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I. SCATTERING OF LIGHT FROM A SINGLE SILICON NANOSPHERE

Here, we present the compact version of the routine for analytical calculation of the silicon

nanosphere polarizability and SPP directivity patterns. For a more detailed sequence, refer

to e.g. Supplementary Materials for [1].

First, the full magnetic and electric dipole polarizabilities of a spherical silicon nanopar-

ticle on top of gold are calculated using Green’s function approach following the routine

presented in detail in [2]. This method allows to straightforwardly calculate the Cartesian

components of dipole moments induced in the nanosphere by an arbitrary polarized inci-

dent field with account for the substrate effects. Spectral dependences of gold and silicon

dielectric permittivities that we use in the calculation are taken from [3] and [4], respectively.

After the calculation of the magnetic dipole m and electric dipole p induced in the

nanosphere by the incident field, we proceed to obtain the directivity patterns of SPP

induced on a gold substrate by such dipole source. The magnetic field induced by m and p

can be represented through the dyadic Green’s function:

H(r) = k20GH(r)m + ik0∇×GE(r)p. (1)

The explicit form of Green’s function in this equation is calculated as a linear superpo-

sition of the incident and reflected plane waves and reads

GH(ρ, φ0, 0) = Greg
H +

i

8π2

∫∫
kdkdφ

rp(k)

kz


sin2 φ − cosφ sinφ 0

− cosφ sinφ cos2 φ 0

0 0 0

 eikρ cos(φ−φ0)+ikzh,

(2)

∇×GE(r, φ0, 0) = ∇Greg
E −

− 1

8π2

∫∫
kdkdφ

rp(k)

kz


sin 2φkz/2 sin2 φkz k sinφ

− cos2 φkz − sin 2φkz/2 −k cosφ

0 0 0

 eikρ cos(φ−φ0)+ikzh, (3)

where kz =
√
k20 − k2, and rp(k) = (kz − kzm/εm)/(kz + kzm/εm) is the magnetic field

reflection coefficient for the TM-polarized plane wave with kzm =
√
εmk20 − k2, where εm is
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the metal dielectric permittivity, and h is the sphere radius. Here, we have separated the

Green’s function into the regular and singular part. The regular part of the Green’s function

contains the incident field and the contribution from the TE-polarized reflected field. The

regular part does not contribute to the SPP field, whichr originates from the pole of the

reflection coefficient rp(k). The regular part is thus omitted in the following considerations.

The equation can be simplified considerably by using the Jacobi-Anger expansion of the

form
∫ 2π

0
cosnφeix cosφ = 2π(i)nJn(x), (here, Jn(x) is the Bessel function of the first kind)

and asymptotic relations for the resulting expressions.

After some algebra (please refer to Supplementary Materials of [1] for intermediate deriva-

tions), we arrive at the following equation for the induced magnetic field components (in the

following, ϕ denotes the azimuthal angle, i.e. the direction of SPP excitation):

Hx ∼ −(mxk0 + pykz) sin2 ϕ+ (myk0 − kzpx) sinϕ cosϕ− kSPPpz sinϕ, (4)

Hy ∼ −(myk0 − pxkz) cos2 ϕ+ (kzpy +mxk0) sinϕ cosϕ+ kSPPpz cosϕ, (5)

Hϕ = −Hx sinϕ+Hy cosϕ ∼ (mxk0 + kzpy) sinϕ+ (kzpx −myk0) cosϕ+ kSPPpz (6)

The SPP field intensity is proportional to |Hϕ|2, which gives us the final equation calcu-

lation of the SPP directivity patterns (equation 1 in the main text), κ = −i
√

1/(εm + 1),

k̃SPP =
√
εm/(εm + 1):

ISPP (ϕ) ∼
∣∣∣(mx + iκpy) sinϕ+ (my − iκpx) cosϕ− k̃SPPpz

∣∣∣2 , (7)

Since the conditions for interference between electric and magnetic dipole moments are

crucial for SPP beam steering effect discussed in the main text, we provide separate illus-

tration of forward-to-backward switching conditions with the change of the wavelength of

p-polarized excitation wave. Spectral dependence of the induced dipole moments and asso-

ciated directivity spectra, calculated using the described approach, are shown in Fig. S1.
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FIG. S1. (a) Spectral dependence of the amplitudes of the dipole moments induced in a 295 nm

silicon nanosphere excited by a TM-polarized plane wave incident at 25 degrees. (b) Phase differ-

ences of the same dipole moments with respect to the slowly changing phase of pz. (c) Spectral

dependence of the real and imaginary part of the parameter z = (my − iκpx)/(k̃SPP pz) that char-

acterizes the forward/backward switching condition for the excited SPP. (d) Spectral dependence

of forward and backward directivity of the excited SPP. In all four panels, grey dashed line denotes

the wavelength of total suppression of forward SPP scattering.
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II. COMPARISON OF ANALYTICAL AND NUMERICAL CALCULATIONS OF

SPP DIRECTIVITY

FIG. S2. Comparison of the maximum achievable SPP directivity from a 295 nm silicon nanosphere

in numerical(left) and analytical (right) calculations. The directivity is encoded with false color.

The overlay shows the polarization states of the incident light required to achieve the presented di-

rectivity values. Gray-shaded areas represent the geometries when maximum directivity is achieved

at the boundary of the considered spectral range (1100 nm). Dashed lines track the condition of

maximum directivity achieved for considered excitation parameters.
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III. SPP FIELD DISTRIBUTION FOR LINEAR POLARIZATION

FIG. S3. SPP intensity profiles calculated for a 295 nm silicon nanosphere excited with linearly (a)

TM- and (b) TE-polarized light. The wavelength of 940 nm is used as an example. Both intensity

patterns are symmetric with respect to the plane of incidence (vertical axis).

IV. NUMERICAL SIMULATION OF THE SPP EXCITATION

For numerical simulation of SPP on Au air/interface excited by a Si sphere under oblique

incident plane wave, we use COMSOL Multiphysics (2D axisymmetric domain, wave Optics

module, frequency domain solver). The considered problem has a cylindrical symmetry,

thus, the angular variable ϕ can be separated and both the incident and scattered field can

be expanded into the following series:

Einc(ρ, ϕ, z) =
∞∑

m=−∞

Em
inc(ρ, z)e

−imϕ. (8)

Therefore, the problem can be reduced to 2D geometry that saves computing resources

significantly and speeds up the calculations. We use the scattering formalism available in

COMSOL, when the solution Etot is represented as a sum of the incident Einc and scattered
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Esc fields:

Etot = Einc + Esc. (9)

The problem under consideration is linear, thus, the scattered fields Em
sc for different az-

imuthal numbers m can be calculated can be calculated independently and then summed.

we limited ourselves to only azimuthal harmonics m = −1, 0, 1. Numerical analysis shows

that higher azimuthal harmonics does not contribute much in the frequency range from 800

to 1100 nm.

We consider incident field of both TE (s) and TM (p) polarizations. The coordinate

system and plane of incidence is shown in Fig. 3 (main text). The incident fields can be

expanded in terms of the azimuthal harmonics as follows:

TM-polarization:

ETM
inc =


ETM
ρ

ETM
ϕ

ETM
z

 eiωt+izk0 cos θ−ixk0 sin θ =


ETM
ρ

ETM
ϕ

ETM
z

 eiωt+izk0 cos θ−ik0ρ cosϕ sin θ (10)

ETM
ρ e−ik0ρ cosϕ sin θ = ETM

0 cos θ
+∞∑

m=−∞

(−i)m+1Jm+1(k0ρ sin θ)− Jm−1(k0ρ sin θ)

2
e−imϕ (11)

ETM
ϕ e−ik0ρ cosϕ sin θ = ETM

0 cos θ
+∞∑

m=−∞

(−i)m+2Jm+1(k0ρ sin θ) + Jm−1(k0ρ sin θ)

2
e−imϕ (12)

ETM
z e−ik0ρ cosϕ sin θ = ETM

0 sin θ
+∞∑

m=−∞

(−i)mJm(k0ρ sin θ)e−imϕ (13)

TE-polarization:

ETE
inc =


ETE
ρ

ETE
ϕ

0

 eiωt+izk0 cos θ−ixk0 sin θ =


ETE
ρ

ETE
ϕ

0

 eiωt+izk0 cos θ−ik0ρ cosϕ sin θ (14)

ETE
ρ e−ik0ρ cosϕ sin θ = −ETE

0

+∞∑
m=−∞

(−i)m+2Jm+1(k0ρ sin θ) + Jm−1(k0ρ sin θ)

2
e−imϕ (15)

ETE
ϕ e−ik0ρ cosϕ sin θ = ETE

0

+∞∑
m=−∞

(−i)m+1Jm+1(k0ρ sin θ)− Jm−1(k0ρ sin θ)

2
e−imϕ (16)
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Here, θ is the angle of incidence, ETE
0 and ETM

0 are the amplitudes of the TE and TM-

polarized incident waves. In the case of absence of nanoantenna, the total field consists of

the incident, reflected and transmitted field, which can be found using Fresnel equations [5].

We use this total field as a background in the numerical model.

V. CALCULATION OF THE SPP EXCITATION EFFICIENCY

To estimate the SPP excitation efficiency during the steering, we calculated the cross

section of scattering of the incident plane wave into SPP. The total power I of SPP far from

the source (|kSPPρ| � 1) can be calculated straightforwardly by integration of the Poynting

vector over the sidewall of an imagine cylinder concentric with the nanoantenna:

I ≈ π|Am|2

2ε0ω

[
Re (kSPP/ε1)

Re(κ1)
+

Re (kSPP/ε2)

Re(κ2)

]
e2Im(kSPP)ρ. (17)

The indices 1 and 2 correspond to air (upper medium) and gold (lower medium). The coef-

ficient Am is the azimuthal component of the magnetic field of SPP (scattering amplitude)

at the interface:

Hm
ϕ ≈ Am

e−ikρρ
√
ρ
e∓κ1,2ze−imϕ

The exponential factor in (17) describes absorption of SPP in the metal. In order to find the

total power of SPP via the scattering amplitude found numerically in COMSOL we need to

compensate the exponential factor corresponding to absorption. The total excitation cross

section of SPP can be obtained by division of the total power of SPP by the intensity of the

incident field:

σSPP = Ie−2Im(kSPP)ρ/(|E0|2/2/Z0).

Here E0 is the amplitude of the incident electric field and Z0 is the vacuum impedance.
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FIG. S4. Illustration of the efficiency of SPP excitation during the plasmonic beam steering. Top:

SPP excitation cross section derived from the numerically calculated SPP fields from a 295 nm

silicon nanoparticle on gold excited at the angle of incidence of 25 degrees. Bottom: cross section

map for other angles of incidence. The excitation conditions (wavelength, polarization state) match

those required to reach the maximum SPP directivity for each θ, ϕ (as illustrated in Fig. S2). The

cross section values are normalized to the geometrical cross section of the nanoparticle (πr2 ≈

0.27 µm2). Shaded areas mark the conditions when the maximum direcitivity is achieved at the

boundary of the considered spectral region (1100 nm). Dashed line denotes the section for θ=25

shown in the top panel.
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VI. VISUALIZATION OF SURFACE PLASMON POLARITON STEERING IN

CALCULATION AND EXPERIMENT: DESCRIPTION OF SUPPLEMENT MOVIES

S1-S3

Supplement Movie S1 illustrates the steering of SPP from a 295 nm silicon sphere on

gold calculated with COMSOL Multiphysics for angle of incidence equal to 25 degrees. For

each SPP direction, the excitation conditions (wavelength and polarization state) providing

optimal directivity are shown in the top left quadrant. The SPP direcitivity patterns, field

(Hϕ) and SPP intensity profiles are shown in the other quadrants.

Supplement Movies S2 and S3 show the spectral evolution of experimentally mea-

sured directivity patterns of SPP from 295 nm silicon nanosphere for left and right circularly

polarized excitation (angle of incidence is 25 degrees).
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