TRAINING & BEST PRACTICES
TO DEVELOP PORTABLE YET
PERFORMANT CODE

Sunita Chandrasekaran
Assistant Professor, University of Delaware
Dept. of Computer & Information Sciences e
schandra@udel.edu / JEIAWARE.

<X % OAK RIDGE

NVIDIA tional Laboratory | FACILITY

SIAM PP MS42: Feb 14, 2020

mailto:schandra@udel.edu

CREATE BETTER SOFTWARE!

Programmer Productivity

Software Sustainability

Facilitate Reproducibility of Computational Results
Incremental Code Improvement

Re-usability of code

image credit: https://www.pnas.org/content/115/20/5042

» Reduced development effort

SITYor
2 EIAWARE.

BEST PRACTICES - 7 OF
MANY!

» Best Practice #1 Profiling

» Best Practice #2: Systematic Testing

»Best Practice #3: Report bugs
»Best Practice #4: Automate
e Best Practice #5: Document

» Best Practice #6: Pair Programming
Computational

»Best Practice #7: Open Source but... Research and

3 Programming Lab

BEST PRACTICE #1:

PROFILING

ACCELERATING A BIOPHYSICS
PROBLEM ON GPUS

© Nuclear Magnetic Resonance (NMR) is a
vital tool in structural biology and
biochemistry

© NMR spectroscopy measures chemical shifts

@ Predicting chemical shift has important uses
in scientific areas such as drug discovery

Our goal:
@ Accelerate the prediction of chemical shift

@ To enable execution of multiple chemical
shift predictions repeatedly

© To allow chemical shift predictions for
larger scale structures

SERIAL PROFILE VISUAL

Serial code profiling

NVProf

Obtained large overview 35%

without needing to read ' SRS
thousands of lines of

code

Id.en.tlfled hotspots | 23%

WlthlIl the code getselect Other Contains:
2 undergrads - 1 year S

PDB Structure
pI‘OJ eCt Initialization

SITYor
EIAWARE.

SERIAL CODE CLEAN UP!!

» getselect()
* Looking into cleaning
the serial code prior to -

parallelizing it

23%

getselect

PROFILER MAGIC!

Before

getselect

23%

35%

getcontact

12%
other

12%

getring

18%

getani

gethbond

44%

getcontact

OPENACC-GPU PERFORMANCE
RESULTS

I S T T T T

~ Serial - 1 - 14 hours
(-_Un0pt1m1zed)_f 167‘118 .'572 0t (3547'07S 7h0urs (estlmate)

(Opstfz?zled) 53.57S 196.12s 2003.6s 1510.71S 2614.4S

Multicore 4.67s 32.82s 116.66s 153.8s 146.06s
NVIDIA P40 3.47S 17.158 56.2s 78.57S 72.558
NVIDIAVIoo 3.a1s 13.62s 39.79s 49.635 47.71S

https://github.com/UD-CRPL/ppm one
Biorxiv: https://www.biorxiv.org/content/

10.1101/2020.01.12.903468v1.full.pdf
|Under Review]

o
<:;) CRPL

https://github.com/UD-CRPL/ppm_one
https://www.biorxiv.org/content/10.1101/2020.01.12.903468v1.full.pdf
https://www.biorxiv.org/content/10.1101/2020.01.12.903468v1.full.pdf
https://www.biorxiv.org/content/10.1101/2020.01.12.903468v1.full.pdf

BEST PRACTICE #2:

SYSTEMATIC TESTING

PREPARE MURAM
(AX PLANCK NIVERSITY OF CHICAGO
DIATIVE HD)
FOR NEXT-GENERATION SYSTEMS

Primary solar model for :
simulations of upper convection
zone, photosphere, and corona

Typical runs across ~10,000 CPU
cores, runs ~100x slower than
real-time

New physics will also require
more computation power

Goals: Port and Accelerate
MURaM to GPU, achieve real-
time simulation, prepare for new
physics

Comprehensive model of entire life cycle of a solar flare

The Daniel K. Inouye Solar Telescope (DKIST), a ~$300M NSF «/@m(:

nvestment, is expected to advance the resolution of ground based r
.

observational solar physics by an order of magnitude. Giad

11

ERROR IN DENSITY
CALCULATION

Difference in density between reference and the test runs

UNRESOLVABLE BUG

» LOC: 20-30K Lines of Code
» Team: 4 Computer Scientists and 2 Solar physicists

» Tools used: Valgrind, GDB, Python notebooks, PCAST
(PGI tool)

» Test bed: 3 different compilers and 2 different platforms
» Version Control: GitHub

» Time spent: 3 months and the clock is still ticking!!!!

SITYor
EIAWARE.

LESSONS LEARNT

*Work in small steps: Make incremental changes
*Testing: Weekly/bi-weekly testing
s DOCUMENT!!!

*Test bed: 3 diff. compilers, more than 2 hardware setup, more
than 2 versions of a compiler (perhaps?)

*Optimization: ONLY after a thorough verification of the serial
version

*Verification: Use tools to verify divergence of results between
CPU and GPU

BEST PRACTICE #3:

REPORT BUGS

CAAR-ORNL-PICONGPU
PROJECT

» Preparing PIConGPU, a plasma Physics application
for the upcoming exascale system - Frontier

4)
’ﬁ’ ;. > ‘ RO Ring:

@ ENERGY I'TW_ jﬁTﬂ:ﬂ

SITY or G i
QAKRIDGE Wyiisie @3 casus Seqa)

CAAR Project in Collaboration with COE
(AMD + Cray) developers

OUR OPEN HPC
SOFTWARE STACK

/O

couphng
PICon GPU “F'E" ﬁ

T

OpenMP/OpenACC, HIP

REPORT BUGS!

Code Review: author of a PR cannot merge his/her own PR)

Report bugs: help improve compilers Bugzi"a i

Reproducible code: Useful to debug strac

REPORT: Workarounds OK but "JREPORT” bugs

Report bugs via a ticket system (say Trac — wiki + issue tracker) and not
via email — PLEASE! ®

» The bug and its fix got to be recorded
» Documented
» Code changes to be tracked

SITY or

» Time critical bugs - communicate with the developers directl
; Gyiome

BEST PRACTICE #4:

DOCKER

COLLABORATIVE
SOFTWARE DEVELOPMENT

» Tools/Platforms such as Docker, Container, GitHub

» Dramatically reduces barrier to collaboration

» Google slides

NVIDIA.NGC | ACCELERATED SOFTWARE

Module 6 - Loop Optimizations with OpenACC

[labs/module6](Module 6) is the last “core” module. After Module 6, we expect students to be able to begin

parallelizing their own personal code with OpenACC with a good amount of confidence. The remaining

modules after this point are considered to be “advanced” modules, and are optional, and some may only be
NVIDIA NGC | ACCELERATED SOFTWARE applicable to specific audiences. Module 6 is all about loop clauses. This module is meant be very visual, so

S . that students can get a good sense of exactly how each clause is affecting the execution of their loop.
OpenACC Training Materials

Topics that will be covered are as follows:

Publisher Built By Latest Tag Modified * Seg/Auto clause

NVIDIA PGI Compile... 20.1.1 February 5, 2... Independent clause
Reduction clause
Collapse clause

Tile clause

Gang Worker Vector

Description

These training materials have been developed as a collaboration between the University of
NVIDIA Corporation and are provided free of charge by OpenACC.org.

This module touches on each of the loop clauses, show how they look within code, and give a visual
Labels representation of it. The gang/worker/vector will most likely be the lengthiest section in this module, just

because it is the most complex. Also, in the lab section of Module 6, we will make our final optimization to our
High Performance Computing TR P

Laplace code by utilizing loop optimizations and gang/worker/vector.

Running the Docker container

The code labs have been written using Jupyter notebooks and a Dockerfile has been built to simplify
deployment. In order to serve the docker instance for a student, it is necessary to expose port 8000 from the
container, for instance, the following command would expose port 8000 inside the container as port 8000 on
or Forum & the lab machine:

docker pull nvcr.io/hpc/openacc-training-materials:20.1.1

nentation (5

OVe rVieW TagS =0 $ docker run --gpus all -it --rm -p 8000:8000 nvcr.io/hpc/openacc-training-materials:20.1.1
NGC Version: 2.22.0

@ OpenACC Official Training Materials

These training materials have been developed as a collaboration between the University of Delaware and
NGC Version: 2.22.0 NVIDIA Corporation and are provided free of charge by OpenACC.org. Please see CONTRIBUTING.%?@

Sunita Chandrasekaran

BEST PRACTICE #4:

AUTOMATE

OPENMP VALIDATION &
VERIFICATION TESTSUITE

$* Oﬁg ECP SOLLVE
Uses specs as guide Uses vendor’s
for implementation ‘ ‘q" compiler to support OpenMP V&V
Compller programming model

implementer

S pECIfI cations Runnin g system https://github.com/SOLLVE/sollve vv

: https://crpl.cis.udel.edu/ompvvsollve/
Uses SPECS as gUIde P f oty S R » Uses System as

for programming ¢ programming platform

OpenMP User
© ENERGY oo %.OAK RIDGE |exiiect,
EN ERGY Science

National Laboratory | COMPUTING FACILITY

https://github.com/SOLLVE/sollve_vv

ECP SOLLVE
OPENMP V&V

* Collaborative Environment
Integrated with issue tracker * Keep track of bugs and fixes
Pull request review system * Maintain code history

o gl Onestop shop forinfo
Publication, Presentations *

Coding standards * Templates - external
collaboration

23

FURTHER
IMPROVEMENTS

» Currently implementing a CI/CD ecosystem
» Jenkins Automation System

» Build, Deploy and Automate
» Scale software quality
o Save time
» Prone to lesser errors
» More specifically to the V&V
» Decoupling offloading tests from the rest of the code

» Clear pass/fail messages

SITYor
24 EIAWARE.

BEST PRACTICE #5:

DOCUMENT (pretty pls! :-))

DOCUMENTATION

— Jupyter

: Ju pyter 2D-Heat Last Checkpoint: 44 minutes ago (unsaved changes) P Logout | Control Panel

» IPython notebooks
» Embed code as partof ..0.. o0

In [8): # To be sure we see some output from the compiler, we'll echo out "Compiled Successfully!"
#(1if the compile does not return an error)

documentation e —

Execute our single-thread CPU-only Jacobi Iteration to get timing information. Make sure you compiled successfully ir
above cell first.

[] (]
. PrO a lllt Of a !./heat_0 1024 1024 20000 output.dat
I’ Time for computing: 46.59 s
After each step, we will record the results from our benchmarking and correctness tests in a table like this one:

programmer updating o e s s

Profiling 1|

== == CPU profiling result (bottom up):

([]
t e OC' I I I le I ltatlo I l Run the following cell to profile and view the code:
%%bash
pgprof -o serial.prof --cpu-profiling-scope instruction ./heat_0 1024 1024 20000 output.dat
l tl] l pgprof -i serial.prof
Time(%) Time Name
° ° 99.72% 13.09s runTest(int, char*x*)
' 99.72% 13.09s | main
IS 1 99.72% 13.09s | ?22?
[}
i = BarbaOEGlobal2018.pdf 2D-Heat.ipynb = 2018_SIAM_Huebl_J...pdf +++ science.bib
U f 1 f t . .
d t]

BEST PRACTICE #6:

PAIR PROGRAMMING

HACKATHONS

Profile the code, understand
performance bottlenecks
Start with a smaller kernel
Use a simple system to
compile/execute the code for
starters

Identify a good starting point
Debugging - “when in doubt,
comment it out, re-test”

https://
www.gpuhackathons.org/

Chandrasekaran, Sunita, Guido Juckeland, Meifeng Lin, Matthew Otten, Dirk Pleiter, John E.
Stone, Juan Lucio-Vega, Michael Zingale, and Fernanda Foertter. "Best Practices in -
Running Collaborative GPU Hackathons: Advancing Scientific Applications with a Sustained
Impact." Computing in Science & Engineering 20, no. 4 (2018): 95-106.

—

BEST PRACTICE #7:

OPEN SOURCE BUT...

OPEN SOURCE IS GREAT
Dt

» Not sustainable unless there is a community that will
help with the sustainability

» Need help

» From sponsors, funding organizations, interested
vendors

» To ensure continuity of software maintenance
beyond the funded project period
SITYor

30 FIAWARE,

SUMMARY

» Best Practice #1 Profiling

» Best Practice #2: Systematic Testing ;
»Best Practice #3: Report bugs

»Best Practice #4: Automate

e Best Practice #5: Document

» Best Practice #6: Pair Programming

Computational
»Best Practice #7: Open Source but... Research and

- Programming Lab

ACKNOWLEDGEMENTS

CRPL: Sanhu Li, Mauricio Ferrato, Eric Wright, Mayara Gimenes, Fabian Mora, Matt
Leinhauser, Thomas Huber, Matt Stack, Brad Atmiller, Hayden Carter, Kyle Friedline,
Josh Davis, Jose Diaz

PPMONE: Juan Perilla, Eric Wright, Mauricio Ferrato, Robert Searles, Alexander
Bryer

MURAM :Rich Loft, Matthias Rempel, Shiquan Su, Supreeth Suresh, Cena Miller,
Raghu Kumar

CAAR: Alex Debus, Thomas Kluge, Rene Widera, Sergei Bastrakov, Klaus Steiniger,
Marco Garten, Matthias Werner, Jeff Kelling, Matt Leinhauser, Jeff Young, Josh
Davis, Jose Diaz, Ronnie Chatterjee, Axel Huebl, Ronnie Chatterjee, Guido Juckeland,
Michael Bussman

ECP SOLLVE: Jose Diaz, Josh Davis, Thomas Huber, Swaroop Pophale, Oscar
Hernandez, David Bernholdt

> R

NVIDIA

