
FEniCSX: A sustainable future
for the FEniCS Project

Michal Habera, Jack S. Hale, Chris Richardson, Johannes Ring,
Marie E. Rognes, Nathan Sime, Garth N. Wells.

MS42 Improving Productivity and Sustainability for Parallel Computing Software
SIAM Parallel Processing 2020, Seattle WA, USA.

Outline

1. Brief history and impact of FEniCS
project

2. Sustainability through formalised
governance

3. Sustainability through automated
workflows

4. Sustainability through innovation:
FEniCSX

What is the
FEniCS Project?

● From the FEniCS project plan, October 2003:

The FEniCS Project: A brief history

● An Open Source software for the automated solution of partial differential
equations using the finite element method.

● Term FEniCS Project first used around 2002.
● First FEniCS Project conference in 2005 at Toyota Technological Institute.

○ Ridgway Scott, Matt Knepley, Rob Kirby, Hans Petter Langtangen, Andy Terrel, Garth Wells, Johan
Hoffmann, Anders Logg, Johan Jansson...

● Key part of community building: (nearly) annual conferences.
○ 2006 Delft, 2008 Baton Rouge, 2009 Oslo, 2010 Stockholm, 2011 Lubbock, 2012 Oslo, 2013

Cambridge, 2014 Paris, 2015 London, 2016 Oslo, 2017 Luxembourg, 2018 Oxford, 2019 Washington
DC, 2020 Cambridge.

Key tech breakthroughs: Domain specific
languages and code generation

● FInite Element Automatic Tabulator (FIAT) 2002 -
● Unified Form Language (UFL), 2008 -
● FEniCS Form Compiler (FFC), 2004 -

inner(grad(u), grad(v)) * dx

UFL, FE symbolic language

u, v in (Lagrange, 1st order)

FIAT, FE oracle

FFC, UFL->C compiler

Poisson equation in UFL

geometry = VectorElement("Lagrange", triangle, 2)
mesh = Mesh(geometry)
element = FiniteElement("Lagrange", triangle, 2)
V = FunctionSpace(mesh, element)

u, v = TrialFunction(V), TestFunction(V)
f = Coefficient(V)
a = inner(grad(u), grad(v)) * dx
L = inner(f, v) * dx

Applications 1

[1] Farrell, P.E. et al. 2013. Automated Derivation of the Adjoint of High-Level Transient Finite Element Programs. SIAM Journal on Scientific Computing. 35, 4 (Jan.
2013), C369–C393. DOI:https://doi.org/10.1137/120873558.

[2] Villa, U. et al. 2018. hIPPYlib: An Extensible Software Framework for Large-Scale Inverse Problems. Journal of Open Source Software. 3, 30 (Oct. 2018), 940.
DOI:https://doi.org/10.21105/joss.00940.

[3] Hale, J.S. et al. 2018. Simple and extensible plate and shell finite element models through automatic code generation tools. Computers & Structures. 209, (Oct.
2018), 163–181. DOI:https://doi.org/10.1016/j.compstruc.2018.08.001.

https://doi.org/10.1137/120873558
https://doi.org/10.21105/joss.00940

Applications 2

[1] Ballarin, F. et al. 2017, https://mathlab.sissa.it/multiphenics

[2] Hesthaven, J.S. et al. 2015. Reduced Basis Methods. SpringerBriefs in Mathematics. Springer International Publishing. 27–43.

[3] Kamensky, D. and Bazilevs, Y. 2019. tIGAr: Automating isogeometric analysis with FEniCS. Computer Methods in Applied Mechanics and Engineering. 344,
(Feb. 2019), 477–498. DOI:https://doi.org/10.1016/j.cma.2018.10.002.

https://mathlab.sissa.it/multiphenics

Popular and broadly used

...

Σ ~ 3400

Sustainability
through
formalised
governance

Joining NumFOCUS (2016)

● NumFocus (https://numfocus.org)
○ “Better tools to build a better world”
○ “From Netflix to NASA, researchers use NumFOCUS’ open source tools to solve the most challenging

problems”

● Advantages:
○ Prestige/stamp-of-quality (NumPy, Julia, Stan, pandas, AstroPy, matplotlib...).
○ Access to commercial sponsors (Microsoft, Facebook, IBM...).
○ Access to Google Summer of Code programme under NumFOCUS umbrella.
○ NumFOCUS annual conferences.
○ All legal and financial aspects of running foundation offloaded.

Who has the right to make key technical
decisions?
● Possible models:

○ Benevolent dictator for life (BDFL) e.g. Larry Wall (Perl), Linus Torvalds (Linux).
○ Foundation model, e.g. Apache Software Foundation.
○ Steering Council within larger foundation, NumFOCUS .

● Community led:
○ All users, developers and contributors of the FEniCS Project

● Steering Council:
○ Members of the community who have made significant contributions over a sustained period of

time.

● Advisory board (Lois Curfman McInnes et al.):
○ Ensure the long-term well-being of the project. Oversight.

Money

● NumFOCUS gives us the legal infrastructure to:
○ accept donations.
○ spend money.
○ organise payments for events, e.g. conferences.

● in a transparent way, independent of any of the institutional partners (largely
Universities).

● NumFOCUS has:
○ small development grants.
○ support travel grants to FEniCS Conference.

Google Summer of Code (GSoC)

● We participate in GSoC through NumFOCUS.
○ GSoC is highly competitive for students and organisations.
○ Our project proposals have always been accepted by Google.

■ Possible without NumFOCUS? Perhaps not.

2017 2018 2019

Michal Habera
higher order XDMF and
visualization

Fabian Loschner
SIMD and vectorisation

Igor Baratta
KaHIP mesh partitioning

Ivan Yashchuk
quadrilateral and hexahedral
meshes

Igor Baratta
complex numbers support

Abhinav Gupta
mesh pipeline from gmsh

stays involved in
FEniCS

development

Sustainability
through
automated
workflows

FEniCS Project has been through a lot of
workflow tools...

● Version control (launchpad, Bitbucket, github)
● Unit testing (Python unittest, pytest)
● Automated testing (launchpad, Jenkins, Atlassian Bamboo, CircleCI)
● Platforms for executing tests (physical machines, virtual machines, Docker containers)

Criteria for choosing workflow tools

1. Follow the herd (Bitbucket to github).
2. Minimise money spent (physical machines to Docker containers).
3. Be as lazy as possible (fragile custom infrastructure to infrastructure as code).
4. When it breaks, make it someone else’s problem (Atlassian Bamboo to CircleCI).

Contributor opens pull request on github.
Code is reviewed by project maintainer.

If
● tests pass AND
● branch up to date with master branch

pull request can be merged by project
maintainer.

CircleCI runs full test suite inside Docker
container.

Sustainability
through
innovation:
FEniCSX

“Every computing infrastructure project
that initially meets one need well will

eventually expand in scope to only meet
several needs poorly.”

William Benton

2003 2018

Dolfin

Dolfinx

FFC

FFCx

20202008

UFL

FIAT

active

bug maintenance

 Criticism of FEniCS libraries
● works well if remaining within the supported abstractions
● difficult to extend, especially from Python interface
● difficult to experiment with new methods at low level
● slow development progress
● many ways of killing the performance in Python

FEniCSX as an incremental rewrite
● keep most of high-level abstractions
● allow manual implementation of all operations
● less OOP design
● more explicit behaviour

● Compact, modular core designed to be extensible and to support custom additions
● Smaller line count, faster build, faster CI tests
● Follow established standards and conventions wherever possible (design, packaging, testing,

etc)
● Properly separated C++ and Python interfaces
● Simplified software engineering
● Distributed memory parallel design throughout
● Improved documentation
● Faster just-in-time compilation
● Support for modern Python JIT tools, e.g. Numba
● Simple implementation of fast user ‘kernels’ from Python
● Provide just one way to perform an operation wherever possible

https://fenicsproject.org/fenics-project-roa
dmap-2019/

http://numba.pydata.org/
https://fenicsproject.org/fenics-project-roadmap-2019/
https://fenicsproject.org/fenics-project-roadmap-2019/

Eigen
C++ template library
for linear algebra

New tools became available...

C++11, C++14, C++17
Numba
Python and NumPy LLVM based JIT
compiler

Package (without deps) C++/C lines Python lines

Dolfin 90 000 22 000

Dolfinx 46 000 9 000

Deal.ii 830 000

PETSc 580 000

Firedrake 37 000

Eigen 125 000

generated using David A. Wheeler's 'SLOCCount'.

@numba.cfunc(c_signature, nopython=True)

def knl(A_, w_, c_, coords_, e, c):

 A = numba.carray(A_, (Usize, Usize))

 A00 = numpy.zeros((Ssize, Ssize))

 kernel00(ffi.from_buffer(A00), ...)

 A01 = numpy.zeros((Ssize, Usize))

 kernel01(ffi.from_buffer(A01), ...)

 A10 = numpy.zeros((Usize, Ssize))

 kernel10(ffi.from_buffer(A10), ...)

 # A = - A10 * A00^{-1} * A01

 A[:, :] = - A10 @ numpy.linalg.solve(A00, A01)

Example: Static condensation (1)

Any numpy supported
operations, many
implemented with BLAS,
LAPACK

a_cond = Form([U, U])

a_cond.set_tabulate_tensor(..., knl.address)

A_cond = assemble_matrix(a_cond)

A_cond.assemble()

Example: Static condensation (2)

Conclusions

● significantly reduced codebase
● faster and more scalable
● faster and simpler CI/CD
● highly customizable at all levels

○ … and also performant thanks to Numba (cffi) in Python

● new features: complex numbers, block assembly, ...

https://github.com/FEniCS/dolfinx
https://github.com/FEniCS/ffcx

https://github.com/FEniCS/dolfinx
https://github.com/FEniCS/ffcx

