
TRAINING & BEST PRACTICES
TO DEVELOP PORTABLE YET

PERFORMANT CODE

Sunita Chandrasekaran
Assistant Professor, University of Delaware
Dept. of Computer & Information Sciences

schandra@udel.edu

SIAM PP MS42: Feb 14, 2020

mailto:schandra@udel.edu

CREATE BETTER SOFTWARE!

Programmer Productivity

Software Sustainability

Facilitate Reproducibility of Computational Results

Incremental Code Improvement

Re-usability of code

Reduced development effort

2

image credit: https://www.pnas.org/content/115/20/5042

BEST PRACTICES - 7 OF
MANY!

Best Practice #1 Profiling

Best Practice #2: Systematic Testing

Best Practice #3: Report bugs

Best Practice #4: Automate

Best Practice #5: Document

Best Practice #6: Pair Programming

Best Practice #7: Open Source but…

3

Computational
Research and

Programming Lab

My group in action :-)

BEST PRACTICE #1:
PROFILING

4

ACCELERATING A BIOPHYSICS
PROBLEM ON GPUS

Nuclear Magnetic Resonance (NMR) is a
vital tool in structural biology and
biochemistry
NMR spectroscopy measures chemical shifts
Predicting chemical shift has important uses
in scientific areas such as drug discovery

Our goal:

Accelerate the prediction of chemical shift

To enable execution of multiple chemical
shift predictions repeatedly
To allow chemical shift predictions for
larger scale structures

5

SERIAL PROFILE VISUAL

Other	Contains:	
File I/O
PDB Structure
Initialization

• Serial code profiling
NVProf

• Obtained large overview
without needing to read
thousands of lines of
code

• Identified hotspots
within the code

• 2 undergrads - 1 year
project

19%

4%

14%

4%
23%

35%
getcontact

getselect
gethbond

getani

getring

other

6

SERIAL CODE CLEAN UP!!

• getselect()
• Looking into cleaning

the serial code prior to
parallelizing it

7

19%

4%

14%

4%
23%

35%

getselect

PROFILER MAGIC!

Before A1er

19%

4%

14%

4%
23%

35%
getcontact

getselect

gethbond

getani

getring

other

12%

12%

18%

14%

44%
getcontact

gethbond

getani

getring

other

OPENACC-GPU PERFORMANCE
RESULTS

https://github.com/UD-CRPL/ppm_one
Biorxiv: https://www.biorxiv.org/content/
10.1101/2020.01.12.903468v1.full.pdf
[Under Review]

100K
atoms

1.5M
atoms

5M atoms 6.8M
atoms

11.3M
atoms

Serial
(Unoptimized) 167.11s 572.01s 3547.07s 7 hours 14 hours

(estimate)

Serial
(Optimized) 53.57s 196.12s 2003.6s 1510.71s 2614.4s

Multicore 4.67s 32.82s 116.66s 153.8s 146.06s
NVIDIA P40 3.47s 17.15s 56.2s 78.57s 72.55s

NVIDIA V100 3.11s 13.62s 39.79s 49.63s 47.71s

9

https://github.com/UD-CRPL/ppm_one
https://www.biorxiv.org/content/10.1101/2020.01.12.903468v1.full.pdf
https://www.biorxiv.org/content/10.1101/2020.01.12.903468v1.full.pdf
https://www.biorxiv.org/content/10.1101/2020.01.12.903468v1.full.pdf

BEST PRACTICE #2:
SYSTEMATIC TESTING

10

PREPARE MURAM
(MAX PLANCK UNIVERSITY OF CHICAGO

RADIATIVE MHD)
FOR NEXT-GENERATION SYSTEMS

Primary solar model for
simulations of upper convection
zone, photosphere, and corona
Typical runs across ~10,000 CPU
cores, runs ~100x slower than
real-time
New physics will also require
more computation power
Goals: Port and Accelerate
MURaM to GPU, achieve real-
time simulation, prepare for new
physics

Comprehensive	model	of	en0re	life	cycle	of	a	solar	flare		
(Cheung	et	al	2018)	

The Daniel K. Inouye Solar Telescope (DKIST), a ~$300M NSF
investment, is expected to advance the resolution of ground based

observational solar physics by an order of magnitude.

11

ERROR IN DENSITY
CALCULATION

Difference in density between reference and the test runs

UNRESOLVABLE BUG

LOC: 20-30K Lines of Code

Team: 4 Computer Scientists and 2 Solar physicists

Tools used: Valgrind, GDB, Python notebooks, PCAST
(PGI tool)

Test bed: 3 different compilers and 2 different platforms

Version Control: GitHub

Time spent: 3 months and the clock is still ticking!!!!

13

LESSONS LEARNT

Work in small steps: Make incremental changes

Testing: Weekly/bi-weekly testing

DOCUMENT!!!

Test bed: 3 diff. compilers, more than 2 hardware setup, more
than 2 versions of a compiler (perhaps?)

Optimization: ONLY after a thorough verification of the serial
version

Verification: Use tools to verify divergence of results between
CPU and GPU

14

BEST PRACTICE #3:
REPORT BUGS

15

CAAR-ORNL-PICONGPU
PROJECT

Preparing PIConGPU, a plasma Physics application
for the upcoming exascale system - Frontier

CAAR Project in Collaboration with COE
(AMD + Cray) developers

16

OUR OPEN HPC
SOFTWARE STACK

Boost

PMacc

Alpaka MPI

cupla
m

al
lo

c
M

C

OpenMP/OpenACC, HIP
Pl

ug
in

s

LL
A

M
A

*
*s

til
l i

n
PM

ac
c

I/O
coupling

REPORT BUGS!

Code Review: author of a PR cannot merge his/her own PR)

Report bugs: help improve compilers

Reproducible code: Useful to debug

REPORT: Workarounds OK but ”REPORT” bugs

Report bugs via a ticket system (say Trac – wiki + issue tracker) and not
via email – PLEASE! ☺

The bug and its fix got to be recorded
Documented
Code changes to be tracked

Time critical bugs - communicate with the developers directly
18

BEST PRACTICE #4:
DOCKER

19

COLLABORATIVE
SOFTWARE DEVELOPMENT

Tools/Platforms such as Docker, Container, GitHub
Dramatically reduces barrier to collaboration
Google slides

20

BEST PRACTICE #4:
AUTOMATE

21

OPENMP VALIDATION &
VERIFICATION TESTSUITE

OMP
Specifications

Compiler
implementer

OpenMP User

Running system

Uses specs as guide
for programming

Uses vendor’s
compiler to support
programming model

Uses system as
programming platform

Uses specs as guide
for implementation

h"ps://crpl.cis.udel.edu/ompvvsollve/

https://github.com/SOLLVE/sollve_vv

ECP SOLLVE
OpenMP V&V

https://github.com/SOLLVE/sollve_vv

ECP SOLLVE
OPENMP V&V

23

GitHub

Integrated with issue tracker

Pull request review system

Website

Publication, Presentations

Coding standards

Collaborative Environment

Keep track of bugs and fixes

Maintain code history

One stop shop for info

Documentation

Templates - external
collaboration

FURTHER
IMPROVEMENTS

Currently implementing a CI/CD ecosystem
Jenkins Automation System
Build, Deploy and Automate
Scale software quality
Save time
Prone to lesser errors

More specifically to the V&V
Decoupling offloading tests from the rest of the code
Clear pass/fail messages

24

BEST PRACTICE #5:
DOCUMENT (pretty pls! :-))

25

DOCUMENTATION

IPython notebooks
Embed code as part of
documentation
Probability of a
programmer updating
the documentation
when the code changes
is high!
Useful for training and
education

26

BEST PRACTICE #6:
PAIR PROGRAMMING

27

HACKATHONS

Profile the code, understand
performance bottlenecks
Start with a smaller kernel
Use a simple system to
compile/execute the code for
starters
Identify a good starting point
Debugging - “when in doubt,
comment it out, re-test”
https://
www.gpuhackathons.org/

Chandrasekaran, Sunita, Guido Juckeland, Meifeng Lin, Matthew Otten, Dirk Pleiter, John E.
Stone, Juan Lucio-Vega, Michael Zingale, and Fernanda Foertter. "Best Practices in
Running Collaborative GPU Hackathons: Advancing Scientific Applications with a Sustained
Impact." Computing in Science & Engineering 20, no. 4 (2018): 95-106.

BEST PRACTICE #7:
OPEN SOURCE BUT…

29

OPEN SOURCE IS GREAT
BUT….

Not sustainable unless there is a community that will
help with the sustainability

Need help

From sponsors, funding organizations, interested
vendors

To ensure continuity of software maintenance
beyond the funded project period

30

SUMMARY

Best Practice #1 Profiling

Best Practice #2: Systematic Testing

Best Practice #3: Report bugs

Best Practice #4: Automate

Best Practice #5: Document

Best Practice #6: Pair Programming

Best Practice #7: Open Source but…

31

Computational
Research and

Programming Lab

My group in action :-)

ACKNOWLEDGEMENTS
CRPL: Sanhu Li, Mauricio Ferrato, Eric Wright, Mayara Gimenes, Fabian Mora, Matt
Leinhauser, Thomas Huber, Matt Stack, Brad Atmiller, Hayden Carter, Kyle Friedline,
Josh Davis, Jose Diaz

PPMONE: Juan Perilla, Eric Wright, Mauricio Ferrato, Robert Searles, Alexander
Bryer

MURAM :Rich Loft, Matthias Rempel, Shiquan Su, Supreeth Suresh, Cena Miller,
Raghu Kumar

CAAR: Alex Debus, Thomas Kluge, Rene Widera, Sergei Bastrakov, Klaus Steiniger,
Marco Garten, Matthias Werner, Jeff Kelling, Matt Leinhauser, Jeff Young, Josh
Davis, Jose Diaz, Ronnie Chatterjee, Axel Huebl, Ronnie Chatterjee, Guido Juckeland,
Michael Bussman

ECP SOLLVE: Jose Diaz, Josh Davis, Thomas Huber, Swaroop Pophale, Oscar
Hernandez, David Bernholdt

