P 0, (2.33)

which leads to the following Theorem.

Theorem 2.3.3. Under Assumptions 2.3.1 to 2.3.6, as n→∞, we have

Σ̂n =
1
n

n∑
t=1

x̂tx̂
′
t −→P Q. (2.34)

This Theorem shows that the feasible information matrix also converges to Q. We

then move on to the asymptotic property of the feasible estimator. As in Theorem 2.3.2,

we have shown that the infeasible estimator is asymptotically normal with convergence

rate
√
n. The following lemma bounds the distance between the feasible and infeasible

estimators.

Lemma 2.3.3. Under Assumptions 2.3.1 to 2.3.6, as n→∞, we have∣∣∣∣∣∣∣∣√n(β̂ − β̃)
∣∣∣∣∣∣∣∣ = op(1). (2.35)

Based on this Lemma, the asymptotic normality is easily obtainable as follows.

Theorem 2.3.4. Under Assumptions 2.3.1 to 2.3.6, as n→∞, we have

√
n
(
β̂ − β

)
−→D N (0,Ω), (2.36)

where Ω =Q−1Λu and Λu is the long-run variance of ut.

Corollary 2.3.1. Under Assumptions 2.3.1 to 2.3.6, as n→∞, we have

√
nΩ̂−1/2

(
β̂ − β

)
−→D N (0, Ik), (2.37)
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where Ik is the k ×K identity matrix, Ω̂ = Σ̂−1
n Λ̂u , in which Σ̂n = n−1∑n

t=1 x̂tx̂
′
t and

Λ̂u =
p∑

l=−p
ωl Γ̂L(l), (2.38)

where Γ̂L(l) is the lth sample autocovariance of ût and ût = yt − α̂ − x′tβ̂ − λ̂(v̂t). For

l = 1,2, ...,p, ωl is a weight function that guarantees Γ̂L(l) nonnegative, p is a truncation

parameter. For example, in Phillips and Perron (1988), they used wl = 1 − l/(p + 1),

which was first proposed in Newey and West (1987). Since both Σ̂−1
n and Λ̂u are con-

sistent estimators for Q and Λu , Ω̂ is a consistent estimator for Ω.

Remark 2.3.2. Theorem 3.4.1 shows that the estimator β̂ is
√
n-consistent. The conver-

gence rate is slower than the rate in the co-integration regression with I(1) process due

to the weak trend assumption. Since the weak trend g(τt) does not dominate the time

series, the simple OLS estimator is therefore inconsistent due to endogeneity. This phe-

nomenon is examined in the subsequent chapter of Monte Carlo simulations. Unlike

the limit distribution of the coefficients in the co-integration regressions, the limit dis-

tribution of
√
n(β̂ − β) is Gaussian with zero mean. Therefore, it is more convenient to

conduct hypothesis tests for the parameters in (1.2) than for those in the co-integration

models.

2.4 Implementation steps and computational issues

Suppose that we are given the data set {yt,x1t,x2t, ...,xkt} for t = 1,2, ...,n and the as-

sumptions in the previous sections are satisfied. To obtain consistent estimates of the

coefficients in (2.9), we follow the estimation steps below.

Step 1: Use nonparametric kernel methods2 to estimate the weak trends in xit =

gi(τt) + vit for τt = t/n and i = 1,2, ..., k, t = 1,2, ...,n.

ĝi(τt) = Êb[xit |τt]. (2.39)

2In R, we apply nonparametric regression using the ‘np’ package developed by Jeffery Racine and

Tristen Hayfield. https://cran.r-project.org/web/packages/np/np.pdf
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Then, compute k sequences of residuals v̂it = xit − ĝi(τt) for i = 1,2, ..., k respectively.

Step 2: Conditional on v̂1t, ..., v̂kt, obtain the expectations of yt,x1t, ...,xkt respectively.

ŷvt =Êh[yt |v̂1t, ..., v̂kt], (2.40)

x̂vit =Êh[xit |v̂1t, ..., v̂kt]. (2.41)

Note that for multivariate nonparametric regression, the kernel function is defined as

the product of the kernel functions for each element, i.e.,

K(v1s, ...,vks) =Πk
i=1K

(vis − vit
h

)
. (2.42)

Once we have the smoothed versions ŷvt and x̂vit, compute the modified versions of

the time series by

ŷt =yt − ŷvt, (2.43)

x̂it =xit − x̂vit, (2.44)

for i = 1,2, ..., k and t = 1,2, ...,n.

Step 3: Apply the simple OLS method to estimate the coefficients of β1, ...,βk in the

linear regression model

ŷt = x̂1tβ1 + x̂2tβ2 + ...+ x̂ktβk +ut. (2.45)

Therefore,

β̂ = (β̂1, ..., β̂k)
′ =

 n∑
t=1

x̂tx̂
′
t


−1  n∑

t=1

x̂tŷt

 . (2.46)

Note that the intercept term is removed in the above regression. Once the estimated

values of β1, ...,βk have been obtained, the intercept term can be estimated by

α̂ =
1
n

n∑
t=1

(yt − x1tβ̂1 − ...− xktβ̂k). (2.47)

Step 4: Compute the residual sequence êt = yt − α̂−x1tβ̂1− ...−xktβ̂k. Since the endoge-

nous correlation is defined as et = λ(v1t, ...,vkt) + ut, we can then uncover the control

function using nonparametric kernel methods.

λ̂(vt) = Êh[̂et |v̂1t, ..., v̂kt]. (2.48)
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Remark 2.4.1. The estimation process involves nonparametric kernel estimation that

we need to carefully select bandwidths of h and b. The selection of the bandwidths

is the trade-off between the bias and the variance of the nonparametric estimates. In

the literature, various bandwidth selection methods have been developed, such as the

rule-of-thumb and plug-in method, the cross-validation (CV) method, and the AIC type

methods, see Härdle and Vieu (1992), Fan and Gijbels (1996), Fan and Yao (2003), Li

and Racine (2007), Cai (2007). In this thesis, we apply the cross-validation method

based on a grid search procedure. The optimal bandwidth of h for Êh[xt |vt] is the one

that minimizes the objective function

hopt = arg min
h

n∑
t=1

(
xt − x̂−1(vt,h)

)2
, (2.49)

where x̂−1(vt,h) is the leave-one-out kernel estimator of Êh[xt |vt]. While for the optimal

bandwidth b for the time trend estimation in Êb[xt |τt], as the error terms in (1.3) are

allowed to be weakly dependent, we should apply a modified version of the cross-

validation method by removing 2r + 1 data points around xt, i.e., we remove the data

points from xt−r to xt+r to ensure that the autocorrelation in vt does not affect the

selection of b. Therefore, the optimal bandwidth bopt is selected by

bopt = arg min
b

n∑
t=1

(
xt − ĝ−r(τt,b)

)2
, (2.50)

and ĝ−r(τt,b) is the leave-(2r+1)-out estimator of Êb[xt |τt]. Note that when the error

terms are i.i.d., r = 0 is sufficient to eliminate the information at time t for cross-

validation, i.e., the usual leave-one-out cross-validation method.



Chapter 3

Endogeneity in the strong trending

regression

3.1 Strong trends and the OLS estimation

We noticed that all the trends have their orders of magnitudes. Recall the data gener-

ating process of xt,

xt = g(t) + vt,

where g(t) is the time trend and vt is the stationary error term. We use d to denote the

order of magnitude of the sum of squared trend. Specifically,

1
nd

n∑
t=1

g(t)2 −→P C, (3.1)

for some 0 < C <∞ and d ≥ 1.

In Chapter 2, we have already discussed the linear regression model where all the

trends are weak (d = 1). The weak trend does not dominate the time series. Therefore,

the endogenous correlation induces bias and inconsistency in the simple OLS estima-

tor.

In this Chapter, we consider the linear regression model where all the nonstation-

ary time series contain strong trends, i.e., d > 1 for all the trending time series. Thus
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the trend dominates the time series, and we show later that the simple OLS estimator

is consistent. However, the limit distribution may not be centered around zero. There-

fore, the OLS method provides consistent estimates, but the inference conclusions are

not reliable due to the endogeneity problem.

3.2 Identification and assumptions

As we only consider strong trending time series, the time trends play dominating roles

over the stationary disturbances. Formally, we regulate the nonlinear and nonpara-

metric time trends by the assumption as follows.

Assumption 3.2.1. Let G = (g1, g2, ..., gk) and gi = (gi(1), gi(2), ..., gi(n))′ for i = 1,2, .., k.

Assume that there exists a diagonal matrixD = diag(nd1/2, ...,ndk/2), such that as n→∞,

D−1G′GD−1 −→Q, (3.2)

where di > 1 for i = 1,2, ..., k and Q is a positive definite matrix.

This assumption rules out weak trends since the parameter di is assumed to be

greater than 1 for i = 1,2, ..., k. Matrix Q is a k × k positive definite matrix with full

rank, therefore, collinearity has been ruled out that none of the time trends can be

represented by the rest of the time trends. It is shown later that this condition is

necessary for identifying the coefficients.

Remark 3.2.1. Equation (3.2) simply implies that

1

ndij

n∑
t=1

gi(t)gj(t) −→Qij , (3.3)

where dij = (di + dj)/2, for i, j = 1,2, ..., k.

For the purpose of nonparametric estimation, given the sample size n, it is equiva-

lent to define a rescaled time trend g̃i(τt) that

1

ndij

n∑
t=1

gi(t)gj(t) =
1
n

n∑
t=1

 gi(t)
n
di−1

2


 gj(t)
n
dj−1

2

 =
1
n

n∑
t=1

g̃i(τt)g̃j(τt) −→Qij , (3.4)
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where g̃i(τt) = n−
di−1

2 gi(t) for i, j = 1,2, ..., k.

Assumption 3.2.2. Let (εt,η′t)
′ = (εt,η1t, ...,ηkt)′ be a k + 1 vector of i.i.d. innovations

with mean 0 and σ2
1 = E[ε2

1], Θ = (θ1, ...,θk)′, θi = Cov(εt,ηit) and Σ22 is the k × k

variance-covariance matrix of ηt = (η1t, ...,ηkt)′ with σij being the element at the ith row

and jth column, i.e., σij = E[ηitηjt]. Meanwhile, E[ε4
t ] <∞, E[η4

it] <∞ and E[ε4
t η

4
it] <∞,

for i, j = 1,2, ..., k.

Assumption 3.2.3. The error terms are defined as linear processes with respect to the

sequences of innovations defined above. Specifically,

et =
∞∑
s=0

φsεt−s , Φ(L)εt, (3.5)

vt =
∞∑
s=0

ψsηt−s ,Ψ (L)ηt, (3.6)

whereψs = diag(ψs,1, ...,ψs,k) is a k×k diagonal matrix. The coefficients satisfy
∑∞
s=0φ

2
s <

∞ and
∑∞
s=0ψ

2
s,i <∞, for i = 1,2, ..., k.

Since ψs is a diagonal matrix, for each element of vt, we can write

vit = Ψi(L)ηi,t =
∞∑
s=0

ψs,iηi,t−s. (3.7)

Meanwhile, we define

fi,q(L) =
∞∑
s=0

φsψs+q,iL
s, (3.8)

mi,q(L) =
∞∑
s=0

φs+qψs,iL
s, (3.9)

where L is the lag-operator, for example, Lixt = xt−i . Therefore, by the Beveridge-Nelson

Decomposition, we have

Φ(L) =Φ(1)− (1−L)Φ̃(L), (3.10)

Ψi(L) =Ψ (1)− (1−L)Ψ̃i(L), (3.11)

fi,q(L) =fi,q(1)− (1−L)f̃i,q(L), (3.12)
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mi,q(L) =mi,q(1)− (1−L)m̃i,q(L), (3.13)

where Φ̃(L) =
∑∞
s=0 φ̃sL

s, Ψ̃i(L) =
∑∞
s=0 ψ̃s,iL

s, f̃i,q(L) =
∑∞
s=0 f̃i,qsL

s, m̃i,q(L) =
∑∞
s=0 m̃i,qsL

s,

in which φ̃s =
∑∞
p=s+1φp, ψ̃s,i =

∑∞
p=s+1ψp,i , f̃i,qs =

∑∞
p=s+1φpψp+q,i , m̃i,qs =

∑∞
p=s+1φp+qψp,i .

Remark 3.2.2. In fact, Assumption 3.2.3 is a special case of the following linear pro-

cess. Assume that ut = (et,v′t) and

ut =
∞∑
s=0

γsµt−s , Γ (L)µt, (3.14)

where µt is an i.i.d. process with mean 0 and variance-covariance matrix Σµ.

Assumption 3.2.4. In addition, we propose the following conditions that are necessary

for establishing the asymptotic results. Let H represent f or m in the BN decomposi-

tion and we assume

1.
∑∞
s=0 f̃

2
i,0s <∞.

2.
∑∞
q=1

∑∞
s=0 H̃

2
i,qs <∞.

3. |
∑∞
q1=1Hi,q1

(1)Hj,q1
(1)| <∞.

4. |
∑n−1
p=1

∑∞
q1=1Hi,q1

(1)Hj,q1
(1)Hi,p+q1

(1)Hj,p+q1
(1)| <∞.

5.
∑∞
q1=1Hi,q1

(1)2Hj,q1
(1)2 <∞.

6. |
∑n−1
p=1

∑∞
q1=1

∑∞
q2=1
q2,q1

Hi,q1
(1)Hj,q2

(1)Hi,p+q1
(1)Hj,p+q2

(1)| <∞.

7.
∑∞
q=1Hi,q(1)2 <∞.

8. limn→∞n
1−dj

∫ 1
0

∫ 1
τ1
g̃i(τ1)g̃i(τ2)γ(n(τ2 − τ1), j)dτ1dτ2 = 0,

where γ(d, j) =
∑∞
q1=1Hj,q1

(1)Hj,d+q1
(1).

9. |
∑n−1
p=1

∑∞
q1=1Hj,q1

(1)Hj,p+q1
(1)| <∞.

10.
∑∞
q=1Hi,q(1)4 <∞.
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11.
∑∞
q1=1

∑∞
q2=q1+1Hi,q1

(1)2Hi,q2
(1)2 <∞.

These assumptions can be easily satisfied, particularly when the error term follow a

stationary AR(p) or MA(q) process. For example, in condition 8, γ(d, j) is a finite value

when the time series follows an AR(1) process, hence the limit converges to 0 for dj > 1.

When Θ , 0, the innovations εt and ηt are correlated and therefore, the error terms vt

and et are correlated. Then it causes the problem of endogeneity in the regression.

We define the sample information matrix as Q̂ = D−1X ′XD−1. The strong trend

condition indicates that the stationary disturbances in the regressors are dominated.

Therefore, they can be ignored in the information matrix.

Theorem 3.2.1. Under Assumptions 3.2.1 to 3.2.4, as n→∞, we have

Q̂ =D−1X ′XD−1 −→P Q, (3.15)

where Q is a positive definite matrix defined in Assumption 3.2.1.

This Theorem shows that the variation in the time trends plays a central role in the

identification and estimation of β. In the next section, we discuss the performance of

the simple OLS estimator given that all the trends are strong, i.e., di > 1 for all i.

3.3 The simple OLS estimator

In this section, we investigate the asymptotic properties of the simple OLS estimator,

which is defined as

β̂ols =

 n∑
t=1

xtx
′
t


−1  n∑

t=1

xtyt

 . (3.16)

In matrix form, it can be written as

β̂ols = (X ′X)−1(X ′y). (3.17)

In Theorem 3.2.1, we have shown that D−1X ′XD−1 −→P Q as n→∞, in which Q is a

positive definite matrix. Therefore, D−1X ′XD−1 is invertible and

D
(
β̂ols − β

)
=

(
D−1X ′XD−1

)−1 (
D−1X ′e

)
. (3.18)
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Obviously, the convergence rates of the coefficients depend on the strength of the

trends respectively. We show that

Theorem 3.3.1. Under Assumptions 3.2.1 to 3.2.4, as n→∞,

D
(
β̂ols − β −D−1Q̂−1D−1nb

)
−→D N (0,Q−1ΩQ−1), (3.19)

where b = E[etvt] =
(∑∞

j=0φjΨ j

)
Θ, Ω is the asymptotic variance-covariance matrix of

D−1X ′e. Specifically, if di = dj = 1, and let δ2j = E[ε2
t ηjt] and δ2ij = E[ε2

t ηitηjt]. We have

Ωij =σ2
1Φ(1)2Qij + fi,0(1)fj,0(1)(δ2ij −θiθj) +Φ(1)fj,0(1)δ2jg i +Φ(1)fi,0(1)δ2ig j

+ σ2
1σij

∞∑
q1=1

fi,q1
(1)fj,q1

(1) + σ2
1σij

∞∑
q1=1

mi,q1
(1)mj,q1

(1)

+θjθi
∞∑
q=1

fi,q(1)mj,q(1) +θiθj
∞∑
q=1

fj,q(1)mi,q(1), (3.20)

where g i =
∫ 1

0
gi(τ)dτ . For di > 1 but dj = 1,

Ωij =σ2
1Φ(1)2Qij +Φ(1)fj,0(1)δ2jg i . (3.21)

Finally, when di > 1 and dj > 1,

Ωij =σ2
1Φ(1)2Qij . (3.22)

Note that the endogenous correlation between the error terms induces bias in the

simple OLS estimator. As the strong trends dominate the time series, the endogene-

ity bias diminishes to zero when n → ∞. To investigate the bias and the asymptotic

distribution under different orders of trends, we study the univariate regression and

introduce the following Corollary.

Corollary 3.3.1. Under Assumptions 3.2.1 to 3.2.4, let k = 1. As n→∞, we have√
nd

(
β̂ols − β −Bn

)
→D N (0,Q−1ΩQ−1), (3.23)

where Bn = n1−dQ̂b.
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Also note that when d = 1, Bn = Q̂b, and it does not vanish when the sample size

tends to infinity. Therefore, the simple OLS estimator is biased and inconsistent. While

in the case of d > 1, the bias term is negligible that Bn = op(1) and the simple OLS es-

timator is super-consistent when n→∞. The speed of convergence is faster than the

usual
√
n rate because the trend goes to infinity when the sample size tends to infin-

ity. Hence, in terms of estimation, the endogeneity does not affect the consistency of

the estimators, though in finite sample, the bias can hardly be neglected. However,

inference is substantially affected by endogeneity since
√
ndBn = n1− d2 Q̂b is not decay-

ing with sample size n when 1 < d ≤ 2. Even when d > 2, the limit distribution can

also be distorted significantly in finite sample. We formally address these properties

as follows.

Corollary 3.3.2. As n→∞, when d = 1, the OLS estimator is inconsistent. However,

when d > 1, the OLS estimator is consistent. Specifically

• For d = 1, the estimator is inconsistent with bias Qb. Hence, we can not apply

the bias-correction method. 1

• For 1 < d < 2, the estimator is biased but consistent, and the bias diminishes to

zero at the rate of n1−d .

• For d = 2, the estimator is super-consistent. However, n(β̂ols − β) converges to a

distribution that is not centered around zero. Specifically, the limit distribution

becomes

n(β̂ols − β) −→D N (B,Q−1ΩQ−1), (3.24)

where B =Q−1b is a non-zero constant when there exists endogeneity.

• For d > 2, the potential bias term satisfies
√
ndBn = oP (1), which is negligible to

the limit distribution that is always regarded asOP (1). Therefore, the simple OLS

1This is the weak trend condition, and we should use the control function approach introduced in

Chapter 2.



46 CHAPTER 3. ENDOGENEITY IN THE STRONG TRENDING REGRESSION

estimator is unbiased and consistent.√
nd(β̂ols − β) −→D N (0,Q−1ΩQ−1), (3.25)

In the next section, we propose a bias-corrected estimator to adjust for the bias in

the simple OLS estimator when di > 1 for i = 1,2, ..., k, without the need to know the

exact order of the trending components.

3.4 The bias-corrected estimator

Since the simple OLS estimator is always consistent when d > 1, the bias in the OLS es-

timator can therefore be estimated consistently. We propose a bias-corrected estimator

as follows.

β̂bc = β̂ols − B̂ias = β̂ols −

 n∑
t=1

xtx
′
t


−1 n∑

t=1

v̂t êt, (3.26)

where v̂t = xt − ĝ(τt), êt = yt − x′tβ̂ols, and ĝ(τt) = (ĝ1(τt), ..., ĝk(τt))′ that ĝi(τt) is the non-

parametric estimates2 of the time trend g̃i(τt).

Remark 3.4.1. Fortunately, we do not need to know the value of di when we do the

bias-correction for β̂ols as di is not involved in the estimator of the bias term.

Theorem 3.4.1. Under Assumptions 3.2.1 to 3.2.4, the bias-corrected estimator is un-

biased and consistent.

D
(
β̂bc − β

)
−→D N (0,Q−1ΩQ−1). (3.27)

The availability of the bias-correction method depends on the consistency of the

first-stage OLS estimator and this condition is similar to that in Phillips and Hansen

(1990). In fact, we show that

β̂bc − β =β̂ols −

 n∑
t=1

xtx
′
t


−1

n̂b − β

2It is not a problem to write ĝ(τt) instead of ĝ(t) because for estimation purposes, they are equivalent.
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= β̂ols −

 n∑
t=1

xtx
′
t


−1

nb − β

︸                         ︷︷                         ︸+

 n∑
t=1

xtx
′
t


−1

n(b − b̂)

︸                   ︷︷                   ︸
=S1(n) +B2(n), (3.28)

where S1(n) converges to the limit distribution in (3.27) according to (3.19), while

B2(n) is the potential bias term that B2(n) = Op(n
1
2−d) and

√
ndB2(n) = Op(n

1−d
2 ), which

is always op(1) when d > 1. Hence regardless of the value of d, the endogeneity bias can

always be ignored in the bias-corrected estimator β̂bc and the asymptotic distribution

is always centered around zero when n→∞.

3.5 Estimation of the trending parameter

Although we do not need to know di in the bias-correction procedure, we do need to

approximate its value when we estimate the variance-covariance matrix. An imperfect

way of estimating di is introduced as follows.

Note that as Q̂i converges in probability to a constant value Qi , and

n∑
t=1

x2
it =Qin

di . (3.29)

We take the logarithms of both sides, and yield

log
n∑
t=1

x2
it = logQi + di logn. (3.30)

Therefore,

di =
log

∑n
t=1x

2
it

logn
+

logQi
logn︸ ︷︷ ︸
op(1)

. (3.31)

Since 1/ logn→ 0 as n→∞, we define a consistent estimator for di as

d̂i =
log

∑n
t=1x

2
it

logn
, (3.32)

for i = 1,2, ..., k.



48 CHAPTER 3. ENDOGENEITY IN THE STRONG TRENDING REGRESSION

Remark 3.5.1. The problem in the estimator of di is that logn goes to infinity very

slowly with n, so that the second term in (3.31) can be quite large in finite sample,

resulting a relatively quite large bias in d̂i .



Chapter 4

Numerical evidence

4.1 Overview

In this chapter, we first present some simulated examples to compare the OLS estima-

tor and the proposed estimator in this thesis. In the weak trending regression case, we

find the presence of persistent biases in the simple OLS estimator due to the problem

of endogeneity. By using the control function approach, the estimators for the coeffi-

cients in the augmented semiparametric partially linear model become unbiased and

consistent. While in the strong trending regression case, the simple OLS estimator

itself is consistent when the sample size tends to infinity. In the finite sample case,

however, the bias can be substantially large for the OLS estimator. On the other hand,

the bias-corrected estimators are unbiased and consistent as they significantly reduce

the bias.

We then show an empirical example to demonstrate the applicability of the models

as well as the estimation procedures. We consider the linear regression of the loga-

rithm of aggregate personal consumption on the logarithm of the aggregate personal

disposable income and the real interest rate. The result reveals how personal con-

sumption reacts to the changes in personal disposable income and real interest rate.

We also find a nonlinear relationship between the error terms that induces the problem

49
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of endogeneity.

4.2 Simulated examples

4.2.1 The weak trending regression model

In this subsection, consider the time series data generated from the trending regression

equations as

yt =β1x1t + β2x2t + et, (4.1)

x1t =g1(τt) + v1t, (4.2)

x2t =g2(τt) + v2t, (4.3)

for t = 1,2, ...,n, and τt = t/n. In the process, we let β1 = 0.7,β2 = 0.5. The time trends

are bounded weak trends g1(τt) = 3 − 4(τt − 0.5)2 and g2(τt) = 2 + 0.7sin(2πτt). The

error term et is correlated with v1t and v2t that et = 1.5v1t +v2t +ut. Meanwhile, v1t, v2t

and ut follow stationary AR(1) processes vit = 0.2vi,t−1 +ηit and ut = 0.2ut−1 + εt where

εt,ηit
i.i.d.∼ N (0,0.22) for i = 1,2.

We examine the performances of the simple OLS estimator for β1 and β2 in (4.1)

and the proposed estimator (2.23) for the semiparametric partially linear model

yt = x1tβ1 + x2tβ2 +λ(v1t,v2t) +ut, (4.4)

where λ(·) is an unknown nonparametric control function, ut is the error term inde-

pendent with x1t,x2t,v1t,v2t.

The time series are simulated independently for NB = 5,000 times, and the estima-

tion procedures are conducted each time. We denote the OLS estimator and the esti-

mator in equation (2.23) as β̂olsi,p and β̂controli,p respectively for i = 1,2 and p = 1,2, ...,NB.

The sample sizes are chosen as 250, 600 and 1000 respectively.

To show the properties of the two estimators, we calculate the averages of the biases,

the standard deviations as well as the root mean squared errors for the two estimators
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in Table 4.1. Specifically, they are computed by the formulas below.

Biasi =
1
NB

NB∑
p=1

β̂i,p − β, (4.5)

Stdi =

√√√√√
1

NB − 1

NB∑
p=1

β̂i,p − 1
NB

NB∑
p=1

β̂i,p


2

, (4.6)

RMSEi =
√
Bias2i + Std2

i , (4.7)

for i = 1,2, and β̂i,p is replaced by β̂olsi,p and β̂controli,p respectively for the two estimators.

Table 4.1: Simulation results for the weak trending regression with endogeneity.

OLS Control function

n 250 600 1000 250 600 1000

β̂1

Bias 0.4776 0.4755 0.4787 0.0105 0.0088 0.0028

Std 0.0663 0.0430 0.0340 0.1132 0.0764 0.0577

RMSE 0.4822 0.4775 0.4799 0.1137 0.0769 0.0578

β̂2

Bias 0.1420 0.1446 0.1462 -0.0324 -0.0307 -0.0298

Std 0.0506 0.0307 0.0242 0.0719 0.0428 0.0343

RMSE 0.1507 0.1479 0.1482 0.0789 0.0527 0.0454

According to the discussion in Chapter 2, since the weak trends do not dominate

the stationary error terms, endogeneity causes persistent biases in the simple OLS es-

timators for the coefficients. Therefore, as expected, a non-diminishing positive bias is

seen in the simple OLS estimates of β1 (≈ 0.47) and β2(≈ 0.14). This result reconciles

with the theoretical conclusion that the OLS estimators are inconsistent in the weak

trending regression with endogeneity.

On the other hand, by applying the control function approach, we fix the prob-

lem of endogeneity, and the control function extends the linear regression model to a

semiparametric partially linear model as (4.4). In Chapter 2, we have shown that the
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proposed estimators for β1 and β2 converge to their true values consistently. The bi-

ases are negligible, and the standard deviations decrease at the rate of 1/
√
n as n→∞.

Therefore, the control function approach successfully adjusts for the endogeneity bias

and yields unbiased and consistent estimates of the coefficients.

4.2.2 The strong trending regression model

In this subsection, we investigate the behaviors of the simple OLS estimator and the

bias-corrected estimator in the strong trending regression models with endogeneity.

We also show the improvement in terms of statistical inference when the endogeneity

bias has been adjusted. We consider a univariate regression

yt =xtβ + et, (4.8)

xt =g(t) + vt, (4.9)

where we let β = 0.5 and consider two kinds of trends in the regressors

• Example 1: g(t) = 0.1
√
t;

• Example 2: g(t) = 0.01t.

In the first example, as t→∞, the trend term goes to infinity with diminishing speed.

The magnitude parameter d = 2 and according to our previous discussion in Chapter

3, the OLS estimator is consistent, but the limit distribution of n(β̂ols−β) is not centered

around zero. While in the second example, there is a linear time trend in the regressor,

hence the trending parameter d = 3. The OLS estimator is unbiased and consistent

theoretically.

The error terms et and vt follow AR(1) processes as et = 0.2et−1+εt and vt = 0.2vt−1+

ηt, where (εt,ηt)′
i.i.d.∼ N (0,Σ) and

Σ =

 1 0.5

0.5 0.3

 , (4.10)
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where the off-diagonal element is nonzero. Hence, et and vt are correlated, causing

endogeneity in the regression model.

We generate the data and obtain the simulation results independently for NB =

5,000 times with sample size n = 300,600 and 900 respectively. In each replication,

we compute the estimates by using the simple OLS and the bias-correction methods.

Table 4.2 shows the biases, standard deviations and the root mean squared errors for

both estimators β̂olsp and β̂bcp under different cases of trends and sample sizes.

Table 4.2: Simulation results for the strong trending regression with endogeneity.

OLS Bias-correction

n Bias Std RMSE Bias Std RMSE

Example 1

300 0.2851 0.0412 0.2880 0.0581 0.0522 0.0781

600 0.1563 0.0245 0.1582 0.0174 0.0285 0.0334

900 0.1076 0.0171 0.1090 0.0082 0.0191 0.0208

Example 2

300 0.1541 0.0344 0.1579 0.0179 0.0403 0.0441

600 0.0418 0.0141 0.0442 0.0017 0.0148 0.0149

900 0.0189 0.0078 0.0204 0.0004 0.0081 0.0080

According to the main results in Chapter 3, the strong trend in xt dominates the

stationary error term vt, and therefore the OLS estimation of the coefficient β is con-

sistent for both examples regardless of the existence of endogeneity. As the sample

size increases, a sequence of decreasing biases is seen in Table 4.2 for the OLS esti-

mator in both examples. However, when the sample size is relatively small, the bias

can still be substantially large. It is obvious in Table 4.2 that as an improvement, the

bias-correction method significantly reduces the biases, and the RMSEs for the bias-

corrected estimator are only a quarter of those for the simple OLS estimators.

The endogeneity issue not only affects the estimation accuracy, but also severely

distorts the statistical inferences of the coefficients even for the very strong trend con-
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ditions. Suppose that we are interested in testing the hypothesis

H0 : β = 0.5 v.s. H1 : β , 0.5. (4.11)

In the following context, we show the nonparametrically estimated distributions of the

t-statistics for the two estimators. The t statistics are computed as follows.

ti,p =
β̂p − 0.5

Stdi
, (4.12)

for the two estimators β̂olsp and β̂bcp and p = 1,2, ...,NB. Figure 4.1 and 4.2 are presented

Figure 4.1: The distributions of the t-statistics for the OLS and the bias-corrected esti-

mators when d = 2.
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respectively for the two examples of trends. In each graph, black lines represent the es-

timated distributions for the t-statistics based on the OLS estimator, while the red lines

shows the estimated distributions for t-distributions of the bias-corrected estimator

with sample size 300 (solid line), 600 (dash line) and 900 (dot-dash line) respectively.
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Figure 4.1 shows that when the order of the trending magnitude is 2, the distri-

butions of the t-statistics for the OLS estimators are not centered around 0. In other

words, the distributions are persistently biased (the black lines) regardless of the sam-

ple size. When it comes to the bias-corrected estimators, however, the means of the

distributions of the t-statistics are moving towards 0 as the sample size tends to infin-

ity. Hence, bias-correction is of critical importance for hypothesis testing as it signif-

icantly reduces the probability of making the type-one error, which is very high (close

to 100%) for the OLS estimators.

Figure 4.2: The distributions of the t-statistics for the OLS and the bias-corrected esti-

mators when d = 3.
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In the second example, the order of the trending magnitude is 3 for the linear time

trend. Therefore, the OLS estimator is consistent when n→∞ and the potential bias

caused by endogeneity is proportional to oP (1), which is negligible to the limit distri-
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bution. Consequently, in Figure 4.2, all the centers of the t statistics distributions are

moving towards 0 for both OLS and bias-corrected estimators. When the sample size is

small, the mean of the t-statistics for the OLS estimator starts from the location which

is quite far away from 0. Thus, the bias in the distribution of the t-statistic may not

be negligible. On the other hand, in terms of unbiasedness and consistency, the bias-

correction method gives a much better estimator whose distribution of the t-statistics

is centered close to 0 even when the sample size is small.

Table 4.3: The probability of making the Type I error.

Example 1(d = 1) Example 2(d = 2)

n OLS Bias-correction OLS Bias-correction

300 0.998 0.184 0.991 0.071

600 1.000 0.089 0.836 0.048

900 1.000 0.074 0.663 0.051

The adjustments for the endogenous bias is critical to statistical inferences of the

coefficients. In the simulation, the real value of β is 0.5. Therefore, we should not

reject H0. Table 4.3 shows the proportion of the t-statistic that is greater than the

critical value1 under 5% significance level. Due to the endogenous correlation, the

sizes of the t-test based on the simple OLS estimator exhibit severe distortions in both

examples. While with relatively larger sample size, the probability of making the Type

I error converges to the normal 0.05 for the bias-corrected estimators. To summarize,

even though the OLS estimator is consistent when the trending parameter d > 3, the

inferences are not reliable when endogeneity is present in the regression model. The

bias-corrected estimator performs much better in terms of estimations and inferences

of the coefficients.

1Here we choose the 97.5% quantile of the t-distribution with degree of freedom n− 1.



4.3. EMPIRICAL EXAMPLE 57

4.3 Empirical example

In this section, we explore the relationship between the quarterly data2 of the U.S. ag-

gregate personal disposable income, the aggregate personal consumption expenditure

on non-durable goods and services and the real interest rate from 1960Q1 to 2009Q3.

Figure 4.3: The data and the removal of linear trends
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(a) Log of income and consumption.
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(b) Data used in the regression model.

The logarithms of aggregate personal disposable income and aggregate personal

consumption expenditure are plotted in Figure 4.3a. We estimate and remove the

linear time trends3 in both time series and denote the residuals as it and ct for income

and consumption respectively. Figure 4.3b shows the graphs of ct and it as well as the

real interest rate rt. These three time series are usually believed to be pure random

walk processes as the null hypothesis of unit root cannot be rejected in the ADF unit

2The data can be downloaded from http://www.bea.gov.
3We should remove the linear trends as they are caused by the average growth rates of income and

consumption. However, we are interested in the deviations to such average level, which would cause

nonlinear trends in the long-run.
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root test. Based on the arguments in this thesis, it is also reasonable to assume that

these three sequences ct, it and rt are nonlinear trend-stationary time series that

it =g1(t) + v1t, (4.13)

rt =g2(t) + v2t, (4.14)

where gi(t) are nonparametric functions of time trends for i = 1,2.

For the nonparametric estimation purposes, the nonlinear trends can be standard-

ized on [0,1] with given sample size n. i.e., we write the DGP of the regressors as

it =g1(τt) + v1t, (4.15)

rt =g2(τt) + v2t, (4.16)

where τt = t/n. Since the trend functions are continuous and differentiable, one can

estimate the trends using nonparametric kernel methods. Note that ĝ(τt) is the esti-

mated value of ĝi(t). In this thesis, the two functions g1(τt) and g2(τt) are estimated

using nonparametric local linear kernel methods as in Figure 4.4.

Figure 4.4: The explanatory variables and their estimated trends.
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The real solid lines are the estimated trends, and the blue dashed lines are their 90%

confidence bands. Since the horizontal zeros-line (dot line) is not entirely contained in

the 90% confidence band, it indicates that the trends exist significantly.

We then examine the stationarity of the two residual sequences v̂1t = it − ĝ1(τt) and

v̂2t = rt − ĝ2(τt). By visual inspection, the two residual sequences have stable means as

they fluctuate steadily around zero in Figure 4.5.

Figure 4.5: The residuals of v̂1t and v̂2t.
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Meanwhile, Figure 4.6 presents the autocorrelation functions (ACF) and the partial

autocorrelation functions (PACF) of the two residual sequences. The ACF and PACF

decay to zero very quickly, suggesting very weak serial dependence in the residuals.

Further, the p-values of the Augmented Dickey-Fuller test with respect to the two resid-

ual sequences are smaller than 5%. Therefore, the residuals of v̂1t and v̂2t are station-

ary time series, and hence the data generating process (4.13) and (4.14) for it and ct are

reasonable.
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Figure 4.6: The ACF and PACF of the estimated residuals v̂1t and v̂2t.
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To reveal the relationship between the aggregate personal disposable income, the

personal consumption expenditure and the real interest rate, we consider the linear

regression4 model5

ct = itβ + rtγ + et, (4.17)

where the regressors are assumed to follow (4.13) and (4.14). Intuitively, consumers

4It is equivalent to estimate ct = α + δt + itβ + rtγ + et if we do not remove linear trends in ct and it .
5We subtract each time series with its mean and therefore the intercept term is ignored.
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spend more if there were an increase in the personal disposable income or a decline

in the real interest rate. Hence, we would expect a positive value of β̂ and a negative

value of γ̂ . The problem of endogeneity arises as the error terms v1t and v2t are possibly

correlated with et. Hence, the simple OLS estimation of the coefficients are not reliable.

In the following two subsections, the regression is conducted under the assumptions

of weak and strong trends respectively.

4.3.1 The weak trending regression model

In this subsection, we assume that the time trends in it and rt are bounded functions

of τt in (4.15) and (4.16). Therefore, it and rt contain weak trends and the simple

OLS estimator is biased and inconsistent. To deal with endogeneity, suppose that the

endogenous correlation can be expressed by the nonparametric control function

et = λ(v1t,v2t) +ut, (4.18)

where ut is uncorrelated with v1t and v2t. Hence, replacing et in the linear regression

model, we have

ct = itβ + rtγ +λ(v1t,v2t) +ut, (4.19)

in which the nonparametric control function captures the endogenous correlation with-

out the risk of misspecification. The problem of endogeneity disappears since ut is

assumed to be uncorrelated with it, rt,v1t, and v2t.

Table 4.4: Estimated coefficients in the weak trending regression model.

OLS Control function

β̂ 0.7541
(0.0232)

∗∗∗ 0.7718
(0.0266)

∗∗∗

γ̂ −0.2438
(0.0435)

∗∗∗ −0.3663
(0.0662)

∗∗∗

The estimates of the coefficients are summarized in Table 4.4. They are significant

at the 1% significance level. The estimated coefficients have the correct signs as ex-
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pected that higher income leads to higher consumption (positive β), while higher real

interest rate encourages people to save more and spend less (negative γ). Meanwhile,

due to the issue of endogeneity, the simple OLS estimates underestimate the elasticity

of income and real interest rate to consumption.

Since β̂ and γ̂ are unbiased and consistent estimators for β and γ by using the

control function approach, we can recover the control function et = λ(v1t,v2t) using

the residuals êt, v̂1t, v̂2t.

Figure 4.7: The local linear kernel estimation of the control function
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Figure 4.7 is the local linear kernel estimation of the control function, which is

nonlinear and can hardly be expressed as additive functions of v1t and v2t. There-

fore, if we specify incorrect parametric forms for the control function, for example,

λ(v1t,v2t) = ρ1v1t +ρ2v2t, such misspecification would lead to inconsistent estimates of
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β and γ .

Figure 4.8: The estimated conditional means of the control function
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(b) m2(v2) = E[λ(v1t ,v2t)|v2t = v2]

In addition, Figure 4.8 presents the nonparametric kernel estimates of the expecta-

tions of the control function conditional on v1t and v2t, respectively. The 2-dimensional

graphs provide much convenience to the determination of the significance of the con-

trol functions with respect to v1t and v2t. The 90% confidence bands (the blue dashed

lines) show that both regressors are endogenously correlated with the error term in the

regression model (1.2). Also, the form of such correlation is not linear as what we have

observed in the graph of λ̂(v̂1t, v̂2t).

4.3.2 The strong trending regression model

In practice, the logarithm of aggregate income is usually believed to be a random walk

process with drift, i.e.,

it =ω+ it−1 + ν1t, (4.20)
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for some constant ω > 0. The positive drift generates the upward trend and a pure

random walk is then left behind as zt.

it = i0 +ωt + zt, (4.21)

where zt =
∑t
s=1ν1s. The order of magnitude is 2 for the pure random walk process that∑n

t=1 z
2
t = OP (n2). As discussed in the introduction, it is difficult to distinguish it from

a nonlinear trend-stationary process. Therefore, it is also reasonable to assume that in

addition to the linear upward trend, there still exists a time trend that is weaker than

the linear time trend, but stronger than a weak trend (therefore 1 < d < 3). Specifically,

the data generating process of log income can be written as

it = i0 +w1t + g1(t) + v1t. (4.22)

where v1t is stationary and g1(t) is a deterministic nonlinear time trend with magni-

tude order 1 < d < 3. Since the strong linear trend ωt is caused by the average growth

rate, which is not our concern, we remove the linear trend and focus on

it = g1(t) + v1t, (4.23)

where g1(t) is a strong trend. Similarly, the real interest rate rt can also be written as

rt = g2(t) + v2t, (4.24)

in which g2(t) is a strong trend. Therefore, we consider the regression model6 as fol-

lows.

ct = itβ + rtγ + et, (4.25)

where it and rt contain strong trends g1(t) and g2(t).

Table 4.5: Estimated coefficients in the strong trending regression model.

OLS Bias-correction s.e.

β̂ 0.7541 0.7233 0.0231∗∗∗

γ̂ -0.2438 -0.3059 0.0434∗∗∗

6Again, the data has been demeaned and therefore the intercept term can be ignored.
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Table 4.5 shows the coefficients in (4.25) estimated by the simple OLS as well as the

bias-correction method. For the estimated values of β and γ , the difference between

the two methods are approximately 1.5 standard errors for each coefficient.

Figure 4.9: Scatter plots of residuals
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(a) v̂1t and the estimated OLS residuals.
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(b) v̂2t and the estimated OLS residuals.

Figure 4.9 shows the scatter plots of the OLS residuals versus the estimated values

of v1t and v2t respectively. It is clear that the OLS residuals are correlated with the

innovations in it and rt. Specifically, the OLS estimates are positively biased as êt is

positively correlated with v̂1t and v̂2t.
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Chapter 5

Conclusions and further discussion

5.1 Conclusions

We first discussed the differences between the nonlinear trend-stationary process and

the unit root process in term of statistical properties and empirical interpretations.

We also explained the difficulties to statistically discriminate between the two kinds

of data generating processes. The model we studied in this thesis reveals the co-

trending relationship between the nonstationary time series with nonlinear determin-

istic trends, and it is regarded as an analogy to the co-integration model with inte-

grated time series.

To deal with the problem of endogeneity, we adopted two methods to correct for

the endogeneity bias in the OLS estimator of the regression models with weak and

strong trending time series respectively. We showed that when the regressors have

weak trends, the simple OLS estimator is biased and inconsistent as the trending com-

ponent does not dominate the stationary error term. A nonparametric control function

approach is employed to fix the problem by extending the linear regression to a semi-

parametric partially linear model. Based on the generating process of our regressors,

the usual identifiability condition for the partially linear model is not satisfied. How-

ever, we showed that the conventional estimator is still unbiased and consistent in that

67
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the sample version of the identifiability condition can be satisfied. Simulation results

verified the consistency of the estimator for the partially linear model with comparison

to the simple OLS estimator for the linear regression.

While in the second case, we assumed that all the regressors have strong trends,

which dominate the stationary error terms. Therefore, the endogeneity bias dimin-

ishes, and the simple OLS estimator is consistent when the sample size goes to infinity.

However, statistical inferences are affected by the issue of endogeneity. We defined a

magnitude parameter that describes the strength of the trends in the regressors, and

developed the asymptotic results for different values of such trending parameter. We

also found that the estimation bias could be substantially large when the sample size is

small. To adjust for the endogeneity, we proposed the bias-corrected estimator based

on the fact that the initial OLS estimator is consistent. The asymptotic results as well

as the simulation results show that the bias-corrected estimator is unbiased and con-

sistent. Moreover, the size distortion in the hypothesis test is alleviated by using the

bias-correction method.

We applied our model and estimation method to study the regression between the

logarithm of aggregate personal consumption, the logarithm of the aggregate personal

disposable income and the real interest rate. The regression equation represents the

long-run behavior of consumption to income and real interest rate. However, it is

affected by the problem of endogeneity because income and consumption belong to

a system of simultaneous equations. In the two scenarios of trends, we applied the

nonparametric control function approach and the bias-correction method respectively.

Both methods showed corrections to the OLS estimator, and the nonlinear endogenous

correlation between the error terms are found according to the graph of the estimated

control function and the scatter plot of the residuals.

One major finding of this thesis is that the econometric properties of the estimators

with the trending time series involved are different from those with stationary time

series. The main reason is that for the nonstationary time series, we have additional
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information of trends contained in the data. Of course, this thesis is a very primary

study of this topic, and there is much more to be explored in the future.

5.2 Further discussion

Before we discuss the future research directions on the basis of the results in this thesis,

let us first review some of the regression models with deterministic and stochastic

trends in the next two sections.

5.2.1 Regression models with deterministic trends

We first summarise the models that mainly focus on explaining the variations in the

trending time series and panel data. The main feature is that these models have non-

linear and nonparametric deterministic time trends included. For example, Gao and

Hawthorne (2006) investigate the climate time series data using a semi-parametric

model

yt = g(t/n) +
k∑
p=1

βpxpt + et, (5.1)

where yt is a nonstationary trending time series, g(t/n) is a nonparametric function

of τt = t/n that captures the nonlinear time trend in the temperature series yt. The

regressors x1t, ...,xpt are stationary covariates that explain the variations in yt around

the time trend with constant coefficients. The nonparametric form of g(·) allows the

data to speak for themselves so that the trend term is free from misspecification. A

simple test shows that the estimated trend ĝ(·) should be nonlinear rather than linear.

Later in Cai (2007), the author proposes a varying-coefficient trending time series

model formulated as

yt = g(t/n) +
k∑
p=1

βp(t/n)xpt + et, (5.2)

where the error term is allowed to be serially correlated. Compared with (5.1), the

time-varying coefficient model is more adaptive to the empirical data as it is able to
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capture the dynamic changes in the relationships between yt and the regressors.

In Liang and Li (2012), the authors constructed a functional coefficient regression

model as

yt = x′tβ1(zt) + tβ2(zt) +ut, (5.3)

for t = 1,2, ...,n, where zt is a scalar, and xt is stationary. Instead of allowing the coeffi-

cients to change over time, the authors let them depend on a scalar variable zt so that

we are able to identify the reasons that caused such changes in the trends.

In panel data models, nonlinear time trends are also taken into account to capture

the trending feature. Robinson (2012) considers a nonparametric trending regression

with cross-sectional dependence. The model is formulated as

yit = αi + βt + eit, (5.4)

where eit is allowed to be correlated and heteroscedastic over the cross section.

Chen et al. (2012) study a semi-parametric trending panel data model with cross-

sectional dependence

yit =x′itβ + f (t/n) +αi + eit, (5.5)

xit =g(t/n) + xi + vit. (5.6)

By incorporating the unknown nonlinear deterministic trends f (t/n) and g(t/n), the

model is capable of accommodating a wide range of nonstationary time series.

There are two major improving directions in the above models. First issue is that

the regressors in all these models except Chen et al. (2012) need to be stationary.

Hence, they can not reveal the co-trending relationship that should be expressed in

the form of regressions between trending time series. The second is that none of the

above models consider the possible endogeneity issue in the regressions.

5.2.2 Co-integration models

In the thesis, our model deals with nonstationary time series with deterministic trends

rather than stochastic trends. Nonlinear trend-stationary is regarded as an alterna-
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tive way of modeling the nonstationary time series data. Therefore, the co-integration

models with unit root time series can be borrowed in a parallel way. i.e., we can con-

sider the same model, but use the data generating process (1.3).

Since the seminal paper by Engle and Granger (1987), co-integration models have

been quite popular as it reflects the long-run equilibrium between the variables with

stochastic trends. This thesis is motivated by Phillips and Hansen (1990) that studied

the endogeneity issue in the co-integration model. Recently, co-integration models

with functional coefficients are studied in Xiao (2009a). The model takes the form as

yt = x′tβ(zt) +ut, (5.7)

where xt is an I(1) process, {zt,ut} are stationary processes. The coefficient β(·) rep-

resents the varying relationship between xt and yt, which depends on the market

or macroeconomic conditions expressed as zt. Xiao (2009b) studies the quantile co-

integration model, where the cointegrating coefficients are computed with respect to

different quantiles. He also proposed the quantile-varying coefficient co-integration

models, in which the coefficient varies smoothly over the quantiles.

Wang and Phillips (2009) investigated the nonparametric co-integration model

yt =m(xt) + et, (5.8)

xt =xt−1 + vt, (5.9)

which avoids potential model misspecification. They considered the endogeneity prob-

lem that et and vt are correlated. Dong and Gao (2014) considered the same model and

developed a specification test using the method of series expansions.

A general functional coefficient nonstationary regression model is investigated in

Gao and Phillips (2013). The model studies the non- and semi-parametric co-integrations

of the form

yt = x′tβ(zt,ut) + et, (5.10)

xt = xt−1 +µt, (5.11)
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zt = zt−1 + νt, (5.12)

where {ut, et,µt,νt} are stationary time series. Under certain conditions, their model

is able to incorporate several useful models, including the additive nonparametric re-

gression and the partially linear models with integrated processes.

5.2.3 Some future research directions

Based on the above discussions on deterministic and stochastic trending time series

models, the current work in this thesis can be further developed in following direc-

tions.

(1) [Mixture of weak and strong deterministic trends] In the thesis, we only con-

sider the case where all the trends are either weak or strong. While in practice, the

regressors may have weak and strong trends simultaneously. i.e.,

yt =
p∑
i=1

xitβi +
q∑
j=1

zjtγj + et, (5.13)

where

xit =gi(t) + vit, (5.14)

zjt =hj(t) + vjt, (5.15)

in which gi(t) are weak trends and hj(t) are strong trends for i = 1,2, ...,p and j =

1,2, ...,q.

(2) [Time-varying coefficient models] The varying coefficient model is able to

show the dynamic changes in the relationships between the economic variables. It

is more adaptive to the empirical applications compared with the constant coefficient

model in this thesis. We can consider the problem of endogeneity in the varying coef-

ficient model formulated as

yt =x′tβt + et, (5.16)

xt =g(t) + vt, (5.17)
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where et and vt are endogenously correlated. In particular, when the first element of

xt is assumed to be 1 constantly, then the first coefficient β1t represents the trend in yt

that is not explained by the regressors.

(3) [Nonparametric regression] The linear regression model discussed in this the-

sis is misspecified if the true relationship between the variables is not linear. To solve

this problem, we should consider the nonparametric regression model with trending

time series of the form

yt =m(xt) + et, (5.18)

xt =g(t) + vt, (5.19)

where m(·) is a continuous and differentiable function, and et and vt are allowed to be

correlated.

5.2.4 Empirical applications

Since most of the economic data contain trends, the trending time series regressions

can be widely applied in the empirical applications.

(1) [Permanent income hypothesis] Since Hall (1978), the time series of income

and consumption are usually assumed to be a random walk process based on the as-

sumption of rational expectations. Therefore, permanent income is the same as current

income. The permanent income hypothesis is then verified if consumption tracks in-

come perfectly. However, the conclusion was carried out by the regression with the dif-

ferenced data (i.e., the growth rates), and the detrending process may induce spurious

cycles in the residuals that lead to unreliable inferences. For references, see Mankiw

and Shapiro (1985, 1986), Campbell (1987), Campbell and Mankiw (1990), Han and

Ogaki (1997), Fernández-Villaverde and Krueger (2007).

In fact, the mean of the first difference of log income (i.e., the growth rate) may not

be a constant over time as shown in Figure 5.1. There have been periods with high

growth rates and other periods with low growth rates. Therefore, the drift term in
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the random walk process is smoothly varying instead of a constant value over time.

Specifically,

xt = at + xt−1 + vt, (5.20)

where at is a term of low-frequency information. In Figure 5.1, the red dashed line is

the nonparametrically estimated drift term ât. Intuitively, when at = a, the constant

drift generates a linear time trend. However, when at is time-varying, it generates

nonlinear time trends as

g(t) = g(0) +
t∑
s=1

as, (5.21)

where g(0) is the starting point of the nonlinear time trend. Removing the determinis-

tic trend g(t), we obtain the ‘detrended’ component of xt as

x̃t = xt − ĝ(t) = xt − g(0)−
t∑
s=1

âs, (5.22)

where x̃t is found to be stationary. Therefore, the log income is a nonlinear trend-

stationary process and an MA unit root was generated in ∆xt after differentiation.

Generally, since the nonlinear time trend can always capture the nonlinearity and

nonstationarity in xt regardless of the existence of unit root, we can then verify the

permanent income hypothesis by regressing the log aggregate personal consumption

over the log aggregate personal income.

(2) [Breaks, bubbles and cycles] In White and Granger (2011), the authors dis-

cussed the breaks, bubbles and cycles in economics, which are highly related to the

characteristics of trends involved in the time series. Therefore, trending time series

models can be used to detect and analyze the structural breaks, economic bubbles

and business cycles. Figure 5.2 is the example used in White and Granger (2011) that

illustrates the structural break in the time series of the amount of currency in circu-

lation for the Euro Area. There is an obvious break at 2002. Before the break point,

the trend is weak, however, it becomes a strong linear trend after the break. Intu-

itively, there is an intrinsic linkage between the occurrence of a trend break and the

change of the trending parameter d on the two sides of the break point. The reason
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Figure 5.1: The growth rate of aggregate personal income
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is that trend break (or the place where a bubble starts) implies changes of the trend

type and therefore will cause the variation in the magnitude parameter that represents

the strength of the trend. Recently, the problem of bubble detection has been quite

popular, see Phillips et al. (2011) and Phillips et al. (2015), in which they developed

the sup augmented Dickey-Fuller test. In short, the quantitative analysis of these bub-

ble phenomena depends on our understanding of the trend behaviors as well as the

econometric tools that can deal with them effectively.
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Figure 5.2: Currency in Circulation: an example of break in White and Granger (2011)
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Figure 7

The basic idea we wish to capture is that a break occurs when a trend changes
from one type to another. To construct a working de�nition of a trend break,
we �rst specify what we mean by a "type" of trend. Speci�cally, let A be the
set of all sequences fatg: A type of trend is a subset of A with the properties of
any of the speci�c trends we have de�ned so far, either implicitly or explicitly.
When a trend type has a speci�c property A, we write the collection as TA
and call this an A trend type. For example, when A is the increasing trend
property, the set TA of all increasing trends is the "increasing trend type".

Subsets and countable unions and intersections of trend types are also
types of trends. We call subsets of trend types "trend subtypes". If TA and
TB are trend types, then we write TA\B = TA \ TB and TA[B = TA [ TB; and
so forth. For example, if A is the linear trend property and B is the increasing
trend property, then TA\B is the linear increasing trend type and TA[B is the
increasing or linear trend type.

We also recognize the subset T0 of A whose elements are not trends
according to any of our de�nitions2. The set of "non-trends" T0 is useful

2As our de�nitions are working de�nitions, one may replace these with any other desired
set of de�nitions and proceed similarly.
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Appendix A

A constructed IV approach

In the first year of my PhD candidature, I believed that the conventional estimation

method for the semiparametric partially linear model cannot be used because the iden-

tifiability condition is not satisfied for our model. Therefore, under particular assump-

tions, I proposed a method to estimate the coefficients in the linear regression model

(1.2) by constructing functions of vt in (1.3) as instrumental variables. Here I explain

the method in this Appendix just for the completeness of my PhD thesis.

A.1 Identification and assumptions

Recall that our model is

yt =x′tβ + et, (A.1)

xt =g(τt) + vt, (A.2)

et =λ(vt) +ut. (A.3)

where xt is a k-dimensional vector of trending regressors as equation (1.3). We first

introduce some assumptions for the error terms in the model before we estimate the

parameters.

77
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Assumption A.1.1. Let (ut,vt) be zero-mean stationary and α−mixing innovations

with mixing coefficient α(k) satisfying
∑∞
k=1α

δ
2+δ (k) < ∞ for some δ > 0, where δ is

chosen such that E[|ut |2+δ] < ∞ and E[||vt ||2+δ] < ∞. ut and vt are uncorrelated, and

E[u2
t ] = σ2

u > 0, E[vtv′t] =Ωv , which is a symmetric positive definite matrix.

Assumption A.1.2. Let λ(·) be a continuous function defined on Rk to R1. There al-

ways exists some continuous function π(vt) that satisfies E[π(vt)λ(vt)] = 0, and Σv =

E[π(vt)]
∫ 1

0
g(τ)dτ +E[π(vt)v′t] is a positive definite matrix.

Assumption A.1.3. Let K(·) be a symmetric and continuous probability density func-

tion with
∫
K2(u)du < ∞,

∫
uK(u)du = 0,

∫
uu′K(u)du < ∞. Let h be the bandwidth,

which satisfies h→ 0, nh→∞, and nh2→∞ as n→∞.

A.1.1 Parameter estimation

Consider equation (A.1) in the model, the error term ut can be written as

ut = yt − x′tβ −λ(vt). (A.4)

Since we have assumed that ut and vt are uncorrelated, the following orthogonal con-

dition holds.

E[π(vt)ut] = 0. (A.5)

Substituting ut by (A.4), we have

E[π(vt)yt] = E[π(vt)x
′
t]β + E[π(vt)λ(vt)]. (A.6)

Assumption A.1.2 suggested that E[π(vt)λ(vt)] = 0, therefore

E[π(vt)yt] = E[π(vt)x
′
t]β. (A.7)

Hence, β can be explicitly expressed provided that the inverse E[π(vt)x′t]
−1 exists. In

fact,

E[π(vt)x
′
t] = E[π(vt)(g(τt) + vt)

′] = E[π(vt)]
∫ 1

0
g(τ)dτ + E[π(vt)v

′
t] = Σv , (A.8)
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where Σv is assumed to be an invertible positive definite matrix by Assumption A.1.2.

We obtain an equation which can be used to estimate β as follows.

β = E[π(vt)x
′
t]
−1E[π(vt)yt]. (A.9)

By the method of moments, β can be estimated by the sample analogue of (A.9).

β̂0 =
( T∑
t=1

π(vt)x
′
t

)−1( T∑
t=1

π(vt)yt
)
. (A.10)

Since vt is not observable, the estimator β̂0 is not feasible. By equation (A.2), we con-

struct an alternative feasible estimator

β̂ =
( T∑
t=1

π(v̂t)x
′
t

)−1( T∑
t=1

π(v̂t)yt
)
. (A.11)

where

v̂t = xt − ĝ(τt). (A.12)

and ĝ(τt) is the nonparametric kernel estimator for the trend term g(τt).

A.2 Nonparametric estimation

There are various kinds of methods to estimate the trend term. As discussed in the

introduction, misspecified parametric forms may cause inconsistent estimations. In

this thesis, we employ the nonparametric kernel methods. For instance, we use the

nonparametric local constant method to estimate g(τ) at some point τ ∈ (0,1) that

ĝ(τ) =
n∑
s=1

wns(τ)xs, (A.13)

where

wns(τ) =
K

(
τs−τ
h

)
∑n
p=1K

(τp−τ
h

) . (A.14)

The control function λ(vt) can also be estimated by kernel methods. Once the trend

term and coefficients of the linear component are properly estimated, the control func-

tion can be approximated by the methods in Fan and Gijbels (1996).
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A.3 Asymptotic properties

Theorem A.3.1. Let Assumptions A.1.1 and A.1.3 hold, as n→∞,

√
nh

ĝ(τ)− g(τ)− h
2

2
g ′′(τ)µ2

 p
−→N (0,Ωvκ2), (A.15)

for τ ∈ [0,1] and µ2 =
∫∞
−∞u

2K(u)du, κ2 =
∫∞
−∞K

2(u)du.

Theorem A.3.2. Let Assumptions A.1.1 to A.1.3 hold, we have

√
n(β̂ − β)

d−→N (0,Ω). (A.16)

where Ω = Σ−1
v Γ Σ

−1
v , Γ is the long run variance-covariance matrix of ξt = π(vt)et that

Γ =
∞∑

j=−∞
E[ξtξt−j]. (A.17)

The long-run variance can be consistently estimated by

Γ̂ =
p∑

j=−p
Γ̂jk(j), (A.18)

where p = [
√
n]−, v̂t = xt − ĝ(τt), k(j) is a weight function, êt = yt − xtβ̂, and

Γ̂j =

∑n
t=j v̂t êt ê

′
t−j v̂

′
t−j

n
. (A.19)

A.4 Simulation results

A.4.1 I.I.D. error terms

The data generating process follows (A.1) to (A.3) and has explicit forms as g(τt) =

7 + 2τt, λ(vt) = 0.5vt, and yt = 0.6xt + et, where ut,vt
i.i.d.∼ N (0,1). In this example, we

first let π(vt) = 1
1+v2

t
.
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Repeat=500 β̂ β̂ols

Sample size 300 600 1000 300 600 1000

Bias(×1000) -0.0215 0.2431 0.0866 7.8000 7.9000 7.8000

Std 0.0086 0.0062 0.0046 0.0079 0.0058 0.0043

RMSE 0.0086 0.0062 0.0046 0.0111 0.0098 0.0089
¯̂
Ω 0.0196 0.0197 0.0196 0.0195 0.0196 0.0196

Std/
√
Ω̂ 0.0616 0.0442 0.0329 0.0561 0.0411 0.0305

The next table shows the simulation results based on another case of the trend func-

tion. In particular, when g(τt) = 2sin(3.14τt), the IV estimator is still consistent.

Repeat=500 β̂ β̂ols

Sample size 300 600 1000 300 600 1000

Bias -0.0007 -0.0042 -0.0006 0.1663 0.1644 0.1658

Std 0.0547 0.0357 0.0299 0.0354 0.0235 0.0196

RMSE 0.0547 0.0360 0.0299 0.1700 0.1660 0.1669
¯̂
Ω 0.7826 0.7822 0.7778 0.3613 0.3613 0.3613

Std/
√
Ω̂ 0.0618 0.0404 0.0339 0.0589 0.0391 0.0327

In the next table, we show the estimation results if we choose π(vt) = e−v
2
t as an

alternative IV. When g(τt) = 7 + 2τt, the simulation results are

Repeat=500 β̂ β̂ols

Sample size 300 600 1000 300 600 1000

Bias(×1000) 0.0069 -0.2682 0.1334 7.7000 7.5000 7.6000

Std 0.0096 0.0068 0.0049 0.0083 0.0058 0.0042

RMSE 0.0096 0.0068 0.0049 0.0113 0.0095 0.0087
¯̂
Ω 0.0219 0.0220 0.0219 0.0190 0.0190 0.0190

Std/
√
Ω̂ 0.0646 0.0457 0.0334 0.0600 0.0421 0.0304

Again, when g(τt) = 2sin(3.14τt), the results are shown in the following table.
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Repeat=500 β̂ β̂ols

Sample size 300 600 1000 300 600 1000

Bias 0.0000 0.0024 -0.0016 0.1650 0.1649 0.1670

Std 0.0577 0.0417 0.0311 0.0344 0.0261 0.0190

RMSE 0.0577 0.0418 0.0312 0.1686 0.1670 0.1681
¯̂
Ω 0.8886 0.8756 0.8803 0.3834 0.3834 0.3834

Std/
√
Ω̂ 0.0612 0.0466 0.0332 0.0555 0.0421 0.0306

A.4.2 Autocorrelated error terms

When the innovations follow AR(1) process, i.e. other DGPs remain unchanged, ut and

vt are generated by ut = ρut−1 + ξt and vt = ρvt−1 + εt, where ξt,εt
i.i.d.∼ N (0,1).

(1) ρ = 0.2, g(τt) = 2sin(3.14τt),π(vt) = e−v
2
t , Cross-validation: leave 5 out.

Repeat=500 β̂ β̂ols

Sample size 300 600 1000 300 600 1000

Bias -0.0142 -0.0078 -0.0056 0.1691 0.1723 0.1708

Std 0.0727 0.0485 0.0371 0.0400 0.0301 0.0221

RMSE 0.0741 0.0491 0.0375 0.1737 0.1749 0.1722
¯̂
Ω 1.1498 1.1362 1.1404 0.8517 0.8480 0.8559

Std/
√
Ω̂ 0.0678 0.0455 0.0347 0.0433 0.0326 0.0239

(2) ρ = 0.2, g(τt) = 2sin(3.14τt),π(vt) = 1
1+v2

t
, Cross-validation: leave 5 out.
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Repeat=500 β̂ β̂ols

Sample size 300 600 1000 300 600 1000

Bias -0.0168 -0.0072 -0.0038 0.1691 0.1696 0.1722

Std 0.0669 0.0492 0.0366 0.0407 0.0289 0.0215

RMSE 0.0690 0.0498 0.0368 0.1739 0.1720 0.1735
¯̂
Ω 1.1087 1.0154 1.0531 0.8869 0.8440 0.8690

Std/
√
Ω̂ 0.0636 0.0489 0.0357 0.0432 0.0315 0.0231

(3) ρ = 0.6, g(τt) = 2sin(3.14τt),π(vt) = e−v
2
t , Cross-validation: leave 9 out.

Repeat=500 β̂ β̂ols

Sample size 300 600 1000 300 600 1000

Bias -0.0183 -0.0171 -0.0178 0.2231 0.2200 0.2170

Std 0.1429 0.0941 0.0783 0.0672 0.0483 0.0389

RMSE 0.1441 0.0956 0.0803 0.2330 0.2253 0.2204
¯̂
Ω 3.4662 3.4428 3.3339 1.6787 1.7021 1.7295

Std/
√
Ω̂ 0.0768 0.0507 0.0429 0.0519 0.0370 0.0296

(4) ρ = 0.6, g(τt) = 2sin(3.14τt),π(vt) = 1
1+v2

t
, Cross-validation: leave 9 out.

Repeat=500 β̂ β̂ols

Sample size 300 600 1000 300 600 1000

Bias -0.0277 -0.0181 -0.0138 0.2169 0.2195 0.2163

Std 0.1404 0.0987 0.0750 0.0681 0.0497 0.0399

RMSE 0.1431 0.1003 0.0763 0.2273 0.2251 0.2199
¯̂
Ω 3.3738 3.1418 3.0823 1.6917 1.7254 1.7198

Std/
√
Ω̂ 0.0764 0.0557 0.0427 0.0524 0.0379 0.0304

Remark A.4.1. All the results in the above tables show that our estimator is unbiased

and consistent, while the simple OLS estimator is biased and inconsistent. Meanwhile,

the convergence rate of our estimator is
√
n.



84 APPENDIX A. A CONSTRUCTED IV APPROACH

A.5 Application

We consider the U.S. personal consumption expenditure and personal income quar-

terly data from 1947 to 2009. In our model, xt represents the logarithm of personal

income, while yt represents the logarithm of personal consumption.

yt =xtβ + et, (A.20)

xt =g(τt) + vt, (A.21)

et =λ(vt) +ut, (A.22)

which is equivalent to estimate

yt =xtβ +λ(vt) +ut, (A.23)

xt =g(τt) + vt, (A.24)

The estimation involves the choice of π(vt), hence the subsequent analysis follows two

schemes depending on the characteristics of λ(vt).

A.5.1 Case I: λ(vt) is an odd function of vt

Suppose that λ(vt) is an odd function of vt. For example, the error terms et and vt

follow a joint normal distribution. Let π(vt) = (1, v2
t )′, Xt = (1, xt)′, γ = (α,β)′, we have

yt = X ′tγ +λ(vt) +ut. (A.25)

Multiply both sides of the equation by π(vt), and take expectation,

E

 yt

v2
t yt

 = E

 1 x2
t

v2
t v2

t xt


 αβ

+ E

 λ(vt)

v2
t λ(vt)

+ E

 ut

v2
t ut

 . (A.26)

Because λ(vt) is an odd function of vt, it is straightforward to obtain E(λ(vt)) = 0 and

E(v2
t λ(vt)) = 0. Meanwhile, the parameters are identified only if the matrix in front of

the coefficients is positive definite. Therefore, if E(v2
t )

∫ 1
0
g(τ)dτ − (E(v2

t ))2 > 0, α̂β̂
 =

 1 n−1∑n
t=1 v

2
t

n−1∑n
t=1 v

2
t n−1∑n

t=1 v
2
t xt


−1  n−1∑n

t=1 yt

n−1∑n
t=1 v

2
t yt

 . (A.27)
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To make the estimators feasible, we substitute vt by its consistent estimator v̂t = xt −

ĝ(τt,h). Then estimate λ(vt) using local linear kernel estimation with bandwidth cho-

sen as h∗ and obtain the error terms ût. Figure (A.1) shows the sum of squared residuals∑T
t=1 û

2
t under different bandwidth pairs of (h,h∗), where the smallest value of SSR is

obtained at an interior point. For fixed h∗, the SSR and bandwidth form a U-shape

Figure A.1: Sum of squared residuals for the bandwidth selection
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functional relation as shown in Figure (A.2).

Therefore, the optimal bandwidth for h is 0.045, under this bandwidth, the SSR

under different h∗ is shown in Figure (A.3). At the lowest point, SSR is minimized

by choosing h∗ = 0.029. The parameters can be estimated as α̂ = −0.1994, β̂ = 1.0118

under selected bandwidths. The functional form of λ(vt) can be estimated by local

linear estimation as the odd function shown in Figure (A.4). The p-values of ADF-test

for the residual series {̂et} and {v̂t} are 0.0001 and 0.0012 respectively.
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Figure A.2: Sum of squared residuals for fixed h∗
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A.5.2 Case II: λ(vt) is an even function of vt

If the control function is symmetric about the y-axis, the assumption E(λ(vt)) = 0 can

be relaxed and the intercept term in the model can be eliminated and included in the

control function. Consequently,

yt = xtβ +λ(vt) +ut. (A.28)

Multiply both sides by π(vt) = vt, and take expectation.

E(vtyt) = E(vtxt)β + E(vtλ(vt)) +E(vtut). (A.29)
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Figure A.3: Sum of squared residuals for fixed h∗
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The parameter β can be estimated by

β̂ =

 T∑
t=1

v̂txt


−1  T∑

t=1

v̂tyt

 , (A.30)

where vt = xt− ĝ(τt,h). The bandwidths are selected by minimizing the sum of squared

residuals of the model as h = 0.095,h∗ = 0.016, which can be seen from figure (A.5),

figure (A.6) and figure (A.7).

The coefficient β is estimated as β̂ = 0.9865, and the estimated functional structure

of λ(vt) is shown in Figure (A.8). The p-value for the ADF-test for the residual series

{̂et} and {ût} are 0.0076 and 0.0022 respectively. Figure (A.9) shows the raw data of

income and consumption, together with the estimated trend term and fitted value of

consumption.
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Figure A.4: Estimated control function λ̂(vt).
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A.6 Conclusions

This appendix introduced the estimation methods for the trending regressions with

endogeneity by constructing a function that is orthogonal to the control function. The

assumption that E(π(vt)λ(vt)) = 0 holds for some continuous function π(vt) was quite

important for identifying and estimating the coefficient.

There are several aspects to improve the model in the future. Since λ(vt) is unable

to capture the time trend, and it is likely that the time trend in yt cannot be fully

explained by xt. It is reasonable to add a trend component in the regression as the

following model.

yt =x′tβ + f (τt) +λ(vt) +ut, (A.31)

xt =g(τt) + vt, (A.32)

where f (τt) captures the remaining trend in yt that can not be explained by xt.
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Figure A.5: Sum of Squared Residuals under different bandwidth pairs.
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Figure A.6: Sum of Squared Residuals under different bandwidth of h for fixed h∗.
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Figure A.7: Sum of Squared Residuals when h = 0.095.
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Figure A.8: Estimated control function λ̂(vt).
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Figure A.9: Income, Consumption, Trend Term, and Fitted Value
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Considering structural breaks is another direction, because the relationship be-

tween xt and yt may vary over time. As in the example we discussed in the thesis,

β represents the elasticity between income and consumption. This elasticity, however,

may be different in recent years when compared to that 30 years ago. Following this

idea, a threshold can be added to the model we discussed. For t < c,

yt =x′tβ1 +λ1(vt) +ut, (A.33)

xt =g1(τt) + vt. (A.34)
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For t ≥ c,

yt =x′tβ2 +λ2(vt) +ut, (A.35)

xt =g2(τt) + vt. (A.36)

The critical issues are to test the existence of structural break(s) and detect the time

point at which the structural break occurred.



Appendix B

Proofs of the Theorems

The following Appendices are organized as follows. In Appendix B, I proved the main

Theorems in Chapter 2 and 3 for the weak/strong trending regressions by introducing

several important Lemmas. Appendix C are the detailed proofs for the Lemmas used

in Appendix B. In Section 2 for the weak trend case, I used a special assumption on

the density functions of vt to address it weak dependence across time. That special

assumption is verified by a stationary AR(1) process in Appendix D. The proofs of the

Theorems in Appendix A are given in Appendix E.

B.1 Proofs of the Theorems in Chapter 2

Some useful Lemmas

We first introduce the following Lemmas that would provide much convenience to the

proofs of the Theorems in the thesis.

Lemma B.1.1. Under Assumptions 2.3.1 to 2.3.6, as n → ∞, let g =
∫ 1

0
g(τ)dτ , g i =∫ 1

0
gi(τ)dτ , g̃i(τt) = gi(τt)−

∑n
s=1wns(t)gi(τs), x̃it = xit −

∑n
s=1wns(t)xis,

M1(i, j) =
1
n

n∑
t=1

(
gi(τt)−g i,n

)(
gj(τt)−g j,n

)
−→

∫ 1

0
(gi(τ)−g i)(gj(τ)−g j)dτ, (B.1)

93
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M2(i, j) =
1
n

n∑
t=1

g i,n − n∑
s=1

wns(t)gi(τs)


g j,n − n∑

s=1

wns(t)gj(τs)

 −→P 0, (B.2)

M12(i, j) =
1
n

n∑
t=1

(
gi(τt)−g i,n

)g j,n − n∑
s=1

wns(t)gj(τs)

 −→P 0, (B.3)

M21(i, j) =
1
n

n∑
t=1

g i,n − n∑
s=1

wns(t)gi(τs)

(gj(τt)−g j,n) −→P 0, (B.4)

S2(i, j) =
1
n

n∑
t=1

vit − n∑
s=1

wns(t)vis


vjt − n∑

s=1

wns(t)vjs

 −→P 0. (B.5)

Lemma B.1.2. Under Assumptions 2.3.1 to 2.3.6, as n→∞, let ζ(v) =
(
∂λ/∂v1, ...,∂λ/∂vk

)′
be the first order derivative of λ(v) with respect to vector v, then

I1n =

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ 1
√
n

n∑
t=1

ṽtζ
′(vt)ṽt

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ = op(1), I2n =

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ 1
√
n

n∑
t=1

g̃(τt)ζ
′(vt)ṽt

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ = op(1). (B.6)

Lemma B.1.3. Under Assumptions 2.3.1 to 2.3.6, as n→∞,∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ 1
√
n

n∑
t=1

x̃tu t

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ = op(1), (B.7)

where u t =
∑n
s=1wns(t)us.

Lemma B.1.4. Under Assumptions 2.3.1 to 2.3.6, as n→∞,

∣∣∣∣∣∣∣D1(n)
∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣1n

n∑
t=1

(x̂t − x̃t)(x̂t − x̃t)′
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ = op(1). (B.8)

Lemma B.1.5. Let Assumptions 2.3.3 to 2.3.6 hold. As n→∞, we have∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣X̂ ′ ê − X̃ ′ ẽ√

n

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ = op(1). (B.9)

Proof of Theorem 2.3.1: Recall that xt is a k-dimensional vector of trending time

series sequence, hence Σ̃n is a k × k matrix. To prove Σ̃n −→P Q, it suffices to show that

Σ̃n(i, j) −→P Q(i, j), for i, j = 1, ..., k. Note that x̃it = xit−
∑n
s=1wns(t)xis and xit = gi(τt)+vit,

therefore,

Σ̃n(i, j) =
1
n

n∑
t=1

x̃itx̃jt =
1
n

n∑
t=1

xit − n∑
s=1

wns(t)xis


xjt − n∑

s=1

wns(t)xjs


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=
1
n

n∑
t=1

gi(τt)− n∑
s=1

wns(t)gi(τs) + vit −
n∑
s=1

wns(t)vis


×

gj(τt)− n∑
s=1

wns(t)gj(τs) + vjt −
n∑
s=1

wns(t)vjs


=

1
n

n∑
t=1

gi(τt)− n∑
s=1

wns(t)gi(τs)


gj(τt)− n∑

s=1

wns(t)gj(τs)


+

1
n

n∑
t=1

vit − n∑
s=1

wns(t)vis


vjt − n∑

s=1

wns(t)vjs


+

1
n

n∑
t=1

gi(τt)− n∑
s=1

wns(t)gi(τs)


vjt − n∑

s=1

wns(t)vjs


+

1
n

n∑
t=1

vit − n∑
s=1

wns(t)vis


gj(τt)− n∑

s=1

wns(t)gj(τs)


,

1
n

n∑
t=1

g̃i(τt)g̃j(τt) +
1
n

n∑
t=1

ṽitṽjt +
1
n

n∑
t=1

g̃i(τt)ṽjt +
1
n

n∑
t=1

ṽit g̃j(τt)

,S1(i, j) + S2(i, j) + S12(i, j) + S21(i, j). (B.10)

In the above equations, we define

S1(i, j) =
1
n

n∑
t=1

g̃i(τt)g̃j(τt), S2(i, j) =
1
n

n∑
t=1

ṽitṽjt,

S12(i, j) =
1
n

n∑
t=1

g̃i(τt)ṽjt, S21(i, j) =
1
n

n∑
t=1

ṽit g̃j(τt), (B.11)

where ṽit = vit −
∑n
s=1wns(t)vis, for i, j = 1,2, ..., k, t = 1,2, ...,n. Let g i,n = n−1∑n

t=1 gi(τt)

for i = 1,2, ..., k. Therefore, g i,n denotes the sample average of the trend component of

xi . We further decompose S1(i, j) as

S1(i, j) =
1
n

n∑
t=1

gi(τt)− n∑
s=1

wns(t)gi(τs)


gj(τt)− n∑

s=1

wns(t)gj(τs)


=

1
n

n∑
t=1

gi(τt)−g i,n +g i,n −
n∑
s=1

wns(t)gi(τs)


gj(τt)−g j,n +g j,n −

n∑
s=1

wns(t)gj(τs)


=

1
n

n∑
t=1

(
gi(τt)−g i,n

)(
gj(τt)−g j,n

)
+

1
n

n∑
t=1

g i,n − n∑
s=1

wns(t)gi(τs)


g j,n − n∑

s=1

wns(t)gj(τs)


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+
1
n

n∑
t=1

(
gi(τt)−g i,n

)g j,n − n∑
s=1

wns(t)gj(τs)

+
1
n

n∑
t=1

g i,n − n∑
s=1

wns(t)gi(τs)

(gj(τt)−g j,n)
,M1(i, j) +M2(i, j) +M12(i, j) +M21(i, j), (B.12)

where

M1(i, j) =
1
n

n∑
t=1

(
gi(τt)−g i,n

)(
gj(τt)−g j,n

)
, (B.13)

M2(i, j) =
1
n

n∑
t=1

g i,n − n∑
s=1

wns(t)gi(τs)


g j,n − n∑

s=1

wns(t)gj(τs)

 , (B.14)

M12(i, j) =
1
n

n∑
t=1

(
gi(τt)−g i,n

)g j,n − n∑
s=1

wns(t)gj(τs)

 , (B.15)

M21(i, j) =
1
n

n∑
t=1

g i,n − n∑
s=1

wns(t)gi(τs)

(gj(τt)−g j,n) . (B.16)

Therefore, by Lemma B.1.1,

S1(i, j) =M1(i, j)+M2(i, j)+M12(i, j)+M21(i, j) −→P

∫ 1

0
(gi(τ)−g i)(gj(τ)−g j)dτ, (B.17)

S2(i, j) −→P 0. (B.18)

Meanwhile, by Cauchy-Schwarz inequality, given (B.17) and (B.18),

|S12(i, j)| =

∣∣∣∣∣∣∣∣n−1
n∑
t=1

gi(τt)− n∑
s=1

wns(t)gi(τs)


vjt − n∑

s=1

wns(t)vjs


∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣∣n−1
n∑
t=1

gi(τt)− n∑
s=1

wns(t)gi(τs)


2
∣∣∣∣∣∣∣∣∣
1/2 ∣∣∣∣∣∣∣∣∣n−1

n∑
t=1

vjt − n∑
s=1

wns(t)vjs


2
∣∣∣∣∣∣∣∣∣
1/2

=|S1(i, i)|1/2|S2(j, j)|1/2 =Op(1)op(1) = op(1). (B.19)

The same result holds for S21(i, j). Hence, for i, j = 1, . . . , k,

1
n

n∑
t=1

x̃itx̃jt −→P

∫ 1

0
(gi(τ)−g i)(gj(τ)−g j)dτ, (B.20)

i.e., Σ̃n(i, j) −→P Q(i, j). Therefore, the convergence of every element in Σ̃n yields the

convergence of the whole matrix that as n→∞, Σ̃n −→P Q. �
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Proof of Lemma 2.3.1: Note that

√
nBn =

1
n

n∑
t=1

x̃tx̃
′
t


−1  1
√
n

n∑
t=1

x̃tλ̃(vt)

 . (B.21)

Theorem 2.3.1 shows that n−1∑n
t=1 x̃tx̃

′
t −→P Q, hence

(
n−1∑n

t=1 x̃tx̃
′
t

)−1
−→P Q

−1, which

is Op(1). Without loss of generality, we assume that k = 1. Our objective becomes

showing that
1
√
n

n∑
t=1

x̃tλ̃(vt) = op(1). (B.22)

Note that x̃t can be written as

x̃t =xt −
n∑
s=1

wns(t)xs = vt + g(τt)−
n∑
s=1

wns(t)vs −
n∑
s=1

wns(t)g(τs)

=vt −
n∑
s=1

wns(t)vs + g(τt)−
n∑
s=1

wns(t)g(τs) = ṽt + g̃(τt), (B.23)

where ṽt = vt −
∑n
s=1wns(t)vs and g̃(τt) = g(τt)−

∑n
s=1wns(t)g(τs).

Meanwhile, λ̃(vt) can be written as

λ̃(vt) =λ(vt)−
n∑
s=1

wns(t)λ(vs) =
n∑
s=1

wns(t)
(
λ(vt)−λ(vs)

)
. (B.24)

Apply the Taylor expansion for λ(vs),

λ(vs) = λ(vt) +λ(1)(vt)(vs − vt) +
1
2
λ(2)(v∗t )(vs − vt)2, (B.25)

where v∗t lies between vt and vs, and λ(2)(v∗t ) <∞ for any t. Therefore,

λ̃(vt) =
n∑
s=1

wns(t)
(
λ(vt)−λ(vs)

)
=

n∑
s=1

wns(t)
(
λ(1)(vt)(vt − vs)−

1
2
λ(2)(v∗t )(vs − vt)2

)
=λ(1)(vt)

n∑
s=1

wns(t)(vt − vs)−
1
2
λ(2)(v∗t )

n∑
s=1

wns(t)(vt − vs)2

=λ(1)(vt)ṽt −
1
2
λ(2)(v∗t )

n∑
s=1

wns(t)(vs − vt)2. (B.26)

Substitute x̃t in (B.22) with (B.23) and λ̃(vt) with its leading term in (B.26), denote the

first order derivative of λ(vt) as ζ(vt),

1
√
n

n∑
t=1

x̃tλ̃(vt) =
1
√
n

n∑
t=1

ṽtλ̃(vt) +
1
√
n

n∑
t=1

g̃(τt)λ̃(vt)
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=

 1
√
n

n∑
t=1

ζ(vt)ṽ
2
t +

1
√
n

n∑
t=1

g̃(τt)ζ(vt)ṽt

(1 + op(1)
)

= (I1n + I2n)
(
1 + op(1)

)
, (B.27)

where we defined I1n = 1√
n

∑n
t=1ζ(vt)ṽ

2
t and I2n = 1√

n

∑n
t=1 g̃(τt)ζ(vt)ṽt. Therefore, we

complete the proof provided that Lemma B.1.2 holds. The proof of Lemma B.1.2 is

provided in Appendix B. �

Proof of Theorem 2.3.2: Substituting ỹt in β̃ using ỹt = x̃′tβ + λ̃(vt) + ũt, we have

β̃ =

 n∑
t=1

x̃tx̃
′
t


−1  n∑

t=1

x̃t
(
x̃′tβ + λ̃(vt) + ũt

)
=β +

 n∑
t=1

x̃tx̃
′
t


−1  n∑

t=1

x̃tλ̃(vt)

+

 n∑
t=1

x̃tx̃
′
t


−1  n∑

t=1

x̃tũt


=β +Bn +

 n∑
t=1

x̃tx̃
′
t


−1  n∑

t=1

x̃tũt

 , (B.28)

where Bn =
(∑n

t=1 x̃tx̃
′
t

)−1 (∑n
t=1 x̃tλ̃(vt)

)
. Therefore,

√
n
(
β̃ − β −Bn

)
=

1
n

n∑
t=1

x̃tx̃
′
t


−1  1
√
n

n∑
t=1

x̃tũt

 . (B.29)

In the previous proofs of Theorem 2.3.1, we have shown that

1
n

n∑
t=1

x̃tx̃
′
t −→P Q, (B.30)

where Q is assumed to be positive definite, therefore invertible. For the latter part,

1
√
n

n∑
t=1

x̃tũt =
1
√
n

n∑
t=1

x̃t(ut −u t) =
1
√
n

n∑
t=1

x̃tut +
1
√
n

n∑
t=1

x̃tu t, (B.31)

where u t =
∑n
s=1wns(t)us. Under Assumptions 2.3.3 to 2.3.6, since ut is mixing and

independent with vt, by Central Limit Theorem (CLT) for mixing processes (see Fan

and Yao (2003), Theorem 2.21), as n→∞,

1
√
n

n∑
t=1

x̃tut −→D N (0,QΛu), (B.32)
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where Λu is the long-run variances of ut that

Λu = E[utut] + 2
∞∑
j=1

E
[
utut−j

]
. (B.33)

Meanwhile, by Lemma B.1.3, we have∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ 1
√
n

n∑
t=1

x̃tu t

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ = op(1). (B.34)

Then, by the Slutsky Theorem, we have

√
n
(
β̃ − β −Bn

)
−→D N (0,Ω), (B.35)

where Ω =Q−1Λu . By Lemma 2.3.1, the bias term Bn is negligible that
√
nBn = op(1) as

n→∞. Thus, we can ignore the potential bias term and yield

√
n(β̃ − β) −→D N (0,Ω). � (B.36)

Proof of Lemma 2.3.2 and Theorem 2.3.3: We focus on the difference between Σ̃n and

Σ̂n. Write

Σ̂n =
1
n

n∑
t=1

x̂tx̂
′
t =

1
n

n∑
t=1

(x̂t − x̃t + x̃t) (x̂t − x̃t + x̃t)
′

=
1
n

n∑
t=1

(x̂t − x̃t)(x̂t − x̃t)′ +
1
n

n∑
t=1

(x̂t − x̃t)x̃′t +
1
n

n∑
t=1

x̃t(x̂t − x̃t)′ +
1
n

n∑
t=1

x̃tx̃
′
t, (B.37)

where the last term is Σ̃n. Therefore,

Σ̂n − Σ̃n =
1
n

n∑
t=1

(x̂t − x̃t)(x̂t − x̃t)′ +
1
n

n∑
t=1

(x̂t − x̃t)x̃′t +
1
n

n∑
t=1

x̃t(x̂t − x̃t)′

=D1(n) +D2(n) +D3(n), (B.38)

whereD1(n) = n−1∑n
t=1(x̂t−x̃t)(x̂t−x̃t)′,D2(n) = n−1∑n

t=1(x̂t−x̃t)x̃′t, andD3(n) = n−1∑n
t=1 x̃t(x̂t−

x̃t)′. We control the difference by∣∣∣∣∣∣∣∣∣Σ̂n − Σ̃n∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣D1(n) +D2(n) +D3(n)

∣∣∣∣∣∣∣ ≤ ||D1(n)||+ ||D2(n)||+ ||D3(n)||. (B.39)
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Hence, ||Σ̂n − Σ̃n|| converges to zeros in probability if ||Dl(n)|| −→P 0 for l = 1,2,3. By

Cauchy-Schwarz inequality,

||D2(n)|| =

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣1n

n∑
t=1

(x̂t − x̃t)x̃′t

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣1n

n∑
t=1

(x̂t − x̃t)(x̂t − x̃t)′
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
1/2 ∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣1n
n∑
t=1

x̃tx̃
′
t

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
1/2

=||D1(n)||1/2||Σ̃n||1/2. (B.40)

By Lemma B.1.4, ||D1(n)|| = op(1), and we have shown that the limit of ||Σ̃n|| is finite,

therefore, ||D2(n)|| = op(1). We can also show ||D3(n)|| = op(1) using the same method.

Thus ||Σ̂n − Σ̃n|| →P 0 as n→∞. Therefore, we complete the proof of Lemma 2.3.2 and

Theorem 2.3.3. �

Proof of Lemma 2.3.3 and Theorem 3.4.1: Note that

√
n(β̂ − β) =

√
n(β̂ − β̃ + β̃ − β) =

√
n(β̂ − β̃) +

√
n(β̃ − β), (B.41)

where we have shown (B.36). Therefore, we can complete the proof once Lemma 2.3.3

is proved in which ∣∣∣∣∣∣∣∣∣√n(β̂ − β̃)
∣∣∣∣∣∣∣∣∣ = op(1). (B.42)

Note that Ŷ = X̂β + λ̂(V ) + Û , Ỹ = X̃β + λ̃(V ) + Ũ , ê = λ̂(V̂ ) + Û and ẽ = λ̃(V ) + Ũ . Here,

Ŷ = (ŷ1, ..., ŷn)′, X̂ = (x̂1, ..., x̂n)′, λ̂(V ) = (λ̂(v1), ..., λ̂(vn))′, Û = (û1, ..., ûn)′, ê = (̂e1, ..., ên)′

and ŷt = yt − Êh[yt |v̂t], x̂t = xt − Êh[xt |v̂t], λ̂(vt) = λ(vt) − Êh[λ(vt)|v̂t], ût = ut − Êh[ut |v̂t],

êt = et − Êh[et |v̂t].

β̂ − β̃ =β̂ − β − (β̃ − β) = (X̂ ′X̂)−1(X̂ ′Ŷ )− β − ((X̃ ′X̃)−1(X̃ ′Ỹ )− β)

=(X̂ ′X̂)−1(X̂ ′ ê)− (X̃ ′X̃)−1(X̃ ′ ẽ)

=(X̂ ′X̂)−1(X̂ ′ ê)− (X̂ ′X̂)−1(X̃ ′ ẽ) + (X̂ ′X̂)−1(X̃ ′ ẽ)− (X̃ ′X̃)−1(X̃ ′ ẽ)

=(X̂ ′X̂)−1(X̂ ′ ê − X̃ ′ ẽ) +
(
(X̂ ′X̂)−1 − (X̃ ′X̃)−1

)
(X̃ ′ ẽ). (B.43)

Then our goal is to show that the norm of the following equation is op(1).

√
n
(
β̂ − β̃

)
=

X̂ ′X̂n
−1 X̂ ′ ê − X̃ ′ ẽ√

n

+


X̂ ′X̂n

−1

−
X̃ ′X̃n

−1

X̃ ′ ẽ√n


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,DB1 +DB2. (B.44)

We first examine DB1. By Lemma B.1.5,
∣∣∣∣∣∣∣∣∣(X̂ ′ ê − X̃ ′ ẽ)/√n∣∣∣∣∣∣∣∣∣ = op(1) and as shown in the

first Theorem, Σ̂n = X̂′X̂
n →P Q, where Q is positive definite, hence Σ̂−1

n →P Q
−1. Then

we have

DB1 =Op(1)op(1) = op(1). (B.45)

We then examineDB2. By the second step in the proofs of Theorem 2.3.3, ||Σ̂n−Σ̃n|| →P

0, therefore, X̂ ′X̂n
−1

−
X̃ ′X̃n

−1

=

X̂ ′X̂n
−1 X̃ ′X̃n − X̂

′X̂
n

X̃ ′X̃n
−1

= op(1). (B.46)

Meanwhile, in the first step, we have shown that X̃ ′ ẽ/
√
n =Op(1). Therefore,

DB2 = op(1). (B.47)

To summarize, equations (B.45) and (B.47) imply (B.42). Then, together with (B.36),

we are able to complete the proof. �

B.2 Proofs of the Theorems in Chapter 3

Proof of Theorem 3.2.1: The estimator Q̂ is defined as D−1X ′XD−1, then let dij =

(di + dj)/2 > 1 and

Q̂ij =n−
di+dj

2

n∑
t=1

xitxjt = n−
di+dj

2

n∑
t=1

(gi(t) + vit)(gj(t) + vjt)

=
1

ndij

n∑
t=1

gi(t)gj(t) +
1

ndij

n∑
t=1

gi(t)vjt +
1

ndij

n∑
t=1

gj(t)vit +
1

ndij

n∑
t=1

vitvjt, (B.48)

for i, j = 1,2, ...,K . The first term is deterministic and by Assumption 3.2.1, as n→∞,

1

ndij

n∑
t=1

gi(t)gj(t) −→Qij . (B.49)
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For the last term,
1

ndij

n∑
t=1

vitvjt =
1

ndij−1

1
n

n∑
t=1

vitvjt

 , (B.50)

where dij − 1 > 0 and n−1∑n
t=1 vitvjt =OP (1). In fact, by Cauchy-Schwarz Inequality,∣∣∣∣∣∣∣∣1n
n∑
t=1

vitvjt

∣∣∣∣∣∣∣∣ ≤
1
n

n∑
t=1

v2
it


1/2 1

n

n∑
t=1

v2
jt


1/2

, (B.51)

where

E

1
n

n∑
t=1

v2
it

 =E

1
n

n∑
t=1

 ∞∑
s=0

ψs,iηi,t−s


2
 =

1
n

n∑
t=1

∞∑
s=0

∞∑
l=0

ψs,iψl,iE
[
ηi,t−sηi,t−l

]
=

1
n

n∑
t=1

∞∑
s=0

ψ2
s,iE

[
η2
i,t−s

]
= σii

∞∑
s=0

ψ2
s,i <∞. (B.52)

Therefore, as n→∞, the last term

1

ndij

n∑
t=1

vitvjt =OP (n1−dij ) = oP (1). (B.53)

The second and third terms are similar, so we only study one of them. By Cauchy-

Schwarz Inequality, it follows that∣∣∣∣∣∣∣∣ 1

ndij

n∑
t=1

gi(t)vjt

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣1n
n∑
t=1

 gi(t)
n
di−1

2


 vjt

n
dj−1

2


∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣1n
n∑
t=1

 gi(t)
n
di−1

2

2
∣∣∣∣∣∣∣∣
1/2

∣∣∣∣∣∣∣∣∣
1
n

n∑
t=1

 vjt

n
dj−1

2


2
∣∣∣∣∣∣∣∣∣
1/2

=

∣∣∣∣∣∣∣∣ 1
ndi

n∑
t=1

gi(t)
2

∣∣∣∣∣∣∣∣
1/2 ∣∣∣∣∣∣∣∣ 1

ndj

n∑
t=1

v2
jt

∣∣∣∣∣∣∣∣
1/2

, (B.54)

in which n−di
∑n
t=1 gi(t)

2 −→ Qii < ∞ and n−dj
∑n
t=1 v

2
jt = OP (n1−dj ) = oP (1). Therefore,

the second term is oP (1), so is the third term. To summarize,

Q̂ij −→P Qij , (B.55)

for all i, j = 1,2, ..., k. Therefore, Q̂ −→P Q as n → ∞, in which Q is assumed to be a

positive definite matrix.
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Proof of Theorem 3.3.1: Recall that the OLS estimator is defined as

β̂ols =
(
X ′X

)−1 (
X ′y

)
. (B.56)

Therefore,

D
(
β̂ols − β

)
=

(
D−1X ′XD−1

)−1 (
D−1X ′e

)
. (B.57)

We have already proved in Theorem 3.2.1 that D−1X ′XD−1 −→P Q as n→∞, where Q

is a positive definite matrix.

Let b = E[etvt] and b = (b1, ...,bk)′ where for i = 1, ..., k,

bi = E[etvit] = E

 ∞∑
s=0

φsεt−s

∞∑
l=0

ψl,iηi,t−l

 =
∞∑
s=0

φsψs,iE
[
εt−sηi,t−s

]
= θi

∞∑
s=0

φsψs,i , (B.58)

where θi = E[εtηit], which is the ith element of the k × 1 vector Θ. We then focus on

D−1X ′e. Denote

D−1
(
X ′e−nb

)
, Z2. (B.59)

Then the ith element of the k × 1 vector Z2 is

Z2,i =n−
di
2

n∑
t=1

(xitet − bi) = n−
di
2

n∑
t=1

gi(t)et +n−
di
2

n∑
t=1

(vitet − bi)

=n−
di
2

n∑
t=1

gi(t)et +n−
di
2

n∑
t=1

 ∞∑
s=0

∞∑
l=0

φsψl,iεt−sηi,t−l −
∞∑
s=0

φsψs,iθi


=n−

di
2

n∑
t=1

gi(t)
∞∑
s=0

φsεt−s +n−
di
2

n∑
t=1

∞∑
s=0

φsψs,i
(
εt−sηi,t−s −θi

)
+n−

di
2

n∑
t=1

∞∑
s=0

∞∑
l=s+1

φsψl,iεt−sηi,t−l +n−
di
2

n∑
t=1

∞∑
l=0

∞∑
s=l+1

φsψl,iεt−sηi,t−l

,P1(n) + P2(n) + P3(n) + P4(n), (B.60)

for i = 1, ...,K , where the last three terms correspond to s = l, s < l and s > l respectively.

Then for P1(n), as et = Φ(L)εt, by Beveridge-Nelson(BN) decomposition, we have

P1(n) =n−
di
2

n∑
t=1

gi(t)Φ(L)εt = n−
di
2

n∑
t=1

gi(t)Φ(1)εt −n−
di
2

n∑
t=1

gi(t)(1−L)Φ̃(L)εt
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=n−
di
2

n∑
t=1

gi(t)Φ(1)εt +n−
di
2

n∑
t=1

gi(t) (ε̃t−1 − ε̃t) , (B.61)

where ε̃t = Φ̃(L)εt as defined in the beginning of the Appendix. The second term is

negligible provided the following Lemma holds.

Lemma B.2.1. Under Assumptions 3.2.1 to 3.2.4, as n→∞,

n−
di
2

n∑
t=1

gi(t) (ε̃t−1 − ε̃t) = oP (1).

For P2(n), let fi,0(L) =
∑∞
s=0φsψs,iL

s. By BN decomposition, we have

P2(n) =n−
di
2

n∑
t=1

∞∑
s=0

φsψs,i
(
εt−sηi,t−s −θi

)
=n−

di
2

n∑
t=1

∞∑
s=0

φsψs,iL
s
(
εtηit −θi

)
= n−

di
2

n∑
t=1

fi,0(L)
(
εtηit −θi

)
=n−

di
2

n∑
t=1

fi,0(1)
(
εtηit −θi

)
−n−

di
2

n∑
t=1

f̃i,0(L)(1−L)
(
εtηit −θi

)
=n−

di
2 fi,0(1)

n∑
t=1

(
εtηit −θi

)
+n−

di
2 ε̃η

f
i,n −n

− di2 ε̃η
f
i,0, (B.62)

where we denote ε̃ηfi,t = f̃i,0(L)(εtηit − θi). The last two terms in (B.62) are negligible

according to the following lemma.

Lemma B.2.2. Under Assumptions 3.2.1 to 3.2.4, as n→∞, for t = 0 and t = n,

n−
di
2 ε̃η

f
it −→P 0. (B.63)

For P3(n), let fi,q(L) =
∑∞
s=0φsψs+q,iL

s. By the BN decompositon,

P3(n) =n−
di
2

n∑
t=1

∞∑
s=0

∞∑
l=s+1

φsψl,iεt−sηi,t−l = n−
di
2

n∑
t=1

∞∑
s=0

∞∑
q=1

φsψs+q,iεt−sηi,t−s−q

=n−
di
2

n∑
t=1

∞∑
q=1

 ∞∑
s=0

φsψs+q,iL
s

εtηi,t−q = n−
di
2

n∑
t=1

∞∑
q=1

fi,q(L)εtηi,t−q

=n−
di
2

n∑
t=1

∞∑
q=1

fi,q(1)εtηi,t−q −n−
di
2

n∑
t=1

∞∑
q=1

f̃i,q(L)(1−L)εtηi,t−q
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=n−
di
2

n∑
t=1

∞∑
q=1

fi,q(1)εtηi,t−q −n−
di
2

n∑
t=1

(1−L)Bfi,t

=n−
di
2

n∑
t=1

∞∑
q=1

fi,q(1)εtηi,t−q +n−
di
2 B

f
i,0 −n

− di2 B
f
i,n, (B.64)

where Bfi,t =
∑∞
q=1 f̃i,q(L)εtηi,t−q. The last two terms are negligible provided the follow-

ing lemma holds.

Lemma B.2.3. Under Assumptions 3.2.1 to 3.2.4, as n→∞, for t = 0 and t = n,

n−
di
2 B

f
i,t −→P 0. (B.65)

Similarly, for P4(n), let mi,q(L) =
∑∞
l=0φq+lψl,iL

l . By the BN decomposition,

P4(n) =n−
di
2

n∑
t=1

∞∑
l=0

∞∑
s=l+1

φsψl,iεt−sηi,t−l = n−
di
2

n∑
t=1

∞∑
l=0

∞∑
q=1

φq+lψl,iεt−q−lηi,t−l

=n−
di
2

n∑
t=1

∞∑
q=1

 ∞∑
l=0

φq+lψl,iL
l

εt−qηi,t = n−
di
2

n∑
t=1

∞∑
q=1

mi,q(L)εt−qηi,t

=n−
di
2

n∑
t=1

∞∑
q=1

mi,q(1)εt−qηi,t −n−
di
2

n∑
t=1

∞∑
q=1

m̃i,q(L)(1−L)εt−qηi,t

=n−
di
2

n∑
t=1

∞∑
q=1

mi,q(1)εt−qηi,t −n−
di
2

n∑
t=1

(1−L)Bmi,t

=n−
di
2

n∑
t=1

∞∑
q=1

mi,q(1)εt−qηi,t +n−
di
2 Bmi,0 −n

− di2 Bmi,n, (B.66)

where Bmi,t =
∑∞
q=1 m̃i,q(L)εt−qηi,t. According to the following lemma, we can ignore the

last two terms in (B.66).

Lemma B.2.4. Under Assumptions 3.2.1 to 3.2.4, as n→∞, for t = 0 and t = n,

n−
di
2 Bmi,t −→P 0. (B.67)

To summarize, we can ignore the negligible terms in Pi(n) for i = 1,2,3,4. Thus,

equation (B.60) can be written as

Z2,i =
n∑
t=1

M i
nt + oP (1), (B.68)
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where

M i
nt = n−

di
2

gi(t)Φ(1)εt + fi,0(1)
(
εtηit −θi

)
+
∞∑
q=1

fi,q(1)εtηi,t−q +
∞∑
q=1

mi,q(1)εt−qηi,t

 .
(B.69)

We denote Mnt = (M1
nt, ...,M

K
nt)
′, then

Z2 =
n∑
t=1

Mnt + oP (1). (B.70)

Mnt is a martingale difference sequence(m.d.s.) suggested by the equation asfollows.

E
[
Mnt |Ft−1

]
= 0, (B.71)

where Ft−1 is the filtration that Ft−1 = {εt−1,εt−2, ...,ηt−1,ηt−2, ...}. We are able to apply

the Central Limit Theorem for martingale difference sequence(m.d.s) given the follow-

ing Lemma holds.

Lemma B.2.5. For any K × 1 vector a = (a1, ..., aK )′ with ||a|| = 1,

n∑
t=1

E
[(
a′Mnt

)2 ∣∣∣∣Ft−1

]
−→P a

′Ωa, (B.72)

and
n∑
t=1

E
[(
a′Mnt

)4 ∣∣∣∣Ft−1

]
−→P 0, (B.73)

where Ω is a K ×K positive definite matrix Ωij = σ2
1Φ(1)2Qij .

Remark B.2.1. Once the two conditions are satisfied, we can apply the CLT for a′Mnt,

which is any linear combination of the elements in Mnt. Thus the vector
∑n
t=1Mnt

converges in distribution to multivariate Gaussian.

n∑
t=1

Mnt −→D N (0,Ω). (B.74)

Therefore, by equation (B.70), we have

Z2 =D−1(X ′e−nb) −→D N (0,Ω), (B.75)
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with Ωij = σ2
1Φ(1)2Qij . As n→∞, since Q̂ =D−1X ′XD−1 −→P Q, we have

D
(
β̂ols − β

)
− Q̂−1D−1nb = (D−1X ′XD−1)−1(D−1(X ′e −nb))

−→D N (0,Q−1ΩQ−1), (B.76)

i.e.,

D
(
β̂ols − β −D−1Q̂−1D−1nb

)
−→D N (0,Q−1ΩQ−1), (B.77)

Thus we complete the proof for this Theorem. �
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Appendix C

Proofs of the Lemmas in Appendix B

C.1 Proofs of the Lemmas in Appendix B.1

Proof of Lemma B.1.1:

Equation (B.1) in Lemma B.1.1 Recall that τt = t/n and

M1(i, j) =
1
n

n∑
t=1

(
gi(τt)−g i,n

)(
gj(τt)−g j,n

)
, (C.1)

where g i,n = n−1∑n
t=1 gi(τt). Since g(·) is a continuous differentiable function of τ ∈

[0,1], under Assumption 2.3.1, we have

g i,n =
1
n

n∑
t=1

gi

( t
n

)
−→

∫ 1

0
gi(τ)dτ = g i , (C.2)

as the Riemann sum converges to its integral limit. The same argument applies to

M1(i, j), that

1
n

n∑
t=1

(
gi(τt)−g i,n

)(
gj(τt)−g j,n

)
−→

∫ 1

0
(gi(τ)−g i)(gj(τ)−g j)dτ =Q(i, j). (C.3)

Therefore, as n→∞, M1(i, j) −→Q(i, j), for i, j = 1, . . . , k. �

Equation (B.2) in Lemma B.1.1 Applying the Cauchy-Schwarz inequality, we have

|M2(i, j)| =

∣∣∣∣∣∣∣∣1n
n∑
t=1

g i,n − n∑
s=1

wns(t)gi(τs)


g j,n − n∑

s=1

wns(t)gj(τs)


∣∣∣∣∣∣∣∣

109
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≤

∣∣∣∣∣∣∣∣∣
1
n

n∑
t=1

g i,n − n∑
s=1

wns(t)gi(τs)


2
∣∣∣∣∣∣∣∣∣
1/2 ∣∣∣∣∣∣∣∣∣

1
n

n∑
t=1

g j,n − n∑
s=1

wns(t)gj(τs)


2
∣∣∣∣∣∣∣∣∣
1/2

. (C.4)

Hence we are able to show that M2(i, j) = op(1) if as n→∞,

1
n

n∑
t=1

g i,n − n∑
s=1

wns(t)gi(τs)


2

= op(1), (C.5)

for any i = 1,2, ..., k. Since (C.5) is always positive, we only need to show that

E

1
n

n∑
t=1

g i,n − n∑
s=1

wns(t)gi(τs)


2
 = o(1). (C.6)

To prove the above result, we first write the equation as

1
n

n∑
t=1

g i,n − n∑
s=1

wns(t)gi(τs)


2

=
1
n

n∑
t=1

 n∑
s=1

wns(t)
(
gi(τs)−g i,n

)
2

=
1
n

n∑
t=1

n∑
s=1

wns(t)
2
(
gi(τs)−g i,n

)2

+
1
n

n∑
t=1

n∑
s1=1

n∑
s2=1,
s2,s1

wns1(t)wns2(t)
(
gi(τs1)−g i,n

)(
gi(τs2)−g i,n

)
. (C.7)

For simplicity and without loss of generality, we assume k = 1. Since wns(t) =
K( vs−vth )
nhf̂ (vt)

,

and for the kernel density estimator, we have f̂ (v) = f (v) + op(1), which is commonly

applied in the literature. Let ξs,t =
K( vs−vth )
hf (vt)

. Therefore, it is equivalent to show that

E[M2,i(n)] = o(1), (C.8)

for i = 1,2, where

M2,1(n) =
1
n3

n∑
t=1

n∑
s=1

ξ2
s,t

(
g(τs)−gn

)2
, (C.9)

and

M2,2(n) =
1
n3

n∑
t=1

n∑
s1=1

n∑
s2=1,
s2,s1

ξs1,tξs2,t
(
g(τs1)−gn

)(
g(τs2)−gn

)
. (C.10)
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Note that

E[ξ2
s,t] =E

K
2
(
vs−vt
h

)
h2f (vt)2

 =
" K2

(
vs−vt
h

)
h2f (vt)2 fs,t(vs,vt)dvsdvt

=
1
h2

"
K2(w)fs,t(z+wh,z)

f (z)2 hdwdz =
1 + o(h)
h

∫
K2(w)dw

∫
fs,t(z,z)
f (z)2 dz. (C.11)

Therefore, E[M2,1(n)] = O((nh)−1) = o(1) given that
∫
wK2(w)dw = 0,

∫
K2(w)dw < ∞

and

max
s,t

∫
fs,t(z,z)
f (z)2 dz <∞. (C.12)

Meanwhile, Let Θ3 denote the condition that t , s1 , s2, then

E

 1
n3

∑
Θ3

ξs1,tξs2,t
(
g(τs1)−gn

)(
g(τs2)−gn

)
=

1
n3

∑
Θ3

E
[
ξs1,tξs2,t

] (
g(τs1)−gn

)(
g(τs2)−gn

)
. (C.13)

Note that by change of variables, we have

E
[
ξs1,tξs2,t

]
=

$ K
(vs1−vt

h

)
K

(vs2−vt
h

)
h2f (v2

t )
f (vs1 ,vs2 ,vt)dvs1dvs2dvt

=
$

K(w1)K(w2)
h2f (z)2 fs1,s2,t(z+w1h,z+w2h,z)h

2dw1dw2dz

=(1 + o(1))
(∫

K(w1)dw1

)2∫ fs1,s2,t(z,z,z)

f (z)2 dz

=(1 + o(1))
∫
fs1,s2,t(z,z,z)− f (z)3 + f (z)3

f (z)2 dz

=(1 + o(1))
(
D3(s1, s2, t) + 1

)
, (C.14)

where

D3(s1, s2, t) =
∫
fs1,s2,t(z,z,z)− f (z)3

f (z)2 dz. (C.15)

Then,

1
n3

∑
Θ3

E
[
ξs1,tξs2,t

] (
g(τs1)−gn

)(
g(τs2)−gn

)
=

(1 + o(1))
n3

∑
Θ3

(
D3(s1, s2, t) + 1

)(
g(τs1)−gn

)(
g(τs2)−gn

)
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=
(1 + o(1))

n3

∑
Θ3

D3(s1, s2, t)
(
g(τs1)−gn

)(
g(τs2)−gn

)
+

(1 + o(1))
n2

∑
Θ2

(
g(τs1)−gn

)(
g(τs2)−gn

)
, (1 + o(1))(M2,2,1 +M2,2,2). (C.16)

Since g(·) is a bounded function, there exists some positive value Cg > 0, such that

max
τ∈[0,1]

|g(τ)−g | < Cg uniformly. Then we have

∣∣∣M2,2,1

∣∣∣ ≤ 1
n3

∑
Θ3

∣∣∣∣D3(s1, s2, t)
(
g(τs1)−gn

)(
g(τs2)−gn

)∣∣∣∣
≤
Cg
n3

∑
Θ3

∣∣∣∣∣∣∣
"

fs1,s2,t(z,z,z)− f (z)3

f (z)2 dz

∣∣∣∣∣∣∣ =O(n−1). (C.17)

where the last step holds by Assumption 2.3.4. For M2,2,2, it is straightforward that

1
n2

∑
s,t

(
g(τs1)−gn

)(
g(τs2)−gn

)
=O(n−1). (C.18)

Therefore, M2,2,2 = O(n−1). To summarize, we have proved that E
[
M2,i(n)

]
= o(1) for

i = 1,2. They directly imply that M2(i, j) = op(1). Hence we complete the proof. �

Equations (B.3) and (B.4) in Lemma B.1.1 Using the Cauchy-Schwarz inequality,

|M12(i, j)| ≤ |M1(i, i)|1/2|M2(j, j)|1/2 =Op(1)op(1) = op(1). (C.19)

The same result holds for M21(i, j) for i, j = 1, . . . , k. �

Equation (B.5) in Lemma B.1.1 For S2(i, j), using the Cauchy-Schwarz inequality, we

have

|S2(i, j)| =

∣∣∣∣∣∣∣∣1n
n∑
t=1

vit − n∑
s=1

wns(t)vis


vjt − n∑

s=1

wns(t)vjs


∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣∣
1
n

n∑
t=1

vit − n∑
s=1

wns(t)vis


2
∣∣∣∣∣∣∣∣∣
1/2 ∣∣∣∣∣∣∣∣∣

1
n

n∑
t=1

vjt − n∑
s=1

wns(t)vjs


2
∣∣∣∣∣∣∣∣∣
1/2

, (C.20)

for i, j = 1, . . . , k, where

1
n

n∑
t=1

vit − n∑
s=1

wns(t)vis


2

=
1
n

n∑
t=1

 n∑
s=1

wns(t)(vis − vit)


2
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=
1
n

n∑
t=1

n∑
s=1

wns(t)
2(vis − vit)2 +

1
n

n∑
t=1

n∑
s1=1

n∑
s2=1,
s2,s1

wns1(t)wns2(t)(vis1 − vit)(vis2 − vit). (C.21)

As in the previous proofs, we assume k = 1. As f̂ (v) = f (v) + op(1), it suffices to prove

that (C.21) is op(1). Since (C.21) is always positive, we only need to show that the

expectations of the following two expressions are o(1).

S2,1 =
1
n3

n∑
t=1

n∑
s=1
s,t

ξ2
s,t(vs − vt)2, (C.22)

S2,2 =
1
n3

n∑
t=1

n∑
s1=1
s1,t

n∑
s2=1,

s2,t,s2,s1

ξs1,tξs2,t(vs1 − vt)(vs2 − vt), (C.23)

where ξs,t =
K( vs−vth )
hf (vt)

. Here, we only examine equation (C.23) and (C.22) is similar and

simpler. Define L(u) = uK(u), we have

|E[S2,2]| =

∣∣∣∣∣∣∣∣∣E
 1
n3

∑
Θ3

L
(vs1−vt

h

)
L
(vs2−vt

h

)
f (vt)2


∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣ 1
n3

∑
Θ3

$ L
(vs1−vt

h

)
L
(vs2−vt

h

)
f (vt)2 f (vs1 ,vs2 ,vt, )dvs1dvs2dvt

∣∣∣∣∣∣∣∣
≤ 1
n3

∑
Θ3

$ ∣∣∣∣∣∣L(w1)L(w2)
f (z)2 fs1,s2,t(z+w1h,z+w2h,z)

∣∣∣∣∣∣h2dw1dw2dz

=
(1 + o(1))h2

n3

∑
Θ3

$ ∣∣∣∣∣∣L(w1)L(w2)
f (z)2 fs1,s2,t(z,z,z)

∣∣∣∣∣∣dw1dw2dz

=
(1 + o(1))h2

n3

∑
Θ3

(∫
|L(w1)|dw1

)2∫ fs1,s2,t(z,z,z)

f (z)2 dz =O(h2), (C.24)

where
∫
|L(w1)|dw1 <∞ and

max
s1,s2,t

∫
fs1,s2,t(z,z,z)

f (z)2 dz <∞. (C.25)

Under Assumption (2.3.6), h → 0 as n → ∞, therefore, E[S2,2] → 0 as n → ∞. This

implies that S2,2 = op(1). Similarly, S2,1 = op(1) and therefore S2(i, j) = op(1) for any
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i, j = 1,2, ..., k. Thus we complete the proof. �

Proof of Lemma B.1.2: Note that

I1n =
1
√
n

n∑
t=1

ζ(vt)ṽ
2
t =

1
√
n

n∑
t=1

ζ(vt)


1
nh

∑n
s=1K

(
vs−vt
h

)
(vs − vt)

f̂ (vt)


2

=
(1 + op(1))
√
n

n∑
t=1

ζ(vt)


1
nh

∑n
s=1K

(
vs−vt
h

)
(vs − vt)

f (vt)


2

, (1 + op(1))̃I1n. (C.26)

Hence, it is equivalent to show Ĩ1n = op(1). We consider the square of Ĩ1n as follows.

Ĩ2
1n =

1
n5h4

n∑
t1=1

n∑
t2=1

ζ(vt1 )ζ(vt2 )


∑n
s=1K

( vs−vt1
h

)(
vs − vt1

)
f (vt1 )


2

×


∑n
l=1K

( vl−vt2
h

)(
vl − vt2

)
f (vt2 )


2

=
1
n5

n∑
t1=1

n∑
t2=1

ζ(vt1 )ζ(vt2 )

f (vt1 )2f (vt2 )2

 n∑
s=1

L
(vs − vt1

h

)
2  n∑

l=1

L
(vl − vt2

h

)
2

=
1
n5

n∑
t1=1

n∑
t2=1

n∑
s1=1

n∑
s2=1

n∑
l1=1

n∑
l2=1

ζ(vt1 )ζ(vt2 )

f (vt1 )2f (vt2 )2L
(vs1 − vt1

h

)
L
(vs2 − vt1

h

)
L
(vl1 − vt2

h

)
×L

(vl2 − vt2
h

)
. (C.27)

Therefore, we have to prove that the expectation of

1
n5

n∑
t1=1

n∑
t2=1

n∑
s1=1

n∑
s2=1

n∑
l1=1

n∑
l2=1

ζ(vt1)ζ(vt2)

f (vt1)2f (vt2)2L
(vs1 − vt1

h

)
L
(vs2 − vt1

h

)
×L

(vl1 − vt2
h

)
L
(vl2 − vt2

h

)
(C.28)

is o(1). We consider some typical cases of the index vector (t1, t2, s1, s2, l1, l2), while

under remaining conditions it can be proved similarly.

(1) Let Θ6 denote t1 , t2 , s1 , s2 , l1 , l2,

1
n5

∑
Θ6

E

 ζ(vt1)ζ(vt2)

f (vt1)2f (vt2)2L
(vs1 − vt1

h

)
L
(vs2 − vt1

h

)
L
(vl1 − vt2

h

)
L
(vl2 − vt2

h

)
=

1
n5

∑
Θ6

∫
...

∫
ζ(vt1)ζ(vt2)

f (vt1)2f (vt2)2L
(vs1 − vt1

h

)
L
(vs2 − vt1

h

)
L
(vl1 − vt2

h

)
L
(vl2 − vt2

h

)
ft1,t2,s1,s2,l1,l2(vt1 ,vt2 ,vs1 ,vs2 ,vl1 ,vl2)dvt1dvt2dvs1dvs2dvl1dvl2
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=
h4

n5

∑
Θ6

∫
...

∫
ζ(z1)ζ(z2)
f (z1)2f (z2)2L(w1)L(w2)L(w3)L(w4)

ft1,t2,s1,s2,l1,l2(z1, z2, z1 +w1h,z1 +w2h,z2 +w3h,z2 +w4h)dw1dw2dw3dw4dz1dz2

=
(1 + o(1))h4

n5

∑
Θ6

$ $
ζ(z1)ζ(z2)
f (z1)2f (z2)2L(w1)L(w2)L(w3)L(w4)

f
(4)(3,4,5,6)
t1,t2,s1,s2,l1,l2

(z1, z2, z1, z1, z2, z2)w1w2w3w4h
4dw1dw2dw3dw4dz1dz2

=
(1 + o(1))h8

n5

∑
Θ6

∫
w1L(w1)dw1

∫
w2L(w2)dw2

∫
w3L(w3)dw3

∫
w4L(w4)dw4

" ζ(z1)ζ(z2)f (4)(3,4,5,6)
t1,t2,s1,s2,l1,l2

(z1, z2, z1, z1, z2, z2)

f (z1)2f (z2)2 dz1dz2

=
(1 + o(1))nh8κ4

21

n6

∑
Θ6

" ζ(z1)ζ(z2)f (4)(3,4,5,6)
t1,t2,s1,s2,l1,l2

(z1, z2, z1, z1, z2, z2)

f (z1)2f (z2)2 dz1dz2 (C.29)

where κ21 =
∫
wL(w)dw =

∫
w2K(w)dw <∞. Meanwhile, we require that

max
t1,t2,s2,s2,l1,l2

∣∣∣∣∣∣∣∣∣
" ζ(z1)ζ(z2)f (4)(3,4,5,6)

t1,t2,s1,s2,l1,l2
(z1, z2, z1, z1, z2, z2)

f (z1)2f (z2)2 dz1dz2

∣∣∣∣∣∣∣∣∣ <∞. (C.30)

Therefore, when t1 , t2 , s1 , s2 , l1 , l2, as n→∞, nh8→ 0, and

1
n5

∑
Θ6

E

 ζ(vt1)ζ(vt2)

f (vt1)2f (vt2)2L
(vs1 − vt1

h

)
L
(vs2 − vt1

h

)
L
(vl1 − vt2

h

)
L
(vl2 − vt2

h

)
=O(nh8) = o(1). (C.31)

(2) Let Θ5 denote t1 = t2 = t, t , s1 , s2 , l1 , l2. Therefore,

1
n5

∑
Θ5

E

ζ(vt)2

f (vt)4L
(vs1 − vt

h

)
L
(vs2 − vt

h

)
L
(vl1 − vt

h

)
L
(vl2 − vt

h

)
=

1
n5

∑
Θ5

∫
...

∫
ζ(vt)2

f (vt)4L
(vs1 − vt

h

)
L
(vs2 − vt

h

)
L
(vl1 − vt

h

)
L
(vl2 − vt

h

)
f (vt,vs1 ,vs2 ,vl1 ,vl2)dvtdvs1dvs2dvl1dvl2

=
1
n5

∑
Θ5

∫
...

∫
ζ(z)2

f (z)4L(w1)L(w2)L(w3)L(w4)

ft,s1,s2,l1,l2(z,z+w1h,z+w2h,z+w3h,z+w4h)h4dzdw1dw2dw3dw4
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≤ 1
n5

∑
Θ5

∫
...

∫ ∣∣∣∣∣∣ζ(z)2

f (z)4L(w1)L(w2)L(w3)L(w4)

∣∣∣∣∣∣
ft,s1,s2,l1,l2(z,z+w1h,z+w2h,z+w3h,z+w4h)h4dzdw1dw2dw3dw4

=
(1 + o(1))h4

n5

∑
Θ5

∫
...

∫ ∣∣∣∣∣∣ζ(z)2

f (z)4L(w1)L(w2)L(w3)L(w4)

∣∣∣∣∣∣
ft,s1,s2,l1,l2(z,z,z,z,z)dzdw1dw2dw3dw4

=
(1 + o(1))h4

n5

∑
Θ5

(∫
|L(w)|dw

)4∫ ∣∣∣∣∣∣ζ(z)2

f (z)4

∣∣∣∣∣∣ft,s1,s2,l1,l2(z,z,z,z,z)dz =O(h4), (C.32)

where
∫
|L(w)|dw <∞, and

max
t,s1,s2,l1,l2

∫
ζ(z)2

f (z)4 ft,s1,s2,l1,l2(z,z,z,z,z)dz <∞, (C.33)

(3) Let Θ3 denote t1 = t2 = t, s1 = s2 = s, l1 = l2 = l, t , s , l.

1
n5

∑
Θ3

E

ζ(vt)2

f (vt)4L
2
(vs − vt

h

)
L2

(vl − vt
h

)
=

1
n5

∑
Θ3

$
ζ(vt)2

f (vt)4L
2
(vs − vt

h

)
L2

(vl − vt
h

)
ft,s,l(vt,vs,vl)dvtdvsdvl

=
h2

n5

∑
Θ3

$
ζ(z)2

f (z)4L
2(w1)L2(w2)ft,s,l(z,z+w1h,z+w2h)dw1dw2dz

=
(1 + o(1))h2

n5

∑
Θ3

$
ζ(z)2

f (z)4L
2(w1)L2(w2)ft,s,l(z,z,z)dw1dw2dz

=
(1 + o(1))h2

n5

∑
Θ3

∫
L2(w1)dw1

∫
L2(w2)dw2

∫
ζ(z)2ft,s,l(z,z,z)

f (z)4 dz

=
(1 + o(1))h2κ2

22

n2
1
n3

∑
Θ3

∫
ζ(z)2ft,s,l(z,z,z)

f (z)4 dz, (C.34)

where κ22 =
∫
L2(w)dw =

∫
w2K2(w)dw <∞, and

max
t,s,l

∫
ζ(z)2

f (z)4 ft,s,l(z,z,z)dz <∞. (C.35)

Therefore, in this condition when t1 = t2 = t, s1 = s2 = s, l1 = l2 = l, t , s , l,

1
n5

∑
t,s,l

E

ζ(vt)2

f (vt)4L
2
(vs − vt

h

)
L2

(vl − vt
h

) = O

h2

n2

 = o(1). (C.36)
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To summarize,

E[̃I2
1n] = o(1), (C.37)

which implies that Ĩ1n = op(1) and therefore I1n = op(1).

We consider the second moment of I2n, which can be written as

I2n =
1
√
n

n∑
t=1

g̃(τt)ζ(vt)ṽt

=
1

n2
√
nh2

n∑
t=1

ζ(vt)


∑n
s=1K

(
vs−vt
h

)(
g(τs)− g(τt)

)
f̂ (vt)



∑n
s=1K

(
vs−vt
h

)
(vs − vt)

f̂ (vt)


=

1 + op(1)

n2
√
nh2

n∑
t=1

ζ(vt)


∑n
s=1K

(
vs−vt
h

)(
g(τs)− g(τt)

)
f (vt)



∑n
s=1K

(
vs−vt
h

)
(vs − vt)

f (vt)


=(1 + op(1))̃I2n. (C.38)

Hence, it is equivalent to prove that Ĩ2n is op(1). We then show that E[̃I2
2n] → 0 as

n→∞.

Ĩ2
2n =

1
n5h4

n∑
t1=1

n∑
t2=1

ζ(vt1 )ζ(vt2 )


∑n
s=1K

( vs−vt1
h

)(
g(τs)− g(τt1 )

)
f (vt1 )


∑n
s=1K

( vs−vt1
h

)(
vs − vt1

)
f (vt1 )



∑n
l=1K

( vl−vt2
h

)(
g(τl)− g(τt2 )

)
f (vt2 )


∑n
l=1K

( vl−vt2
h

)(
vl − vt2

)
f (vt2 )


=

1
n5h2

n∑
t1=1

n∑
t2=1

ζ(vt1 )ζ(vt2 )

f (vt1 )2f (vt2 )2


n∑

s1=1

K
(vs1 − vt1

h

)(
g(τs1 )− g(τt1 )

)
n∑

s2=1

L
(vs2 − vt1

h

)

n∑

l1=1

K
(vl1 − vt2

h

)(
g(τs)− g(τt2 )

)

n∑

l2=1

L
(vl2 − vt2

h

)
=

1
n5h2

n∑
t1=1

n∑
t2=1

n∑
s1=1

n∑
s2=1

n∑
l1=1

n∑
l2=1

ζ(vt1 )ζ(vt2 )

f (vt1 )2f (vt2 )2

(
g(τs1 )− g(τt1 )

)(
g(τl1 )− g(τt2 )

)
×K

(vs1 − vt1
h

)
L
(vs2 − vt1

h

)
K

(vl1 − vt2
h

)
L
(vl2 − vt2

h

)
. (C.39)
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Therefore,1 we need to show that the expectation of

1
n5h2

n∑
t1=1

n∑
t2=1

n∑
s1=1

n∑
s2=1

n∑
l1=1

n∑
l2=1

ζ(vt1)ζ(vt2)

f (vt1)2f (vt2)2

(
g(τs1)− g(τt1)

)(
g(τl1)− g(τt2)

)
K

(vs1 − vt1
h

)
L
(vs2 − vt1

h

)
K

(vl1 − vt2
h

)
L
(vl2 − vt2

h

)
(C.40)

is o(1). We only consider some typical conditions of the index vector (t1, t2, s1, s2, l1, l2),

and the proofs can be conducted similarly for other conditions.

(1) Let G(s1, t1, l1, t2)=
(
g(τs1)− g(τt1)

)(
g(τl1)− g(τt2)

)
, when all the subscripts are not

equal to each other,

E

 1
n5h2

∑
Θ6

ζ(vt1 )ζ(vt2 )

f (vt1 )2f (vt2 )2G(s1, t1, l1, t2)K
(vs1 − vt1

h

)
L
(vs2 − vt1

h

)
K

(vl1 − vt2
h

)
L
(vl2 − vt2

h

)]
=

1
n5h2

∑
Θ6

G(s1, t1, l1, t2)E

 ζ(vt1 )ζ(vt2 )

f (vt1 )2f (vt2 )2K
(vs1 − vt1

h

)
L
(vs2 − vt1

h

)
K

(vl1 − vt2
h

)
L
(vl2 − vt2

h

)]
=

1
n5h2

∑
Θ6

G(s1, t1, l1, t2)
∫
...

∫
ζ(vt1 )ζ(vt2 )

f (vt1 )2f (vt2 )2K
(vs1 − vt1

h

)
L
(vs2 − vt1

h

)
K

(vl1 − vt2
h

)
L
(vl2 − vt2

h

)
ft1,t2,s1,s2,l1,l2(vt1 ,vt2 ,vs1 ,vs2 ,vl1 ,vl2 )dvt1dvt2dvs1dvs2dvl1dvl2

=
1

n5h2

∑
Θ6

G(s1, t1, l1, t2)
∫
...

∫
ζ(z1)ζ(z2)
f (z1)2f (z2)2K(w1)L(w2)K(w3)L(w4)

ft1,t2,s1,s2,l1,l2(z1, z2, z1 +w1h,z1 +w2h,z2 +w3h,z2 +w4h)h4dw1dw2dw3dw4dz1dz2

=
h2

n5

∑
Θ6

G(s1, t1, l1, t2)
∫
...

∫
ζ(z1)ζ(z2)
f (z1)2f (z2)2K(w1)L(w2)K(w3)L(w4)

(
ft1,t2,s1,s2,l1,l2(z1, z2,

z1 +w1h,z1 +w2h,z2 +w3h,z2 +w4h)− f (z1)f (z2)f (z1 +w1h)f (z1 +w2h)

f (z2 +w3h)f (z2 +w4h) + f (z1)f (z2)f (z1 +w1h)f (z1 +w2h)f (z2 +w3h)f (z2 +w4h)
)

dw1dw2dw3dw4dz1dz2

=D3 +G3, (C.41)

where the second term is

1The term in the summation becomes 0 when one of the following conditions happens, s1 = t1, s2 = t1,

s1 = t2, or s2 = t2.
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G3 =
h2

n5

∑
Θ6

G(s1, t1, l1, t2)
∫
...

∫
ζ(z1)ζ(z2)
f (z1)2f (z2)2K(w1)L(w2)K(w3)L(w4)f (z1)f (z2)

f (z1 +w1h)f (z1 +w2h)f (z2 +w3h)f (z2 +w4h)dw1dw2dw3dw4dz1dz2

=
h2

n5

∑
Θ6

G(s1, t1, l1, t2)
∫
...

∫
ζ(z1)ζ(z2)
f (z1)2f (z2)2K(w1)L(w2)K(w3)L(w4)f (z1)f (z2)f (z1)

f ′(z1)w2hf (z2)f ′(z2)w4hdw1dw2dw3dw4dz1dz2

=
h4

n5

∑
Θ6

G(s1, t1, l1, t2)
(∫

ζ(z1)f ′(z1)dz1

)2 (∫
w2L(w2)dw2

)2

=
Ch4

n3

∑
s1,t1,l1,t2

G(s1, t1, l1, t2) =O(h4), (C.42)

in which we require
∫
wL(w)dw < ∞,

∫
ζ(z1)f ′(z1)dz1 < ∞ and it is straightforward

that
1
n3

∑
s1,t1,l1,t2

G(s1, t1, l1, t2) =O(1). (C.43)

While D3 is also o(1) because

|D3| =
(1 + o(1))h2

n5

∑
Θ6

|G(s1, t1, l1, t2)|
∫
...

∫ ∣∣∣∣∣∣ ζ(z1)ζ(z2)
f (z1)2f (z2)2

∣∣∣∣∣∣ ∣∣∣K(w1)L(w2)K(w3)L(w4)
∣∣∣

∣∣∣ft1,t2,s1,s2,l1,l2(z1, z2, z1, z1, z2, z2)− f (z1)3f (z2)3
∣∣∣dw1dw2dw3dw4dz1dz2

=
(1 + o(1))h2

n5

∑
Θ6

|G(s1, t1, l1, t2)|
(∫
|K(w1)|dw1

)2 (∫
|L(w2)|dw2

)2

" ∣∣∣∣∣∣ ζ(z1)ζ(z2)
f (z1)2f (z2)2

∣∣∣∣∣∣ ∣∣∣ft1,t2,s1,s2,l1,l2(z1, z2, z1, z1, z2, z2)− f (z1)3f (z2)3
∣∣∣dz1dz2

=O(h2), (C.44)

where we used the assumptions that
∫
|K(w)|dw <∞,

∫
|L(w)|dw <∞,

max
s1,t1,l1,t2

|G(s1, t1, l1, t2)| <∞ and

∑
Θ6

"
ζ(z1)ζ(z2)
f (z1)2f (z2)2

∣∣∣ft1,t2,s1,s2,l1,l2(z1, z2, z1, z1, z2, z2)− f (z1)3f (z2)3
∣∣∣dz1dz2 =O(n5).

(C.45)

Hence,

1
n5h2

∑
Θ6

G(s1, t1, l1, t2)E

 ζ(vt1 )ζ(vt2 )

f (vt1 )2f (vt2 )2K
(vs1 − vt1

h

)
L
(vs2 − vt1

h

)
K

(vl1 − vt2
h

)
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L
(vl2 − vt2

h

)]
= o(1). (C.46)

(2) Let G(s, t, l) = G(s, t, l, t), and letΘ3 denote t , s , l, and assume t1 = t2 = t, s1 = s2 = s,

l1 = l2 = l,.

1
n5h2

∑
Θ3

G(s, t, l)E

ζ(vt)2

f (vt)4K
(vs − vt

h

)
L
(vs − vt

h

)
K

(vl − vt
h

)
L
(vl − vt

h

)
=

1
n5h2

∑
Θ3

G(s, t, l)
$

ζ(vt)2

f (vt)4K
(vs − vt

h

)
L
(vs − vt

h

)
K

(vl − vt
h

)
L
(vl − vt

h

)
× f (vt,vs,vl)dvtdvsdvl

=
1

n5h2

∑
Θ3

G(s, t, l)
$

ζ(z)2

f (z)4K(w1)L(w1)K(w2)L(w2)ft,s,l(z,z+w1h,z+w2h)

× h2dw1dw2dz

=
1 + o(1)
n5

∑
Θ3

G(s, t, l)
$

ζ(z)2

f (z)4w1K
2(w1)w2K

2(w2)ft,s,l(z,z,z)dw1dw2dz

≤1 + o(1)
n5

∑
Θ3

|G(s, t, l)|
$ ∣∣∣∣∣∣ζ(z)2

f (z)4w1K
2(w1)w2K

2(w2)ft,s,l(z,z,z)

∣∣∣∣∣∣dw1dw1dz

=
1 + o(1)
n5

∑
Θ3

|G(s, t, l)|
(∫
|w1|K2(w1)dw1

)2∫ ∣∣∣∣∣∣ζ(z)2

f (z)4 ft,s,l(z,z,z)

∣∣∣∣∣∣dz
=O

(
1
n2

)
, (C.47)

where for any s, t, l, |G(s, t, l)| <∞,
∫
|w|K2(w)dw <∞, and

max
t,s,l

∫
ζ(z)2

f (z)4 ft,s,l(z,z,z)dz <∞. (C.48)

Therefore, when t1 = t2 = t, s1 = s2 = s, l1 = l2 = l, s , t , l,

1
n5h2

∑
Θ2

G(s, t, l, t)E

ζ(vt)2

f (vt)4K
(vs − vt

h

)
L
(vs − vt

h

)
K

(vl − vt
h

)
L
(vl − vt

h

)
=o(1). (C.49)

To summarize,

E[̃I2
2n] = o(1), (C.50)
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which implies that I2n = op(1). Thus we complete the proof. �

Proof of Lemma B.1.4: Without loss of generality2, we assume k = 1. Therefore, the

objective is to prove that

D1(n) =
1
n

n∑
t=1

(x̂t − x̃t)2 = op(1). (C.51)

Substitute x̂t and x̃t in D1(n),

D1(n) =
1
n

n∑
t=1

(x̂t − x̃t)2

=
1
n

n∑
t=1

xt − n∑
s=1

wns(t)xs − xt +
n∑
s=1

wns(t)xs


2

=
1
n

n∑
t=1

 n∑
s=1

(
wns(t)−wns(t)

)
xs


2

=
1
n

n∑
t=1

n∑
s=1

(
wns(t)−wns(t)

)2
x2
s +

1
n

n∑
t=1

n∑
s=1

n∑
r=1
r,s

(
wns(t)−wns(t)

)(
wnr (t)−wnr (t)

)
xsxr

=D11(n) +D12(n). (C.52)

Let Πs,t = wns(t)−wns(t). We define several useful notations as follows.

Ξ1(r, t) =
K

(
vr−vt
h

)
f (vt)

(g(τt)− g(τr)), Ξ2(r, t) =
K

(
vr−vt
h

)
f (vt)

(vt − vr),

Ξ3(l, t) =K2

(τl − τt
b

)
(g(τl)− g(τt)),Ξ4(l, t) = K2

(τl − τt
b

)
vt,

Ξ5(p, t, l) =Ξ3(l,p) +Ξ4(l,p)−Ξ3(l, t)−Ξ4(l, t).

Note that

Πs,t =
K

(
vs−vt
h

)
nhf̂ (vt)

−
K

(
v̂s−v̂t
h

)
nhf̂ (v̂t)

=
K

(
vs−vt
h

)
(f̂ (vt)− f̂ (v̂t))

nhf̂ (vt)f̂ (v̂t)

+

(
K

(
vt−vs
h

)
−K

(
v̂t−v̂s
h

))
nhf̂ (v̂t)

=
K

(
vs−vt
h

)
(f̂ (vt)− f̂ (v̂t))

nh(f (vt)2 + op(1))
+

(
K

(
vt−vs
h

)
−K

(
v̂t−v̂s
h

))
nh(f (vt) + op(1))

=(1 + op(1))


K

(
vs−vt
h

)
(f̂ (vt)− f̂ (v̂t))

nhf (vt)2 +

(
K

(
vt−vs
h

)
−K

(
v̂t−v̂s
h

))
nhf (vt)

 . (C.53)

2The proofs for the multivariate case can be carried out at the cost of more tedious derivations.
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By Taylor expansion, and denote Kd(p, t) = K ′
(vp−vt

h

)
,

K

(
vp − vt
h

)
−K

 v̂p − v̂th

 = (1 + op(1))K ′
(
vp − vt
h

)(vp − vth

)
−
 v̂p − v̂th




=(1 + op(1))Kd(p, t)

vp − v̂ph

− (1 + op(1))Kd(p, t)
(
vt − v̂t
h

)
=

(1 + op(1))

h
Kd(p, t)

(
ĝ(τp)− g(τp)

)
−

(1 + op(1))

h
Kd(p, t)

(
ĝ(τt)− g(τt)

)
=

(1 + op(1))

h
Kd(p, t)

 n∑
l=1

w∗nl(p)xp − g(τp)


−

(1 + op(1))

h
Kd(p, t)

 n∑
l=1

w∗nl(t)xt − g(τt)


=

(1 + op(1))2

nhb
Kd(p, t)

 n∑
l=1

K2

(
τl − τp
b

)
(g(τl)− g(τp)) +

n∑
l=1

K2

(
τl − τp
b

)
vl


−

(1 + op(1))2

nhb
Kd(p, t)

 n∑
l=1

K2

(τl − τt
b

)
(g(τl)− g(τt)) +

n∑
l=1

K2

(τl − τt
b

)
vt


,

(1 + op(1))2

nhb
Kd(p, t)

n∑
l=1

(
Ξ3(l,p) +Ξ4(l,p)−Ξ3(l, t)−Ξ4(l, t)

)
,

(1 + op(1))2

nhb
Kd(p, t)

n∑
l=1

Ξ5(p, t, l), (C.54)

where Ξ5(p, t, l) = Ξ3(l,p) +Ξ4(l,p)−Ξ3(l, t)−Ξ4(l, t). Meanwhile,

f̂ (vt)− f̂ (v̂t) =
1
nh

n∑
p=1

K (
vp − vt
h

)
−K

 v̂p − v̂th




=
(1 + op(1))

n2h2b

n∑
p=1

Kd(p, t)
n∑
l=1

Ξ5(p, t, l). (C.55)

Therefore,

Πs,t =(1 + op(1))

 K
(
vs−vt
h

)
n3h3bf (vt)2

n∑
p=1

Kd(p, t)
n∑
l=1

Ξ5(p, t, l)


+ (1 + op(1))

(
Kd(s, t)

∑n
l=1Ξ5(s, t, l)

n2h2bf (vt)

)
, (1 + op(1))(Πs,t,1 +Πs,t,2). (C.56)

We then have

D11(n) =
1
n

n∑
t=1

n∑
s=1

(
wns(t)−wns(t)

)2
x2
s =

1
n

n∑
t=1

n∑
s=1

(
(1 + op(1))(Πs,t,1 +Πs,t,2)

)2
x2
s



C.1. PROOFS OF THE LEMMAS IN APPENDIX B.1 123

=
(1 + op(1))

n

n∑
t=1

n∑
s=1

(Πs,t,1 +Πs,t,2)2x2
s , (1 + op(1))D̃11. (C.57)

Also note that

D̃11 =
1
n

n∑
t=1

n∑
s=1

(Πs,t,1 +Πs,t,2)2x2
s

≤2
n

n∑
t=1

n∑
s=1

Π2
s,t,1x

2
s +

2
n

n∑
t=1

n∑
s=1

Π2
s,t,2x

2
s , 2D̃11,1 + 2D̃11,2 (C.58)

Hence we need to show that D̃11,1 = op(1) and D̃11,2 = op(1). As the all the terms in D̃11,i

are positive, we only need to show that E[D̃11,i]→ 0 as n→∞ for i = 1,2. We omit the

proofs here as they belong to special and simpler cases of our subsequent proofs for

D12(n). Then we move on to prove the term D12(n).

D12(n) =
1
n

n∑
t=1

n∑
s=1

n∑
r=1
r,s

(
wns(t)−wns(t)

)(
wnr(t)−wnr(t)

)
xsxr

=
(1 + op(1))

n

n∑
t=1

n∑
s=1

n∑
r=1
r,s

(
Πs,t,1 +Πs,t,2

)(
Πr,t,1 +Πr,t,2

)
xsxr

=(1 + op(1))

1
n

n∑
t=1

n∑
s=1

n∑
r=1
r,s

Πs,t,1Πr,t,1xsxr +
1
n

n∑
t=1

n∑
s=1

n∑
r=1
r,s

Πs,t,1Πr,t,2xsxr

+
1
n

n∑
t=1

n∑
s=1

n∑
r=1
r,s

Πs,t,2Πr,t,1xsxr +
1
n

n∑
t=1

n∑
s=1

n∑
r=1
r,s

Πs,t,2Πr,t,2xsxr


,(1 + op(1))

(
D̃12,1(n) + D̃12,2(n) + D̃12,3(n) + D̃12,4(n)

)
. (C.59)

Therefore, we need to prove that D̃12,i(n) = op(1) for i = 1,2,3,4. We take D̃12,1(n) as an

example, and other terms can be proved similarly.

D̃12,1(n) =
1
n

n∑
t=1

n∑
s=1

n∑
r=1
r,s

Πs,t,1Πr,t,1xsxr

=
1

n7h6b2

n∑
t=1

n∑
s=1

n∑
r=1
r,s

K
(
vs−vt
h

)
K

(
vr−vt
h

)
f (vt)4
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×
n∑

p1=1

Kd(p1, t)
n∑

l1=1

Ξ5(p1, t, l1)
n∑

p2=1

Kd(p2, t)
n∑

l2=1

Ξ5(p2, t, l2)xsxr

=
1

n7h6b2

n∑
t=1

n∑
s=1

n∑
r=1
r,s

K
(
vs−vt
h

)
K

(
vr−vt
h

)
f (vt)4

×
n∑

p1=1

Kd(p1, t)
n∑

l1=1

(
Ξ3(l1,p1) +Ξ4(l1,p1)−Ξ3(l1, t)−Ξ4(l1, t)

)
×

n∑
p2=1

Kd(p2, t)
n∑

l2=1

(
Ξ3(l2,p2) +Ξ4(l2,p2)−Ξ3(l2, t)−Ξ4(l2, t)

)
xsxr . (C.60)

We pick one typical term to demonstrate the proving methods, and other terms can be

conducted similarly. Note that xt = g(τt) + vt,

1
n7h6b2

n∑
t=1

n∑
s=1

n∑
r=1
r,s

n∑
l1=1

n∑
p1=1

n∑
l2=1

n∑
p2=1

K
(
vs−vt
h

)
K

(
vr−vt
h

)
f (vt)4 Kd(p1, t)Ξ3(l1,p1)Kd(p2, t)

Ξ3(l2,p2)g(τs)g(τr) ∼
1

n7h6b2

∑
Θ7

K
(
vs−vt
h

)
K

(
vr−vt
h

)
f (vt)4 Kd(p1, t)K2

(
τl1 − τp1

b

)
(g(τl1)− g(τp1

))Kd(p2, t)K2

(
τl2 − τp2

b

)
(g(τl2)− g(τp2

))g(τs)g(τr), (C.61)

where ∼means that they have the same order. Also note that

E


∣∣∣∣∣∣∣∣
K

(
vs−vt
h

)
K

(
vr−vt
h

)
h4f (vt)4 Kd(p1, t)Kd(p2, t)

∣∣∣∣∣∣∣∣
 ≤ C, (C.62)

for some C > 0 and

1
n2b2

n∑
l=1

n∑
p=1

∣∣∣∣∣∣K2

(
τl − τp
b

)
(g(τl)− g(τp))

∣∣∣∣∣∣ = (1 + o(1))C. (C.63)

Therefore,

E


∣∣∣∣∣∣∣∣ 1
n7h6b2

∑
Θ7

K
(
vs−vt
h

)
K

(
vr−vt
h

)
f (vt)4 Kd(p1, t)K2

(
τl1 − τp1

b

)
(g(τl1)− g(τp1

))Kd(p2, t)

K2

(
τl2 − τp2

b

)
(g(τl2)− g(τp2

))g(τs)g(τr)

∣∣∣∣∣∣


≤ 1
n7h6b2

∑
Θ7

E


∣∣∣∣∣∣∣∣
K

(
vs−vt
h

)
K

(
vr−vt
h

)
f (vt)4 Kd(p1, t)Kd(p2, t)

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣K2

(
τl1 − τp1

b

)
(g(τl1)− g(τp1

))
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K2

(
τl2 − τp2

b

)
(g(τl2)− g(τp2

))g(τs)g(τr)

∣∣∣∣∣∣
≤ C

n7h2b2

∑
Θ7

∣∣∣∣∣∣K2

(
τl1 − τp1

b

)
(g(τl1)− g(τp1

))K2

(
τl2 − τp2

b

)
(g(τl2)− g(τp2

))g(τs)g(τr)

∣∣∣∣∣∣
=(1 + o(1))Cb2/h2 =O(b2/h2). (C.64)

Similarly, we can show that other terms are all op(1). Therefore, D̃12,1 = op(1), hence

D12,1 = op(1). (C.65)

It is similar to show that

D12,i = op(1). (C.66)

for i = 2,3,4. Hence, we are able to show that D11 = op(1),D12 = op(1). To summarize,

D1 = op(1). (C.67)

Thus,we complete the proof. �

Proof of Lemma B.1.3: As x̃t = g̃(τt) + ṽt, we have

1
√
n

n∑
t=1

x̃tu t =
1
√
n

n∑
t=1

g̃(τt)u t +
1
√
n

n∑
t=1

ṽtu t , G1(n) +G2(n), (C.68)

hence, we need to show that both G1(n) and G2(n) are op(1). Note that by previous

definition,

G1(n) =
1
√
n

n∑
t=1

g̃(τt)u t =
1
√
n

n∑
t=1

g(τt)−
n∑
s=1

wns(t)g(τs)


 n∑
l=1

wnl(t)ul


=

1
√
n

n∑
t=1

 1
nh

n∑
s=1

K
(
vs−vt
h

)
(g(τt)− g(τs))

f̂ (vt)


 1
nh

n∑
l=1

K
(
vl−vt
h

)
ul

f̂ (vt)


=

1 + op(1)

n2
√
nh2

n∑
t=1

n∑
s=1

n∑
l=1

K
(
vs−vt
h

)
(g(τt)− g(τs))K

(
vl−vt
h

)
ul

f (vt)2 , (1 + op(1))G̃1(n).

(C.69)

Therefore, it suffices to show that G̃1(n) is op(1). Note that

G̃1(n)2 =

 1
n2
√
nh2

n∑
t=1

n∑
s=1

n∑
l=1

K
(
vs−vt
h

)
(g(τt)− g(τs))K

(
vl−vt
h

)
ul

f (vt)2


2
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=
1

n5h4

n∑
t1=1

n∑
t2=1

n∑
s1=1

n∑
s2=1

n∑
l1=1

n∑
l2=1

K
(vs1−vt1

h

)
K

(vs2−vt2
h

)
K

(vl1−vt1
h

)
K

(vl2−vt2
h

)
f (vt1)2f (vt2)2

×ul1ul2(g(τt1)− g(τs1))(g(τt2)− g(τs2)). (C.70)

By Assumption 2.3.3, for the α-mixing error term ut, we have

E

1
n

n∑
l1=1

n∑
l2=1

ul1ul2

 =
1
n

n∑
l1=1

n∑
l2=1

E
[
ul1ul2

]
=O(1). (C.71)

Meanwhile,

E

K
(vs1−vt1

h

)
K

(vs2−vt2
h

)
K

(vl1−vt1
h

)
K

(vl2−vt2
h

)
h4f (vt1)2f (vt2)2


=
∫
...

∫ K
(vs1−vt1

h

)
K

(vs2−vt2
h

)
K

(vl1−vt1
h

)
K

(vl2−vt2
h

)
h4f (vt1)2f (vt2)2 f (vs1 ,vs2 ,vl1 ,vl2 ,vt1 ,vt2)

dvs1dvs2dvl1dvl2dvt1dvt2

=
&

K(w1)K(w2)K(w3)K(w4)
f (z1)2f (z2)2 fs1,s2,l1,l2,t1,t2(z1 +w1h,z2 +w2h,z1 +w3h

,z2 +w4h,z1, z2)dw1dw2dw3dw4dz1dz2

=(1 + o(1))
(∫

K(w1)dw1

)4 "
fs1,s2,l1,l2,t1,t2(z1, z2, z1, z2, z1, z2)

f (z1)2f (z2)2 dz1dz2

=(1 + o(1))
"

fs1,s2,l1,l2,t1,t2(z1, z2, z1, z2, z1, z2)

f (z1)2f (z2)2 dz1dz2, (C.72)

where"
fs1,s2,l1,l2,t1,t2(z1, z2, z1, z2, z1, z2)

f (z1)2f (z2)2 dz1dz2

=
"

fs1,s2,l1,l2,t1,t2(z1, z2, z1, z2, z1, z2)− f (z1)3f (z2)3

f (z1)2f (z2)2 dz1dz2 +
"

f (z1)f (z2)dz1dz2

,B4(s1, s2, t1, t2) + 1. (C.73)

Therefore,3

E
[
G̃1(n)2

]
=

1 + o(1)
n5

n∑
t1=1

n∑
t2=1

n∑
s1=1

n∑
s2=1

n∑
l1=1

n∑
l2=1

(
B4(s1, s2, t1, t2) + 1

)
E
[
ul1ul2

]
3Here, we only need to consider the condition when all the indexes are not equal to each other since

the quantity would be a higher order when we have equal indexes.
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× (g(τt1)− g(τs1))(g(τt2)− g(τs2))

=
1 + o(1)
n5

n∑
t1=1

n∑
t2=1

n∑
s1=1

n∑
s2=1

n∑
l1=1

n∑
l2=1

B4(s1, s2, t1, t2)E
[
ul1ul2

]
× (g(τt1)− g(τs1))(g(τt2)− g(τs2))

+
1 + o(1)
n5

n∑
t1=1

n∑
t2=1

n∑
s1=1

n∑
s2=1

n∑
l1=1

n∑
l2=1

E
[
ul1ul2

]
(g(τt1)− g(τs1))(g(τt2)− g(τs2))

=(1 + o(1))
(
ẼG11(n) + ẼG12(n)

)
. (C.74)

We show that∣∣∣∣ẼG11(n)
∣∣∣∣

=

∣∣∣∣∣∣∣∣ 1
n5

n∑
t1=1

n∑
t2=1

n∑
s1=1

n∑
s2=1

n∑
l1=1

n∑
l2=1

B4(s1, s2, t1, t2)E
[
ul1ul2

]
(g(τt1)− g(τs1))(g(τt2)− g(τs2))

∣∣∣∣∣∣∣∣
≤ 1
n4

n∑
t1=1

n∑
t2=1

n∑
s1=1

n∑
s2=1

∣∣∣B4(s1, s2, t1, t2)
∣∣∣

1
n

n∑
l1=1

n∑
l2=1

∣∣∣∣E [
ul1ul2

]∣∣∣∣ ∣∣∣(g(τt1)− g(τs1))(g(τt2)− g(τs2))
∣∣∣

=o(1)O(1) = o(1), (C.75)

and by Assumption 2.3.4,

1
n4

n∑
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n∑
t2=1

n∑
s1=1

n∑
s2=1

∣∣∣B4(s1, s2, t1, t2)
∣∣∣

=
1
n4

n∑
t1=1

n∑
t2=1

n∑
s1=1

n∑
s2=1

∣∣∣∣∣∣∣
"

fs1,s2,l1,l2,t1,t2(z1, z2, z1, z2, z1, z2)− f (z1)3f (z2)3

f (z1)2f (z2)2 dz1dz2

∣∣∣∣∣∣∣
≤ 1

n4c4
f

n∑
t1=1

n∑
t2=1

n∑
s1=1

n∑
s2=1

max
l1,l2

" ∣∣∣fs1,s2,l1,l2,t1,t2(z1, z2, z1, z2, z1, z2)− f (z1)3f (z2)3
∣∣∣dz1dz2 = o(1). (C.76)

Also note that

ẼG12(n) =
1
n5

n∑
t1=1

n∑
t2=1

n∑
s1=1

n∑
s2=1

n∑
l1=1

n∑
l2=1

E
[
ul1ul2

]
(g(τt1)− g(τs1))(g(τt2)− g(τs2))
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=

 1
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
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1
n

)
, (C.77)

where
∑n
l1=1

∑n
l2=1 E

[
ul1ul2

]
= O(n) because ut is a statioanry α-mixing process. There-

fore, we have E[G̃1(n)2] = o(1), which implies that G1(n) = op(1). While for G2(n),

G2(n) =
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f (vt)2 , (1 + op(1))G̃2(n). (C.78)

Thus it is sufficient to show G̃2(n) = op(1). Let L(u) = uK(u), and note that

G̃2(n)2 =

 1
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√
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n∑
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)
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f (vt1)2f (vt2)2 . (C.79)

Similar to the previous proof, we have

E
[
G̃2(n)2
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=O(h2) = o(1), (C.80)

where we used the results that∣∣∣∣∣∣∣∣∣E
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=
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)
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)
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=h4
∫
...

∫ ∣∣∣∣∣∣L(w1)K(w2)L(w3)K(w4)
f (z1)2f (z2)2
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∣∣∣dw1dw2dw3dw4dz1dz2

=(1 + o(1))h4
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|L(w)|dw

)2 (∫
|K(w)|dw

)2

×
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f (z1)2f (z2)2
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≤(1 + o(1))h4
(∫
|L(w)|dw

)2 (∫
|K(w)|dw
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×
"
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f (z1)2f (z2)2 dz1dz2

=O(h4), (C.81)

where as for s1 , s2 , l1 , l2 , t1 , t2 uniformly, we have

max
s1,s2,l1,l2,t1,t2

"
fs1,s2,l1,l2,t1,t2(z1, z2, z1, z2, z1, z2)

f (z1)2f (z2)2 dz1dz2 <∞. (C.82)

Therefore, E
[
G̃2(n)2

]
= o(1) implies that G2(n) = op(1). To summarize,

1
√
n

n∑
t=1

x̃tu t = G1(n) +G2(n) = op(1). (C.83)

Thus we complete the proof. �

Proof of Lemma B.1.5 :

We first decompose the equation as

1
√
n

(
X̂ ′ ê − X̃ ′ ẽ

)
=

1
√
n

(
X̂ ′ ê − X̃ ′ ê+ X̃ ′ ê − X̃ ′ ẽ

)
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=
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(̂e − ẽ) +

1
√
n

(
X̂ − X̃

)′
ẽ+

1
√
n
X̃ ′ (̂e − ẽ)

=P1(n) + P2(n) + P3(n), (C.84)

where P1(n) =
(
X̂ − X̃

)′
(̂e − ẽ) /

√
n, P2(n) =

(
X̂ − X̃

)′
ẽ/
√
n, P3(n) = X̃ ′ (̂e − ẽ) /

√
n. There-

fore, it suffices to show that Pi(n) = op(1) as n→∞ for i = 1,2,3.Note that ê = λ̂(V )+Û ,

ẽ = λ̃(V ) + Ũ , and write λt = λ(vt). We have

P1(n) =
1
√
n

(
X̂ − X̃

)′
(̂e − ẽ) =

1
√
n

n∑
t=1

(x̂t − x̃t)(̂et − ẽt)

=
1
√
n

n∑
t=1

(x̂t − x̃t)(λ̂t − λ̃t) +
1
√
n

n∑
t=1

(x̂t − x̃t)(ût − ũt) = P11(n) + P12(n), (C.85)

P2(n) =
1
√
n

(
X̂ − X̃

)′
ẽ =

1
√
n

n∑
t=1

(x̂t − x̃t )̃et

=
1
√
n

n∑
t=1

(x̂t − x̃t)λ̃t +
1
√
n

n∑
t=1

(x̂t − x̃t)ũt = P21(n) + P22(n). (C.86)

P3(n) =
1
√
n
X̃ ′ (̂e − ẽ) =

1
√
n

n∑
t=1

x̃t (̂et − ẽt) =
1
√
n

n∑
t=1

x̃t(λ̂t − λ̃t) +
1
√
n

n∑
t=1

x̃t(ût − ũt)

=P31(n) + P32(n). (C.87)

Hence, our objective is to show that Pij(n) = op(1) for i = 1,2,3, j = 1,2. Note that

P32(n) =
1
√
n

n∑
t=1

x̃t(ût − ũt) =
1
√
n

n∑
t=1

n∑
s=1

x̃t
(
wns(t)−wns(t)

)
us =

1
√
n

n∑
t=1

n∑
s=1

x̃tΠs,tus,

(C.88)

where Πs,t =
(
wns(t)−wns(t)

)
. We define several useful notations as follows.

Ξ1(r, t) =
K

(
vr−vt
h

)
f (vt)

(g(τt)− g(τr)), Ξ2(r, t) =
K

(
vr−vt
h

)
f (vt)

(vt − vr),
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Ξ3(l, t) =K2

(τl − τt
b

)
(g(τl)− g(τt)), Ξ4(l, t) = K2

(τl − τt
b

)
vt,

Ξ5(p, t, l) =Ξ3(l,p) +Ξ4(l,p)−Ξ3(l, t)−Ξ4(l, t).

As x̃t = g̃(τt) + ṽt, we have

g̃(τt) =g(τt)−
n∑
r=1

wnr(t)g(τr) =
1
nh

n∑
r=1

K
(
vr−vt
h

)
f̂ (vt)

(g(τt)− g(τr))

=
1 + op(1)

nh

n∑
r=1

K
(
vr−vt
h

)
f (vt)

(g(τt)− g(τr)),
1 + op(1)

nh

n∑
r=1

Ξ1(r, t), (C.89)

Similarly,

ṽt =
1 + op(1)

nh

n∑
r=1

K
(
vr−vt
h

)
f (vt)

(vt − vr),
1 + op(1)

nh

n∑
r=1

Ξ2(r, t). (C.90)

Also note that

Πs,t =
K

(
vs−vt
h

)
nhf̂ (vt)

−
K

(
v̂s−v̂t
h

)
nhf̂ (v̂t)

=
K

(
vs−vt
h

)
(f̂ (vt)− f̂ (v̂t))

nhf̂ (vt)f̂ (v̂t)
+

(
K

(
vt−vs
h

)
−K

(
v̂t−v̂s
h

))
nhf̂ (v̂t)

=
K

(
vs−vt
h

)
(f̂ (vt)− f̂ (v̂t))

nh(f (vt)2 + op(1))
+

(
K

(
vt−vs
h

)
−K

(
v̂t−v̂s
h

))
nh(f (vt) + op(1))

=(1 + op(1))


K

(
vs−vt
h

)
(f̂ (vt)− f̂ (v̂t))

nhf (vt)2 +

(
K

(
vt−vs
h

)
−K

(
v̂t−v̂s
h

))
nhf (vt)

 . (C.91)

By Taylor expansion, and denote Kd(p, t) = K ′
(vp−vt

h

)
,

K

(
vp − vt
h

)
−K

 v̂p − v̂th

 = (1 + op(1))K ′
(
vp − vt
h

)(vp − vth

)
−
 v̂p − v̂th




=(1 + op(1))Kd(p, t)

vp − v̂ph

− (1 + op(1))Kd(p, t)
(
vt − v̂t
h

)
=(1 + op(1))h−1Kd(p, t)

(
ĝ(τp)− g(τp)

)
− (1 + op(1))h−1Kd(p, t)

(
ĝ(τt)− g(τt)

)
=(1 + op(1))h−1Kd(p, t)

 n∑
l=1

w∗nl(p)xp − g(τp)


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− (1 + op(1))h−1Kd(p, t)

 n∑
l=1

w∗nl(t)xt − g(τt)


=

(1 + op(1))2

nhb
Kd(p, t)

 n∑
l=1

K2

(
τl − τp
b

)
(g(τl)− g(τp)) +

n∑
l=1

K2

(
τl − τp
b

)
vl


−

(1 + op(1))2

nhb
Kd(p, t)

 n∑
l=1

K2

(τl − τt
b

)
(g(τl)− g(τt)) +

n∑
l=1

K2

(τl − τt
b

)
vt


,

(1 + op(1))2

nhb
Kd(p, t)

n∑
l=1

(
Ξ3(l,p) +Ξ4(l,p)−Ξ3(l, t)−Ξ4(l, t)

)
,

(1 + op(1))2

nhb
Kd(p, t)

n∑
l=1

Ξ5(p, t, l), (C.92)

where Ξ5(p, t, l) = Ξ3(l,p) +Ξ4(l,p)−Ξ3(l, t)−Ξ4(l, t), Meanwhile,

f̂ (vt)− f̂ (v̂t) =
1
nh

n∑
p=1

K (
vp − vt
h

)
−K

 v̂p − v̂th




=
(1 + op(1))

n2h2b

n∑
p=1

Kd(p, t)
n∑
l=1

Ξ5(p, t, l). (C.93)

Therefore,

Πs,t =(1 + op(1))

 K
(
vs−vt
h

)
n3h3bf (vt)2

n∑
p=1

Kd(p, t)
n∑
l=1

Ξ5(p, t, l)


+ (1 + op(1))

(
Kd(s, t)

∑n
l=1Ξ5(s, t, l)

n2h2bf (vt)

)
. (C.94)

To summarize,

P32(n) =
(1 + op(1))
√
n

n∑
t=1

n∑
s=1

 1
nh

n∑
r=1

Ξ1(r, t) +Ξ2(r, t)

 K
(
vs−vt
h

)
n3h3bf (vt)2

n∑
p=1

Kd(p, t)
n∑
l=1

Ξ5(p, t, l) +
Kd(s, t)

∑n
l=1Ξ5(s, t, l)

n2h2bf (vt)

us
=

(1 + op(1))
√
nn4h4b

n∑
t=1

n∑
s=1

n∑
r=1

n∑
p=1

n∑
l=1

K
(
vs−vt
h

)
Kd(p, t)

f (vt)2

(
Ξ1(r, t) +Ξ2(r, t)

)
Ξ5(p, t, l)us

+
(1 + op(1))
√
nn3h3b

n∑
t=1

n∑
s=1

n∑
r=1

n∑
l=1

Kd(s, t)
f (vt)

(
Ξ1(r, t) +Ξ2(r, t)

)
Ξ5(s, t, l)us. (C.95)



C.1. PROOFS OF THE LEMMAS IN APPENDIX B.1 133

Replacing Ξ5(p, t, l) = Ξ3(l,p) +Ξ4(l,p)−Ξ3(l, t)−Ξ4(l, t), it is equivalent to prove that

the following quantities are op(1).

W1 =
1

√
nn4h4b

n∑
t=1

n∑
s=1

n∑
r=1

n∑
p=1

n∑
l=1

K
(
vs−vt
h

)
Kd(p, t)

f (vt)2

(
Ξ1(r, t) +Ξ2(r, t)

)
(
Ξ3(l,p) +Ξ4(l,p)−Ξ3(l, t)−Ξ4(l, t)

)
us. (C.96)

W2 =
1

√
nn3h3b

n∑
t=1

n∑
s=1

n∑
r=1

n∑
l=1

Kd(s, t)
f (vt)

(
Ξ1(r, t) +Ξ2(r, t)

)
(
Ξ3(l,p) +Ξ4(l,p)−Ξ3(l, t)−Ξ4(l, t)

)
us. (C.97)

We consider one typical term, for example,

w1 =
1

√
nn4h4b

n∑
t=1

n∑
s=1

n∑
r=1

n∑
p=1

n∑
l=1

K
(
vs−vt
h

)
Kd(p, t)

f (vt)2 Ξ1(r, t)Ξ3(l,p)us. (C.98)

It suffices to show that w1 is op(1) if E[w2
1] → 0 as n → ∞. We only consider the

condition that all subscripts are not equal (denoted as Θ10), and it is straightforward

that the conclusion still holds for the rest of the conditions.

∣∣∣E[w2
1]
∣∣∣ =

∣∣∣∣E[ 1
n9h8b2

∑
Θ10

K
(vs1−vt1

h

)
K ′

(vp1−vt1
h

)
K

(vr1−vt1
h

)
f (vt1)3

K
(vs2−vt2

h

)
K ′

(vp2−vt2
h

)
K

(vr2−vt2
h

)
f (vt2)3 (g(τt1)− g(τr1))(g(τt2)− g(τr2))

K2

(
τl1 − τp1

b

)
(g(τl1)− g(τp1

))K2

(
τl2 − τp2

b

)
(g(τl2)− g(τp2

))us1us2

]∣∣∣∣
≤ 1
n9h8b2

∑
Θ10

∣∣∣∣(g(τt1)− g(τr1))(g(τt2)− g(τr2))
∣∣∣∣∣∣∣∣E[

us1us2

]

E
[K (vs1−vt1

h

)
K ′

(vp1−vt1
h

)
K

(vr1−vt1
h

)
f (vt1)3

K
(vs2−vt2

h

)
K ′

(vp2−vt2
h

)
K

(vr2−vt2
h

)
f (vt2)3

]∣∣∣∣∣∣∣∣K2

(
τl1 − τp1

b

)
(g(τl1)− g(τp1

))K2

(
τl2 − τp2

b

)
(g(τl2)− g(τp2

))
∣∣∣∣

≤ 1
n9h8b2

∑
Θ10

∣∣∣∣(g(τt1)− g(τr1))(g(τt2)− g(τr2))
∣∣∣∣∣∣∣∣E[

us1us2

]∣∣∣∣



134 APPENDIX C. PROOFS OF THE LEMMAS IN APPENDIX B

Ch6
∣∣∣∣K2

(
τl1 − τp1

b

)
(g(τl1)− g(τp1

))K2

(
τl2 − τp2

b

)
(g(τl2)− g(τp2

))
∣∣∣∣

=
C

n5h2b2

n∑
s1=1

n∑
s2=1

∣∣∣∣E[
us1us2

]∣∣∣∣ n∑
l1=1

n∑
p1=1

∣∣∣∣K2

(
τl1 − τp1

b

)
(g(τl1)− g(τp1

))
∣∣∣∣

n∑
l2=1

n∑
p2=1

∣∣∣∣K2

(
τl2 − τp2

b

)
(g(τl2)− g(τp2

))
∣∣∣∣

=
Cb2

nh2

n∑
s1=1

n∑
s2=1

∣∣∣∣E[
us1us2

]∣∣∣∣
≤Cb

2

nh2

n∑
s1=1

n∑
s2=1

α
δ

2+δ (s1 − s2)E|us1 |
2+δE|us2 |

2+δ =O(b2/h2), (C.99)

where we used the results as follows.∣∣∣∣E[K (vs1−vt1
h

)
K ′

(vp1−vt1
h

)
K

(vr1−vt1
h

)
K

(vs2−vt2
h

)
K ′

(vp2−vt2
h

)
K

(vr2−vt2
h

)
f (vt1)3f (vt2)3

]∣∣∣∣
=
∣∣∣∣∫ ...

∫
K(w1)K ′(w2)K(w3)K(w4)K ′(w5)K(w6)

f (z1)3f (z2)3 fs1,p1,r1,s2,p2,r2,t1,t2(z1 +w1h,z1

+w2h,z1 +w3h,z2 +w4h,z2 +w5h,z2 +w6h,z1, z2)h6dw1dw2dw3dw4dw5dw6dz1dz2

∣∣∣∣
≤
∫
...

∫ ∣∣∣∣K(w1)K ′(w2)K(w3)K(w4)K ′(w5)K(w6)
f (z1)3f (z2)3 fs1,p1,r1,s2,p2,r2,t1,t2(z1 +w1h,

z1 +w2h,z1 +w3h,z2 +w4h,z2 +w5h,z2 +w6h,z1, z2)h6
∣∣∣∣dw1dw2dw3dw4dw5dw6dz1dz2

=(1 + o(1))h6
∫
...

∫ ∣∣∣∣K(w1)K ′(w2)K(w3)K(w4)K ′(w5)K(w6)
f (z1)3f (z2)3

∣∣∣∣∣∣∣∣fs1,p1,r1,s2,p2,r2,t1,t2

(z1, z1, z1, z2, z2, z2, z1, z2)
∣∣∣∣dw1dw2dw3dw4dw5dw6dz1dz2

=(1 + o(1))h6
∫
|K(w1)|dw1

∫
|K ′(w2)|dw2

∫
|K(w3)|dw3

∫
|K(w4)|dw4

∫
|K ′(w5)|

dw5

∫
|K(w6)|dw6

" ∣∣∣∣fs1,p1,r1,s2,p2,r2,t1,t2(z1, z1, z1, z2, z2, z2, z1, z2)

f (z1)3f (z2)3

∣∣∣∣dz1dz2

≤(1 + o(1))h6
(∫
|K(w1)|dw1

)4 (∫
|K ′(w2)|dw2

)2

" ∣∣∣∣fs1,p1,r1,s2,p2,r2,t1,t2(z1, z1, z1, z2, z2, z2, z1, z2)

f (z1)3f (z2)3

∣∣∣∣dz1dz2 ≤ (1 + o(1))Ch6, (C.100)

for some C > 0 and

max
s1,p1,r1,s2,p2,r2,t1,t2

"
fs1,p1,r1,s2,p2,r2,t1,t2(z1, z1, z1, z2, z2, z2, z1, z2)

f (z1)3f (z2)3 dz1dz2 <∞. (C.101)
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In the same time, by the definition of Riemann Integral,

1
n2

n∑
l=1

n∑
p=1

∣∣∣∣K2

(
τl − τp
b

)
(g(τl)− g(τp))

∣∣∣∣ =
1
n2

n∑
l=1

n∑
p=1

∣∣∣∣K2

(
τl − τp
b

)
(τl − τp)g ′(τp)

∣∣∣∣
→

" ∣∣∣∣∣K2

(y − x
b

)
(y − x)

∣∣∣∣∣ ∣∣∣g ′(x)
∣∣∣dydx = b

" ∣∣∣∣∣K2

(y − x
b

)(y − x
b

)∣∣∣∣∣ ∣∣∣g ′(x)
∣∣∣dydx

=b2
∫ ∣∣∣K2(w)w

∣∣∣dw∫ ∣∣∣g ′(x)
∣∣∣dx =O(b2). (C.102)

where
∫
|K2(w)w|dw <∞, and

∫
|g ′(x)|dx <∞. Thus we complete the proof. �

C.2 Proofs of the Lemmas in Appendix B.2

Proof of Lemma B.2.1:

1

n
di
2

n∑
t=1

gi(t)(ε̃t−1 − ε̃t) =
1
√
n

n∑
t=1

gi(t)

n
di−1

2

(ε̃t−1 − ε̃t)

=
1
√
n

n∑
t=1

g̃i(τt)(ε̃t−1 − ε̃t) =
1
√
n

n∑
t=1

(
g̃i(τt)ε̃t−1 − g̃i(τt)ε̃t

)
=

1
√
n

n∑
t=1

(
g̃i(τt)ε̃t−1 − g̃i(τt−1)ε̃t−1 + g̃i(τt−1)ε̃t−1 − g̃i(τt)ε̃t

)
=

1
√
n

n∑
t=1

(
g̃i(τt)ε̃t−1 − g̃i(τt−1)ε̃t−1

)
+

1
√
n

n∑
t=1

(
g̃i(τt−1)ε̃t−1 − g̃i(τt)ε̃t

)
=

1
√
n

n∑
t=1

(
g̃i(τt)− g̃i(τt−1)

)
ε̃t−1 +

1
√
n

(
g̃i(τ0)ε̃0 − g̃i(τn)ε̃n

)
, (C.103)

where the second term is op(1/
√
n). For the first term, by Taylor expansion,

ζ3(n) =
1
√
n

n∑
t=1

(
g̃i(τt)− g̃i(τt−1)

)
ε̃t−1 =

1
n
√
n

n∑
t=1

g̃ ′i (τt−1)ε̃t−1. (C.104)

It is easy to show that E[ζ3(n)] = 0 and E[ζ3(n)2] = O(n−2). Therefore, as n→ ∞, we

have
1
√
n

n∑
t=1

g̃i(τt)(ε̃t−1 − ε̃t) −→P 0.

We then complete the proof. �
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Proof of Lemma B.2.2: We need to show that as n→∞,

1
ndi /2

ε̃η
f
i,0 −→P 0, (C.105)

1
ndi /2

ε̃η
f
i,n −→P 0, (C.106)

where ε̃ηfi,t = f̃i,0(L)(εtηit − θi) =
∑∞
s=0 f̃i,0s(εt−sηi,t−s − θi) and f̃i,0s =

∑∞
k=s+1φkψk,i . It is

obvious that

E
[

1
ndi /2

ε̃η
f
i,n

]
=

1
ndi /2

E

 ∞∑
s=0

f̃i,0s(εt−sηi,t−s −θi)


=

1
ndi /2

∞∑
s=0

f̃i,0s(E
[
εt−sηi,t−s

]
−θi) = 0. (C.107)

Meanwhile,

E

( 1
ndi /2

ε̃η
f
i,n

)2
 =

1
ndi

∞∑
s=0

f̃ 2
i,0sE[(εt−sηi,t−s −θi)2]

+
2
ndi

∞∑
s1=0

∞∑
s2=s1+1

f̃i,0s1 f̃i,0s2E[(εt−s1ηi,t−s1 −θi)(εt−s2ηi,t−s2 −θi)]

=
δ̃22 −θ2

i

ndi

∞∑
s=0

f̃ 2
i,0s =O(n−di ), (C.108)

given that
∑∞
s=0 f̃

2
i,0s <∞. Therefore, as n→∞, (C.105) holds. Similarly, we can prove

(C.106) given the same condition. Thus we complete the proof for Lemma B.2.2. �

Proof of Lemma B.2.3 and B.2.4 In these two Lemmas, we define

B
f
i,t =

∞∑
q=1

f̃i,q(L)εtηi,t−q, (C.109)

Bmi,t =
∞∑
q=1

m̃i,q(L)εt−qηit, (C.110)

where f̃i,q(L) =
∑∞
s=0 f̃i,qsL

s, f̃i,qs =
∑∞
p=s+1φpψp+q,i and m̃i,q(L) =

∑∞
s=0 m̃i,qsL

s, m̃i,qs =∑∞
p=s+1φp+qψp,i . Therefore, it is obvious that for any t,

E
[

1
ndi /2

B
f
i,t

]
= E

 1
ndi /2

∞∑
q=1

∞∑
s=0

fi,qsεt−sηi,t−q−s


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=
1

ndi /2

∞∑
q=1

∞∑
s=0

fi,ksE[εt−sηi,t−q−s] = 0, (C.111)

and

E
[

1
ndi /2

Bmi,t

]
= E

 1
ndi /2

∞∑
q=1

∞∑
s=0

mi,qsεt−q−sηi,t−s


=

1
ndi /2

∞∑
q=1

∞∑
s=0

mi,qsE[εt−q−sηi,t−s] = 0. (C.112)

While for the second moments,

E

( 1
ndi /2

B
f
i,t

)2
 =

1
ndi

∞∑
q=1

∞∑
s=0

f 2
i,qsE[ε2

t−sη
2
i,t−q−s] =O(n−di ), (C.113)

given that
∑∞
q=1

∑∞
s=0 f̃

2
i,qs <∞. Similarly, we can show that

E

( 1
ndi /2

Bmi,t

)2
 =

1
ndi

∞∑
q=1

∞∑
s=0

m2
i,qsE[ε2

t−s−qη
2
i,t−s] =O(n−di ), (C.114)

given that
∑∞
q=1

∑∞
s=0 m̃

2
i,qs <∞. Therefore,

1
ndi /2

Bmi,t = oP (1), (C.115)

1
ndi /2

B
f
i,t = oP (1), (C.116)

for t = 0 and t = n.

Thus we complete the proof for Lemma B.2.3 and B.2.4. �

Proof of Lemma B.2.5: Denote Z3 = (a′Mnt)2, then

Z3 =
k∑
i=1

K∑
j=1

aiajM
i
ntM

j
nt. (C.117)

Note that

M i
ntM

j
nt

=n−di /2

gi(τt)Φ(1)εt + fi,0(1)
(
εtηit −θi

)
+
∞∑
q=1

fi,q(1)εtηi,t−q +
∞∑
q=1

mi,q(1)εt−qηi,t


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·n−dj /2
gj(τt)Φ(1)εt + fj,0(1)

(
εtηjt −θj

)
+
∞∑
q=1

fj,q(1)εtηj,t−q +
∞∑
q=1

mj,q(1)εt−qηj,t


,

(
M i

1,nt +M i
2,nt +M i

3,nt +M i
4,nt

)(
M
j
1,nt +Mj

2,nt +Mj
3,nt +Mj

4,nt

)
, (C.118)

where for i = 1,2, ..., k,

M i
1,nt = n−di /2gi(τt)Φ(1)εt, (C.119)

M i
2,nt = n−di /2fi,0(1)

(
εtηit −θi

)
, (C.120)

M i
3,nt = n−di /2

∞∑
q=1

fi,q(1)εtηi,t−q, (C.121)

M i
4,nt = n−di /2

∞∑
q=1

mi,q(1)εt−qηi,t. (C.122)

Then
n∑
t=1

E
[
(a′Mnt)

2
∣∣∣∣Ft−1

]
=

n∑
t=1

k∑
i=1

k∑
j=1

4∑
r1=1

4∑
r2=1

E
[
aiajM

i
r1,ntM

j
r2,nt

∣∣∣∣Ft−1

]

=
k∑
i=1

k∑
j=1

aiaj

4∑
r1=1

4∑
r2=1

1

ndij

n∑
t=1

E
[
M i
r1,ntM

j
r2,nt

∣∣∣∣Ft−1

]

=
k∑
i=1

k∑
j=1

aiaj

4∑
r1=1

4∑
r2=1

Z4(i, j, r1, r2), (C.123)

where Z4(i, j, r1, r2) , n−dij
∑n
t=1 E

[
M i
r1,nt

M
j
r2,nt

∣∣∣∣Ft−1

]
. For given i, j = 1,2, ..., k, we ana-

lyze the terms in (C.123) one by one with respect to r1, r2 = 1,2,3,4.

(1) When r1 = 1, r2 = 1, as n→∞, we have
n∑
t=1

E
[
M i

1,ntM
j
1,nt

∣∣∣∣Ft−1

]
=

1

ndij

n∑
t=1

E[gi(τt)gj(τt)Φ(1)2ε2
t |Ft−1]

=
σ2

1Φ(1)2

ndij

n∑
t=1

gi(τt)gj(τt) −→ σ2
1Φ(1)2Qij . (C.124)

(2) When r1 = 2, r2 = 2, as n→∞, we have
n∑
t=1

E
[
M i

2,ntM
j
2,nt

∣∣∣∣Ft−1

]
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=fi,0(1)fj,0(1)
1

ndij

n∑
t=1

E[
(
εtηit −θi

)(
εtηjt −θj

)
]. (C.125)

when dij = 1,

n∑
t=1

E
[
M i

2,ntM
j
2,nt

∣∣∣∣Ft−1

]
=fi,0(1)fj,0(1)(E[ε2

t ηitηjt]−θiθj)

=fi,0(1)fj,0(1)(δ2ij −θiθj), (C.126)

where δ2ij = E[ε2
t ηitηjt].

When dij > 1,

n∑
t=1

E
[
M i

2,ntM
j
2,nt

∣∣∣∣Ft−1

]
= fi,0(1)fj,0(1)

E[ε2
t ηitηjt]−θiθj
ndij−1

−→ 0. (C.127)

(3) When r1 = 1, r2 = 2 or r1 = 2, r2 = 1, as n→∞, we have

n∑
t=1

E
[
M i

1,ntM
j
2,nt

∣∣∣∣Ft−1

]
=

1

ndij

n∑
t=1

E[gi(τt)Φ(1)εtfj,0(1)
(
εtηjt −θj

)
|Ft−1]

=
Φ(1)fj,0(1)

ndij

n∑
t=1

gi(τt)E[εt
(
εtηjt −θj

)
]

=Φ(1)fj,0(1)δ2j
1

ndij

n∑
t=1

gi(τt)

=Φ(1)fj,0(1)δ2j
1

n(dj−1)/2

1
n

n∑
t=1

gi(τt)
n(di−1)/2

(C.128)

where δ2j = E[ε2
t ηjt]. When dj = 1,

n∑
t=1

E
[
M i

1,ntM
j
2,nt

∣∣∣∣Ft−1

]
−→Φ(1)fj,0(1)δ2jg i , (C.129)

in which g i =
∫ 1

0
gNi (τ)dτ .

When dj > 1,

n∑
t=1

K∑
i=1

K∑
j=1

E
[
aiajM

i
1,ntM

j
2,nt

∣∣∣∣Ft−1

]
−→ 0. (C.130)
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Similarly result holds for r1 = 2, r2 = 1.

(4) When r1 = r2 = 3, as n→∞, we have

n∑
t=1

E
[
M i

3,ntM
j
3,nt

∣∣∣∣Ft−1

]

=
1

ndij

n∑
t=1

E


∞∑
q1=1

fi,q1
(1)εtηi,t−q1

∞∑
q2=1

fj,q2
(1)εtηj,t−q2

∣∣∣∣Ft−1


=
σ2

1

ndij

n∑
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∞∑
q1=1

∞∑
q2=1

fi,q1
(1)fj,q2

(1)ηi,t−q1
ηj,t−q2

=
σ2

1

ndij

n∑
t=1

∞∑
q1=1

fi,q1
(1)fj,q1

(1)ηi,t−q1
ηj,t−q1

+
σ2

1

ndij

n∑
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∞∑
q1=1

∞∑
q2=1
q2,q1

fi,q1
(1)fj,q2

(1)ηi,t−q1
ηj,t−q2

,U11(n) +U12(n). (C.131)

Note that when dij = 1,

E[U11(n)] =
σ2

1

ndij

n∑
t=1

∞∑
q1=1

fi,q1
(1)fj,q1

(1)E
[
ηi,t−q1

ηj,t−q1

]
= σ2

1σij

∞∑
q1=1

fi,q1
(1)fj,q1

(1),

(C.132)

and

E[U12(n)] =
σ2

1

n

n∑
t=1

∞∑
q1=1

∞∑
q2=1
q2,q1

fi,q1
(1)fj,q2

(1)E[ηi,t−q1
ηj,t−q2

] = 0. (C.133)

Meanwhile,

V ar[U11(n)] =
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1

n2 E


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n∑
t=1

∞∑
q1=1

fi,q1
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
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∞∑
q1=1

∞∑
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+
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E
[
(ηi,t1−q1

ηj,t1−q1
− σij)2

]
=
σ4

1 (δij − σ2
ij)
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n∑
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∞∑
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fi,q1
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(1)2

+
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(1)

=O(n−1), (C.134)

given that
∑∞
q1=1 fi,q1

(1)2fj,q1
(1)2 < ∞ and

∑∞
p=1

∑∞
q1=1 |fi,q1
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(1)| <

∞. Also,
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given that
∑∞
q1=1

∑∞
q2=1
q2,q1

fi,q1
(1)2fj,q2

(1)2 <∞ and

∞∑
p=1

∞∑
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∞∑
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Therefore, when dij = 1, as n→∞,

U11(n) −→P σ
2
1σij

∞∑
q1=1

fi,q1
(1)fj,q1

(1), (C.136)
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U12(n) −→P 0. (C.137)

When dij > 1,
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and
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Meanwhile,
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given that
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∞. Also,
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t1=1

∞∑
q1=1

∞∑
q2=1
q2,q1

fi,q1
(1)2fj,q2

(1)2

+
2σ4

1σiiσjj

n2dij

n−1∑
t1=1

n−t1∑
p=1

∞∑
q1=1

∞∑
q2=1
q2,q1

fi,q1
(1)fj,q2

(1)fi,p+q1
(1)fj,p+q2

(1)

=O(n−2dij+1), (C.141)

given that
∑∞
q1=1

∑∞
q2=1
q2,q1

fi,q1
(1)2fj,q2

(1)2 <∞ and

∞∑
p=1

∞∑
q1=1

∞∑
q2=1
q2,q1

fi,q1
(1)fj,q2

(1)fi,p+q1
(1)fj,p+q2

(1) <∞.

Therefore, when dij > 1, as n→∞,

U11(n) −→P 0, (C.142)

U12(n) −→P 0. (C.143)

Hence, when dij = 1,

n∑
t=1

E[M i
3,ntM

j
3,nt |Ft−1] −→P σ

2
1σij

∞∑
q1=1

fi,q1
(1)fj,q1

(1), (C.144)

when dij > 1,
n∑
t=1

E[M i
3,ntM

j
3,nt |Ft−1] −→P 0. (C.145)

(5) When r1 = r2 = 4,

n∑
t=1

E[M i
4,ntM

j
4,nt |Ft−1] =

1

ndij

n∑
t=1

E


∞∑
q1=1

mi,q1
(1)εt−q1

ηi,t

∞∑
q2=1

mj,q2
(1)εt−q2

ηj,t |Ft−1


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=
1

ndij

n∑
t=1

∞∑
q1=1

∞∑
q2=1

mi,q1
(1)mj,q2

(1)εt−q1
εt−q2

E
[
ηi,tηj,t

]
=
σij

ndij

n∑
t=1

∞∑
q1=1

∞∑
q2=1

mi,q1
(1)mj,q2

(1)εt−q1
εt−q2

=
σij

ndij

n∑
t=1

∞∑
q1=1

mi,q1
(1)mj,q1

(1)ε2
t−q1

+
σij

ndij

n∑
t=1

∞∑
q1=1

∞∑
q2=1
q2,q1

mi,q1
(1)mj,q2

(1)εt−q1
εt−q2

,U21(n) +U22(n). (C.146)

It is easy to show that when dij = 1,

E[U21(n)] =σijσ
2
1

∞∑
q1=1

mi,q1
(1)mj,q1

(1), (C.147)

E[U22(n)] =0. (C.148)

Using the same method as in the previous case, we can show that

V ar[U21(n)] −→ 0, (C.149)

V ar[U22(n)] −→ 0. (C.150)

Therefore, when dij = 1,

U21(n) −→P σijσ
2
1

∞∑
q1=1

mi,q1
(1)mj,q1

(1), (C.151)

U22(n) −→P 0. (C.152)

When dij > 1, we can show that

E[U21(n)] = 0,E[U22(n)] = 0, (C.153)

V ar[U21(n)] −→ 0,V ar[U22(n)] −→ 0. (C.154)

Therefore, when dij > 1,

U21(n) −→P 0, (C.155)

U22(n) −→P 0. (C.156)
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Hence, when dij = 1,
n∑
t=1

E[M i
4,ntM

j
4,nt |Ft−1] −→P σijσ

2
1

∞∑
q1=1

mi,q1
(1)mj,q1

(1). (C.157)

when dij > 1,
n∑
t=1

E[M i
4,ntM

j
4,nt |Ft−1] −→P 0. (C.158)

(6) When r1 = 1, r2 = 3 or r1 = 3, r2 = 1,

n∑
t=1

E[M i
1,ntM

j
3,nt |Ft−1] =

1

ndij

n∑
t=1

E

gi(τt)Φ(1)εt
∞∑
q=1

fj,q(1)εtηj,t−q|Ft−1


=
σ2

1Φ(1)

ndij

n∑
t=1

gi(τt)
∞∑
q=1

fj,q(1)ηj,t−q ,U3(n). (C.159)

Note that

E[U3n] = 0. (C.160)

Meanwhile,

E[U3(n)2] =
σ4

1Φ(1)2

n2dij
E



n∑
t=1

gi(τt)
∞∑
q=1

fj,q(1)ηj,t−q


2


=
σ4

1Φ(1)2

n2dij

n∑
t1=1

n∑
t2=1

∞∑
q1=1

∞∑
q2=1

gi(τt1)gi(τt2)fj,q1
(1)fj,q2

(1)E
[
ηj,t1−q1

ηj,t2−q2

]
=
σ4

1Φ(1)2

n2dij

n∑
t1=1

∞∑
q1=1

gi(τt1)2fj,q1
(1)2E

[
η2
j,t1−q1

]
+

2σ4
1Φ(1)2

n2dij

n−1∑
t1=1

n∑
t2=t1+1

∞∑
q1=1

gi(τt1)gi(τt2)fj,q1
(1)fj,t2−t1+q1

(1)E
[
η2
j,t1−q1

]
=
σ4

1Φ(1)2σjj

n2dij

n∑
t1=1

∞∑
q1=1

gi(τt1)2fj,q1
(1)2

+
2σ4

1Φ(1)2σjj

n2dij

n−1∑
t1=1

n∑
t2=t1+1

∞∑
q1=1

gi(τt1)gi(τt2)fj,q1
(1)fj,t2−t1+q1

(1), (C.161)

where the first term is O(n−dj ) given that
∑∞
q1=1 fj,q1

(1)2 <∞.

For the second term

1

n2dij−1

n−1∑
t1=1

n∑
t2=t1+1

∞∑
q1=1

gi(τt1)gi(τt2)fj,q1
(1)fj,t2−t1+q1

(1)
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=
1

ndj−1

∫ 1

0

∫ 1

τ1

gi(τ1)gi(τ2)
ndi−1

γ2(n(τ2 − τ1), j)dτ1dτ2 −→ 0, (C.162)

given that γ2(d, j) =
∑∞
d=1

∑∞
q1=1 fj,q1

(1)fj,d+q1
(1) and

lim
n→∞

1

ndj−1

∫ 1

0

∫ 1

τ1

gi(τ1)gi(τ2)
ndi−1

γ2(n(τ2 − τ1), j)dτ1dτ2 = 0. (C.163)

Therefore, as n→∞,
n∑
t=1

E[M i
1,ntM

j
3,nt |Ft−1] −→P 0. (C.164)

Similar result holds when r1 = 3 and r2 = 1.

(7) When r1 = 1, r2 = 4 or r1 = 4, r2 = 1,

n∑
t=1

E[M i
1,ntM

j
4,nt |Ft−1] =

1

ndij

n∑
t=1

E

gi(τt)Φ(1)εt
∞∑
q=1

mj,q(1)εt−qηj,t |Ft−1


=
θjΦ(1)

ndij

n∑
t=1

gi(τt)
∞∑
q=1

mj,q(1)εt−q ,U4(n). (C.165)

We can show that

E[U4(n)] = 0. (C.166)

Meanwhile,

E[U4(n)2] =
θ2
i Φ(1)2

n2dij
E



n∑
t=1

gi(τt)
∞∑
q=1

mj,q(1)εt−q


2


=
θ2
i Φ(1)2

n2dij

n∑
t1=1

n∑
t2=1

∞∑
q1=1

∞∑
q2=1

gi(τt1)gi(τt2)mj,q1
(1)mj,q2

(1)E[εt1−q1
εt2−q2

]

=
θ2
i Φ(1)2

n2dij

n∑
t1=1

∞∑
q1=1

gi(τt1)2mi,q1
(1)2E[ε2

t1−q1
]

+
θ2
i Φ(1)2

n2dij

n−1∑
t1=1

n∑
t2=t1+1

∞∑
q1=1

gi(τt1)gi(τt2)mj,q1
(1)mj,t2−t1+q1

(1)E[ε2
t1−q1

]

=
θ2
i Φ(1)2σ2

1

n2dij

n∑
t1=1

∞∑
q1=1

gi(τt1)2mj,q1
(1)2

+
θ2
i Φ(1)2σ2

1

n2dij

n−1∑
t1=1

n∑
t2=t1+1

∞∑
q1=1

gi(τt1)gi(τt2)mj,q1
(1)mj,t2−t1+q1

(1), (C.167)
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where the first term is O(n−dj ) given that
∑∞
q1=1mj,q1

(1)2 <∞.

For the second term

1

n2dij

n−1∑
t1=1

n∑
t2=t1+1

∞∑
q1=1

gi(τt1)gi(τt2)mj,q1
(1)mj,t2−t1+q1

(1)

=
1

ndj−1

∫ 1

0

∫ 1

τ1

gi(τ1)gi(τ2)
ndi−1

γ3(n(τ2 − τ1), j)dτ1dτ2 −→ 0, (C.168)

where γ3(d, j) =
∑∞
q1=1mj,q1

(1)mj,d+q1
(1) and

lim
n→∞

1

ndj−1

∫ 1

0

∫ 1

τ1

gi(τ1)gi(τ2)
ndi−1

γ3(n(τ2 − τ1), j)dτ1dτ2 = 0. (C.169)

Therefore, as n→∞,
n∑
t=1

E[M i
1,ntM

j
4,nt |Ft−1] −→P 0. (C.170)

Similar result holds when r1 = 4 and r2 = 1.

(8) When r1 = 2, r2 = 3 or r1 = 3, r2 = 2,

n∑
t=1

E[M i
2,ntM

j
3,nt |Ft−1] =

1

ndij

n∑
t=1

E

fi,0(1)
(
εtηit −θi

) ∞∑
q=1

fj,q(1)εtηj,t−q
∣∣∣∣Ft−1


=

1

ndij

n∑
t=1

fi,0(1)
∞∑
q=1

fj,q(1)ηj,t−qE
[(
ε2
t ηit

)]
=
δ2ifi,0(1)

ndij

n∑
t=1

∞∑
q=1

fj,q(1)ηj,t−q ,U5(n).

(C.171)

It is obvious that

E[U5(n)] = 0. (C.172)

Meanwhile,

E[U5(n)2] =E


δ2ifi,0(1)

ndij

n∑
t=1

∞∑
q=1

fj,q(1)ηj,t−q


2


=
δ2

2ifi,0(1)2

n2dij

n∑
t1=1

n∑
t2=1

∞∑
q1=1

∞∑
q2=1

fj,q1
(1)fj,q2

(1)E
[
ηj,t1−q1

ηj,t2−q2

]
=
δ2

2ifi,0(1)2

n2dij

n∑
t1=1

∞∑
q1=1

fj,q1
(1)2E

[
η2
j,t1−q1

]
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+
δ2

2ifi,0(1)2

n2dij

n−1∑
t1=1

n∑
t2=t1+1

∞∑
q1=1

fj,q1
(1)fj,t2−t1+q1

(1)E
[
η2
j,t1−q1

]
=
δ2

2ifi,0(1)2σjj

n2dij

n∑
t1=1

∞∑
q1=1

fj,q1
(1)2 +

δ2
2ifi,0(1)2σjj

n2dij

n−1∑
t1=1

n∑
t2=t1+1

∞∑
q1=1

fj,q1
(1)fj,t2−t1+q1

(1)

=O(n−2dij+1), (C.173)

given that
∑∞
q1=1 fj,q1

(1)2 <∞ and
∑∞
p=1

∑∞
q1=1 fj,q1

(1)fj,p+q1
(1) <∞. Therefore,

n∑
t=1

E[M i
2,ntM

j
3,nt |Ft−1] −→P 0. (C.174)

Similar result holds when r1 = 3 and r2 = 2.

(9) When r1 = 2, r2 = 4 or r1 = 4, r2 = 2,

n∑
t=1

E[M i
2,ntM

j
4,nt |Ft−1] =

1

ndij

n∑
t=1

E

fi,0(1)
(
εtηit −θi

) ∞∑
q=1

mj,q(1)εt−qηj,t
∣∣∣∣Ft−1


=
fi,0(1)

ndij

n∑
t=1

∞∑
q=1

mj,q(1)εt−qE[εtηitηj,t]

=
fi,0(1)δ1ij

ndij

n∑
t=1

∞∑
q=1

mj,q(1)εt−q =U6(n), (C.175)

where δ1ij = E[εtηitηj,t]. Similar as in the previous case, we can show that

E[U6(n)] = 0. (C.176)

Meanwhile,

E
[
U6(n)2

]
= E


fi,0(1)δ1ij

ndij

n∑
t=1

∞∑
q=1

mj,q(1)εt−q


2


=
fi,0(1)2δ2

1ij

n2dij

n∑
t=1

∞∑
q=1

mj,q(1)2E
[
ε2
t−q

]
+
fi,0(1)2δ2

1ij

n2dij

n−1∑
t1=1

n∑
t2=t1+1

∞∑
q=1

mj,q(1)mj,t2−t1+qE
[
ε2
t1−q

]
=
fi,0(1)2δ2

1ijσ
2
1

n2dij

n∑
t=1

∞∑
q=1

mj,q(1)2 +
fi,0(1)2δ2

1ijσ
2
1

n2dij

n−1∑
t1=1

n−t1∑
p=1

∞∑
q=1

mj,q(1)mj,p+q
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=O(n−2dij+1), (C.177)

given that
∑∞
q=1mj,q(1)2 <∞ and

∑∞
p=1

∑∞
q=1mj,q(1)mj,p+q <∞. Therefore, as n→∞,

n∑
t=1

E[M i
2,ntM

j
4,nt |Ft−1] −→P 0. (C.178)

Similar result holds when r1 = 4 and r2 = 2.

(10) When r1 = 3, r2 = 4 or r1 = 4, r2 = 3,

n∑
t=1

E[M i
3,ntM

j
4,nt |Ft−1] =

1

ndij

n∑
t=1

E


∞∑
q=1

fi,q(1)εtηi,t−q
∞∑
l=1

mj,l(1)εt−lηj,t
∣∣∣∣Ft−1


=

1

ndij

n∑
t=1

∞∑
q=1

∞∑
l=1

fi,q(1)ηi,t−qmj,l(1)εt−lE
[
εtηj,t

]
=
θj

ndij

n∑
t=1

∞∑
q=1

∞∑
l=1

fi,q(1)mj,l(1)ηi,t−qεt−l

=
θj

ndij

n∑
t=1

∞∑
q=1

fi,q(1)mj,q(1)ηi,t−qεt−q +
θj

ndij

n∑
t=1

∞∑
q=1

∞∑
l=q+1

fi,q(1)mj,l(1)ηi,t−qεt−l

,U71(n) +U72(n). (C.179)

Then, when dij = 1,

E[U71(n)] = E

θjn
n∑
t=1

∞∑
q=1

fi,q(1)mj,q(1)ηi,t−qεt−q

 = θjθi
∞∑
q=1

fi,q(1)mj,q(1), (C.180)

and

E[U72(n)] =
θj
n

n∑
t=1

∞∑
q=1

∞∑
l=q+1

fi,q(1)mj,l(1)E
[
ηi,t−qεt−l

]
= 0. (C.181)

Meanwhile,

E
[(
U71(n)−E[U71(n)]

)2
]

= E


θjn

n∑
t=1

∞∑
q=1

fi,q(1)mj,q(1)(ηi,t−qεt−q −θi)


2


=
θ2
j

n2

n∑
t=1

∞∑
q=1

fi,q(1)2mj,q(1)2E
[
(ηi,t−qεt−q −θi)2

]
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+
θ2
j

n2

n−1∑
t1=1

n∑
t2=t1+1

∞∑
q1=1

fi,q1
(1)mj,q1

(1)fi,t2−t1+q1
(1)mj,t2−t1+q1

(1)E
[
(ηi,t1−q1

εt1−q1
−θi)2

]
=
θ2
j (δ22i −θ2

i )

n2

n∑
t=1

∞∑
q=1

fi,q(1)2mj,q(1)2

+
θ2
j (δ22i −θ2

i )

n2

n−1∑
t1=1

n∑
t2=t1+1

∞∑
q1=1

fi,q1
(1)mj,q1

(1)fi,t2−t1+q1
(1)mj,t2−t1+q1

(1)

=O(n−1), (C.182)

given that
∑∞
q=1 fi,q(1)2mj,q(1)2 <∞ and

∞∑
p=1

∞∑
q1=1

fi,q1
(1)mj,q1

(1)fi,p+q1
(1)mj,p+q1

(1) <∞.

E[U72(n)2] =E


θjn

n∑
t=1

∞∑
q=1

∞∑
l=q+1

fi,q(1)mj,l(1)ηi,t−qεt−l


2


=
θ2
j

n2

n∑
t=1

∞∑
q=1

∞∑
l=q+1

fi,q(1)2mj,l(1)2E
[
η2
i,t−qε

2
t−l

]
+
θ2
j

n2

n−1∑
t1=1

n∑
t2=t1+1

∞∑
q1=1

∞∑
q2=1

∞∑
l1=q+1

∞∑
l2=q2+1

fi,q1
(1)fi,q2

(1)mj,l1(1)mj,l2(1)E
[
ηi,t1−q1

ηi,t2−q2
εt1−l1εt2−l2

]
=
θ2
j

n2

n∑
t=1

∞∑
q=1

∞∑
l=q+1

fi,q(1)2mj,l(1)2E
[
η2
i,t−qε

2
t−l

]
+
θ2
j

n2

n−1∑
t1=1

n∑
t2=t1+1

∞∑
q1=1

∞∑
l1=q+1

fi,q1
(1)fi,t2−t1+q1

(1)mj,l1(1)mj,t2−t1+l1(1)E
[
η2
i,t1−q1

ε2
t1−l1

]
=
θ2
j δ22i

n2

n∑
t=1

∞∑
q=1

∞∑
l=q+1

fi,q(1)2mj,l(1)2

+
θ2
j δ22i

n2

n−1∑
t1=1

n∑
t2=t1+1

∞∑
q1=1

∞∑
l1=q+1

fi,q1
(1)fi,t2−t1+q1

(1)mj,l1(1)mj,t2−t1+l1(1)

=O(n−1), (C.183)

given that
∑∞
q=1

∑∞
l=q+1 fi,q(1)2mj,l(1)2 <∞ and
∞∑
p=1

∞∑
q1=1

∞∑
l1=q+1

|fi,q1
(1)fi,p+q1

(1)mj,l1(1)mj,p+l1(1)| <∞.



C.2. PROOFS OF THE LEMMAS IN APPENDIX B.2 151

Therefore, when dij = 1, as n→∞,

U71(n) −→Pθjθi

∞∑
q=1

fi,q(1)mj,q(1), (C.184)

U72(n) −→P 0. (C.185)

Hence,

n∑
t=1

E[M i
3,ntM

j
4,nt |Ft−1] =U71(n) +U72(n) −→P θjθi

∞∑
q=1

fi,q(1)mj,q(1). (C.186)

When dij > 1,

E[U71(n)] =E

 θjndij
n∑
t=1

∞∑
q=1

fi,q(1)mj,q(1)ηi,t−qεt−q


=
θjθi

ndij−1

∞∑
q=1

fi,q(1)mj,q(1) −→ 0, (C.187)

and

E[U72(n)] =
θj

ndij

n∑
t=1

∞∑
q=1

∞∑
l=q+1

fi,q(1)mj,l(1)E
[
ηi,t−qεt−l

]
= 0. (C.188)

Meanwhile,

E
[
U71(n)2

]
= E


 θjndij

n∑
t=1

∞∑
q=1

fi,q(1)mj,q(1)(ηi,t−qεt−q)


2


=
θ2
j

n2dij

n∑
t=1

∞∑
q=1

fi,q(1)2mj,q(1)2E
[
(ηi,t−qεt−q)

2
]

+
θ2
j

n2dij

n−1∑
t1=1

n∑
t2=t1+1

∞∑
q1=1

fi,q1
(1)mj,q1

(1)fi,t2−t1+q1
(1)mj,t2−t1+q1

(1)E
[
(ηi,t1−q1

εt1−q1
)2
]

=
θ2
j δ22i

n2dij

n∑
t=1

∞∑
q=1

fi,q(1)2mj,q(1)2

+
θ2
j δ22i

n2dij

n−1∑
t1=1

n∑
t2=t1+1

∞∑
q1=1

fi,q1
(1)mj,q1

(1)fi,t2−t1+q1
(1)mj,t2−t1+q1

(1)

=O(n−2dij+1), (C.189)
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given that
∑∞
q=1 fi,q(1)2mj,q(1)2 <∞ and

∞∑
p=1

∞∑
q1=1

fi,q1
(1)mj,q1

(1)fi,p+q1
(1)mj,p+q1

(1) <∞.

E[U72(n)2] =E


 θjndij

n∑
t=1

∞∑
q=1

∞∑
l=q+1

fi,q(1)mj,l(1)ηi,t−qεt−l


2


=
θ2
j

n2dij

n∑
t=1

∞∑
q=1

∞∑
l=q+1

fi,q(1)2mj,l(1)2E
[
η2
i,t−qε

2
t−l

]
+
θ2
j

n2dij

n−1∑
t1=1

n∑
t2=t1+1

∞∑
q1=1

∞∑
q2=1

∞∑
l1=q+1

∞∑
l2=q2+1

fi,q1
(1)fi,q2

(1)mj,l1(1)mj,l2(1)E
[
ηi,t1−q1

ηi,t2−q2
εt1−l1εt2−l2

]
=
θ2
j

n2dij

n∑
t=1

∞∑
q=1

∞∑
l=q+1

fi,q(1)2mj,l(1)2E
[
η2
i,t−qε

2
t−l

]
+
θ2
j

n2dij

n−1∑
t1=1

n∑
t2=t1+1

∞∑
q1=1

∞∑
l1=q+1

fi,q1
(1)fi,t2−t1+q1

(1)mj,l1(1)mj,t2−t1+l1(1)E
[
η2
i,t1−q1

ε2
t1−l1

]
=
θ2
j δ22i

n2dij

n∑
t=1

∞∑
q=1

∞∑
l=q+1

fi,q(1)2mj,l(1)2

+
θ2
j δ22i

n2dij

n−1∑
t1=1

n∑
t2=t1+1

∞∑
q1=1

∞∑
l1=q+1

fi,q1
(1)fi,t2−t1+q1

(1)mj,l1(1)mj,t2−t1+l1(1)

=O(n−2dij+1), (C.190)

given that
∑∞
q=1

∑∞
l=q+1 fi,q(1)2mj,l(1)2 <∞ and

∞∑
p=1

∞∑
q1=1

∞∑
l1=q+1

|fi,q1
(1)fi,p+q1

(1)mj,l1(1)mj,p+l1(1)| <∞.

Therefore, when dij = 1, as n→∞,

U71(n) −→P 0, (C.191)

U72(n) −→P 0. (C.192)

Hence, when dij = 1,

n∑
t=1

E[M i
3,ntM

j
4,nt |Ft−1] =U71(n) +U72(n) −→P θjθi

∞∑
q=1

fi,q(1)mj,q(1). (C.193)
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When dij > 1,
n∑
t=1

E[M i
3,ntM

j
4,nt |Ft−1] =U71(n) +U72(n) −→P 0. (C.194)

Similar result holds when r1 = 4 and r2 = 3.

To conclude,
n∑
t=1

E
[
(a′Mnt)

2|Ft−1

]
−→P a

′Ωa, (C.195)

where Ω is a K ×K variance-covariance matrix defined as follows.

For 1 ≤ i ≤ K1 and 1 ≤ j ≤ K1, i.e., di = dj = 1,

Ωij =σ2
1Φ(1)2Qij + fi,0(1)fj,0(1)(δ2ij −θiθj) +Φ(1)fj,0(1)δ2jg i +Φ(1)fi,0(1)δ2ig j

+ σ2
1σij

∞∑
q1=1

fi,q1
(1)fj,q1

(1) + σ2
1σij

∞∑
q1=1

mi,q1
(1)mj,q1

(1)

+θjθi
∞∑
q=1

fi,q(1)mj,q(1) +θiθj
∞∑
q=1

fj,q(1)mi,q(1). (C.196)

For K1 < i ≤ n and 1 ≤ j ≤ K1, i.e., di > 1, dj = 1,

Ωij =σ2
1Φ(1)2Qij +Φ(1)fj,0(1)δ2jg i . (C.197)

Finally, when K1 < i ≤ K and K1 < j ≤ K , i.e., di > 1, dj > 1,

Ωij =σ2
1Φ(1)2Qij . (C.198)

We then examine the second condition of the CLT for martingale difference sequence

that as n→∞,
n∑
t=1

E
[
(a′Mnt)

4
∣∣∣∣Ft−1

]
−→P 0. (C.199)

It is then equivalent to show that for any i,

n∑
t=1

E
[
a4
i (M i

nt)
4
∣∣∣∣Ft−1

]
−→P 0. (C.200)

Then, it is equivlent to prove

n∑
t=1

E
[
(M i

p,nt)
4
∣∣∣∣Ft−1

]
−→P 0. (C.201)



154 APPENDIX C. PROOFS OF THE LEMMAS IN APPENDIX B

for p = 1,2,3,4, respectively.

When p = 1,

n∑
t=1

E
[
(M i

1,nt)
4|Ft−1

]
=

1
n2di

n∑
t=1

gi(τt)
4Φ(1)4E[ε4

t ]

=
CΦ(1)4

n2di

n∑
t=1

gi(τt)
4, (C.202)

which is purely deterministic. Note that

1
n

n∑
t=1

(
n−

di−1
2 gi(τt)

)4
−→

∫ 1

0
gNi (τ)4dτ <∞,

where gNi (τ) = n−
di−1

2 gi(τt) is the rescaled trend function. Therefore, given that E[ε4
t ] <

∞, we have
n∑
t=1

E
[
(M i

1,nt)
4|Ft−1

]
=

1
n

CΦ(1)4
∫ 1

0
gNi (τ)dτ

 −→ 0, (C.203)

as n→∞. When p = 2,

n∑
t=1

E
[
(M i

2,nt)
4|Ft−1

]
=

1
n2di

n∑
t=1

fi,0(1)4E
[(
εtηit − σ12

)4
]

=
(δ44i − σ4

12)

n2di

n∑
t=1

fi,0(1)4

=
(δ44i − σ4

12)fi,0(1)4

n2di−1
(C.204)

where δ44i = E[ε4
t η

4
it] <∞. Since it is also purely deterministic and 2di−1 > 0, therefore,

as n→∞
n∑
t=1

E
[
(M i

2,nt)
4|Ft−1

]
−→ 0. (C.205)

When p = 3,

n∑
t=1

E
[
(M i

3,nt)
4|Ft−1

]
=

1
n2di

n∑
t=1


∞∑
q=1

fi,q(1)ηi,t−q


4

E[ε4
t ]

=
C

n2di

n∑
t=1


∞∑
q=1

fi,q(1)ηi,t−q


4

, C ·U8(n). (C.206)
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Note that

E[U8(n)] =
1
n2di

n∑
t=1

∞∑
q1=1

∞∑
q2=1

∞∑
q3=1

∞∑
q4=1

fi,q1
(1)fi,q2

(1)fi,q3
(1)fi,q4

(1)E[ηi,t−q1
ηi,t−q2

ηi,t−q3
ηi,t−q4

]

=
1
n2di

n∑
t=1

∞∑
q=1

fi,q(1)4E
[
η4
i,t−q

]
+

1
n2di

n∑
t=1

∞∑
q1=1

∞∑
q2=q1+1

fi,q1
(1)2fi,q2

(1)2E
[
η2
i,t−q1

η2
i,t−q2

]
=

C

n2di−1

∞∑
k=1

fi,q(1)4 +
C

n2di−1

∞∑
q1=1

∞∑
q2=q1+1

fq1
(1)2fq2

(1)2

=O(n−2di+1) = o(1), (C.207)

since 2di − 1 > 0 and given that E
[
η4
i,t

]
<∞, E

[
η2
i,t−q1

η2
i,t−q2

]
<∞ and

∑∞
q=1 fi,q(1)4 <∞,∑∞

q1=1
∑∞
q2=q1+1 fi,q1

(1)2fi,q2
(1)2 <∞.

Since U8(n) ≥ 0, then as n→∞, E[U8(n)] −→ 0 implies

U8(n) −→P 0. (C.208)

Using the same method as above, we can show that when p = 4,

n∑
t=1

E
[
(M i

4,nt)
4|Ft−1

]
=

1
n2di

n∑
t=1


∞∑
q=1

mi,q(1)εt−q


4

E[η4
it]

=
C

n2di

n∑
t=1


∞∑
q=1

mi,q(1)εt−q


4

, C ·U9(n). (C.209)

Note that

E[U9(n)] =
1
n2di

n∑
t=1

∞∑
q1=1

∞∑
q2=1

∞∑
q3=1

∞∑
q4=1

mi,q1
(1)mi,q2

(1)mi,q3
(1)mi,q4

(1)E[εt−q1
εt−q2

εt−q3
εt−q4

]

=
1
n2di

n∑
t=1

∞∑
q1=1

mi,q1
(1)4E[ε4

t−q1
] +

1
n2di

n∑
t=1

∞∑
q1=1

∞∑
q2=q1+1

mi,q1
(1)2mi,q2

(1)2E[ε2
t−q1

ε2
t−q2

]

=
C

n2di−1

∞∑
q1=1

mi,q1
(1)4 +

C

n2di−1

∞∑
q1=1

∞∑
q2=q1+1

mi,q1
(1)2mi,q2

(1)2

=O(n−2di+1) = o(1), (C.210)

given that E[ε4
t−q1

] < ∞ and E[ε2
t−q1

ε2
t−q2

] < ∞. Meanwhile,
∑∞
q=1mi,q(1)4 < ∞ and∑∞

q1=1
∑∞
q2=q1+1mi,q1

(1)2mi,q2
(1)2 <∞. Hence, as U9(n) ≥ 0, E[U9(n)] −→ 0 implies

U9(n) −→P 0. (C.211)
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as n→∞. Therefore, (C.200) holds. We then complete the proof for Lemma B.2.5. �



Appendix D

Verification of Assumption 2.3.4

It is sufficient to show that the stationary sequence {vt} satisfy

n∑
t1,t2,...,tp=1
t1,t2,...,tp

∣∣∣∣∣∣∣∣ft1,t2,...,tp(z1, z2, ..., zp)−
p∏
i=1

f (zi)

∣∣∣∣∣∣∣∣ =O(np−1), (D.1)

for p = 2,3, ...,6. In addition to the mixing conditions, this assumption describes the

asymptotic independence of the mixing sequence in terms of the joint density and the

marginal density. Without loss of generality, suppose p = 2, and the sequence {vt}

follows AR(1) process as

vt = ρvt−1 + εt, (D.2)

where 0 < ρ < 1, and εt
i.i.d.∼ N (0,1− ρ2). Therefore, the marginal distribution of {vt} is

the standard normal distribution. Meanwhile, the joint density of vt and vs is

ft,s(x,y) =
1

2π
√

1− ρ2j
exp

−x2 + y2 − 2ρjxy
2(1− ρ2j)

 . (D.3)

Therefore, our objective is to show that
n∑
t=1

n∑
s=1
s,t

∣∣∣ft,s(x,y)− f (x)f (y)
∣∣∣ =O(n). (D.4)

Let j = |s − t|, based on stationarity, the joint density only depend on j. Hence we can

write fj(x,y), ft,s(x,y). Let A = (x2 + y2)/2 > 0, B = (x2 + y2 − 2ρjxy)/2, note that

|fj(x,y)− f (x)f (y)| =

∣∣∣∣∣∣∣ 1

2π
√

1− ρ2j
exp

−x2 + y2 − 2ρjxy
2(1− ρ2j)

− 1
2π

exp

−x2 + y2

2


∣∣∣∣∣∣∣
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≤

∣∣∣∣∣∣∣ 1

2π
√

1− ρ2j
exp

−x2 + y2 − 2ρjxy
2(1− ρ2j)

− 1

2π
√

1− ρ2j
exp

−x2 + y2

2


∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣ 1

2π
√

1− ρ2j
exp

−x2 + y2

2

− 1
2π

exp

−x2 + y2

2


∣∣∣∣∣∣∣, F1(j) +F2(j), (D.5)

where

F1(j) =

∣∣∣∣∣∣∣ 1

2π
√

1− ρ2j
exp

− B

1− ρ2j

− 1

2π
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exp(−A)

∣∣∣∣∣∣∣
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∣∣∣∣∣∣∣ 1

2π
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∣∣∣∣∣∣∣
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− exp(−A)

∣∣∣∣∣∣∣
≤
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2π
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∣∣∣∣∣∣∣exp
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− exp
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2π

∣∣∣∣∣
∣∣∣∣∣∣∣exp
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− exp
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1− ρ2j
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2π

∣∣∣∣∣
∣∣∣∣∣∣∣exp
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∣∣∣∣∣∣∣
,F11(j) +F12(j). (D.6)

Notice that

∞∑
j=1

|fj(x,y)− f (x)f (y)| ≤
∞∑
j=1

∣∣∣F2(j)
∣∣∣+

∞∑
j=1

∣∣∣F11(j)
∣∣∣+

∞∑
j=1

∣∣∣F12(j)
∣∣∣ (D.7)

Further,

∞∑
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∣∣∣ =
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2π
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
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2π
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2π
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k . (D.8)
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Also note that
∞∑
j=1

∣∣∣F12(j)
∣∣∣ =
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j=1

∣∣∣∣∣ 1
2π
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Meanwhile,
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∣∣∣∣∣∣∣ 1

2π
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2π
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Define1 k1 =
[

ln(1/2)
2lnρ

]
+ 1, for 0 < ρ < 1. Therefore, we have 1 − ρ2j > 1/2 when j > k1.

Note that∣∣∣∣∣∣∣∣
∞∑
j=1

F11(j)

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣exp(−A)

2π
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k=1

(|xy|)k

k!
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k +

∣∣∣∣∣∣exp(−A)
2π

∣∣∣∣∣∣ ∞∑
k=1

(|xy|)k
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k
1[x] denotes the integer part of x.
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)
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(D.11)

Following the same method, it can be easily shown that
∑∞
j=1

∣∣∣F12(j)
∣∣∣ <∞, and

∑∞
j=1

∣∣∣F2(j)
∣∣∣ <

∞. Therefore,
∞∑
j=1

|fj(x,y)− f (x)f (y)| <∞, (D.12)

and it suffices to show that

n∑
t=1

n∑
s=1
s,t

|ft,s(x,y)− f (x)f (y)| =
n−1∑
t=2

t−1∑
s=1

|fj(x,y)− f (x)f (y)|+
n−1∑
t=1

n∑
s=t+1

|fj(x,y)− f (x)f (y)|

=
n−1∑
t=1

t−1∑
j=1

|fj(x,y)− f (x)f (y)|+
n−1∑
t=1

n−t∑
j=1

|fj(x,y)− f (x)f (y)| =O(n). (D.13)

This result can be generalized to the cases when there are more than two variables. i.e.,

n∑
t1,t2,...,tp=1
t1,t2,...,tp

∣∣∣∣∣∣∣∣ft1,t2,...,tp(z1, z2, ..., zp)−
p∏
i=1

f (zi)

∣∣∣∣∣∣∣∣ =O(np−1). (D.14)



Appendix E

Proofs of Theorems in Appendix A

For simplicity, we only prove the Theorems when the error terms are i.i.d. innovations.

The case of mixing innovations can be proved with more complicated mathematical

techniques.

Proof of Theorem A.3.1: The trend function is estimated by local constant method,

i.e.,

ĝ(τ) =
1

nhf̂ (τ)

n∑
s=1

K
(τs − τ

h

)
xs. (E.1)

We can write the above equation as

f̂ (τ)(ĝ(τ)− g(τ)) =
1
nh

n∑
s=1

K
(τs − τ

h

)
(g(τs)− g(τ)) +

1
nh

n∑
s=1

K
(τs − τ

h

)
vs

,GN1(n) +GN2(n). (E.2)

We show that GN1(n) forms the bias term in the estimation, while GN2(n) forms the

variance term. By Taylor Expansion, g(τs)−g(τ) = g ′(τ)(τs−τ)+g ′′(τ)(τs−τ)2/2+o(τs−τ)2.

Therefore, the leading term of GN1(n) is

G̃N 1(n) =
1
nh

n∑
s=1

K
(τs − τ

h

)
(g(τs)− g(τ))

=
1
nh

n∑
s=1

K
(τs − τ

h

)
(g ′(τ)(τs − τ) + g ′′(τ)(τs − τ)2/2

=
1
nh

n∑
s=1

K
(τs − τ

h

)
g ′(τ)(τs − τ) +

1
2nh

n∑
s=1

K
(τs − τ

h

)
g ′′(τ)(τs − τ)2
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=
g ′(τ)
n

n∑
s=1

K
(τs − τ

h

)(τs − τ
h

)
+
hg ′′(τ)

2n

n∑
s=1

K
(τs − τ

h

)(τs − τ
h

)2
, (E.3)

where the first term converges to
∫
uK(u)du = 0 and the second term converges to

h2g ′′(τ)
∫
u2K(u)du/2. Therefore, as n→∞,

G̃N 1(n) −→ h2g ′′(τ)
∫
u2K(u)du/2. (E.4)

The variance of GN1(n) is 0 because this term is deterministic.

We then look at the second term GN2(n). It is obvious that the expectation is 0. The

variance of GN2(n) is

V ar(GN2(n)) =V ar

 1
nh

n∑
s=1

K
(τs − τ

h

)
vs

 =
1

n2h2

n∑
s=1

K2
(τs − τ

h

)
Ωv

=
Ωv

n2h2

n∑
s=1

K2
(τs − τ

h

)
→ Ωv

nh

∫
K2(u)du. (E.5)

Since g(·) is defined at fixed designed points, we have f̂ (τ) = 1 + o(1). To summarize,

by Liapunov’s CLT, we have as n→∞,

√
nh

ĝ(τ)− g(τ)− h
2

2
g ′′(τ)µ2

 −→D N (0,Ωvκ2) , (E.6)

where µ2 =
∫
u2K(u)du, and κ2 =

∫
K2(u)du.

Proofs of Theorem A.3.2: We first show that

1
n

n∑
t=1

π(vt)x
′
t −→P Σv . (E.7)

Note that

1
n

n∑
t=1

π(vt)x
′
t =

1
n

n∑
t=1

π(vt)g(τt)
′ +

1
n

n∑
t=1

π(vt)v
′
t

=
1
n

n∑
t=1

(
π(vt)−E[π(vt)]

)
g(τt)

′ +
1
n

n∑
t=1

E[π(vt)]g(τt)
′ +

1
n

n∑
t=1

π(vt)v
′
t

,PN1(n) + PN2(n) + PN3(n). (E.8)

By Law of Large Numbers, we can show that

PN3(n)→P E[π(vt)v
′
t], (E.9)
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as n→∞. Also, we have

PN2(n)→ E[π(v1)]
(∫

g(τ)dτ
)
. (E.10)

For the first term PN1(n), we have E[PN1(n)] = 0 and 1

E
[
PN1(n)2

]
=E

 1
n2

n∑
t=1

n∑
s=1

(
π(vt)−E[π(v1)]

)(
π(vs)−E[π(v1)]

)
g(τt)g(τs)


=E

 1
n2

n∑
t=1

(
π(vt)−E[π(v1)]

)2
g(τt)

2


+ E

 1
n2

n∑
t=1

n∑
s=1,s,t

(
π(vt)−E[π(v1)]

)(
π(vs)−E[π(v1)]

)
g(τt)g(τs)


=
Cv
n2

n∑
t=1

g(τt)
2 −→ Cv

n

∫ 1

0
g(τ)2dτ =O(n−1), (E.11)

where Cv = E[(π(v1)−E[π(v1)])2] <∞. To summarize, as n→∞,

1
n

n∑
t=1

π(vt)xt −→P E[π(v1)]
∫ 1

0
g(τ)dτ + E[π(v1)v1] = Σv , (E.12)

where Σv is defined in Assumption A.1.2.

Next, we consider 1√
n

∑n
t=1π(vt)et. By Central Limit Theorem, it is easy to show that

1
√
n

n∑
t=1

π(vt)et −→D N (0, Γ ). (E.13)

where Γ is the variance-covariance matrix of ξt = π(vt)et. Therefore, by Slutsky’s The-

orem, we have
√
n(β̂ − β) −→D N (0,Σ−1

v Γ Σ
−1
v ). (E.14)

Thus, we complete the proof of this Theorem. �

1We only consider the univariate case just for simplicity.
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