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Introduction
Spike trains are observables when investigating neural activity - represent the re-
sponse of a neuron to stimuli and are often modeled as realizations of stochastic
point processes. The spike train space is non-euclidean, recently, however, two L2

- like distances were introduced on that space:
the Elastic distance and Generalized Victor-Purpura (GVP) distance.

On this poster we briefly review these two distances and run several comparisons,
including construction of the summary statistics, corresponding in ideas to mean
and variance as well as classification capabilities. To allow comparisons between
metrics we propose an efficient algorithm for GVP summary statistics.

Properties
Similarities: Both metrics:

• define a proper Euclidean distance,

• account for temporal structure of spike
trains by incorporating term correspond-
ing to differences in spike positions,

• have same computational cost O(nm).

Differences:

• Elastic metric can be viewed as gener-
alization of van Rossum metric, whereas
GVP is the generalization of VP metric,

• The temporal structure differences are
incorporated with ISIs in Elastic metric
and pure spike positions in GVP,

MCP algorithm for GVP mean
Given set of N spike trains: (Sk)

N
k=1, finding the Karcher mean:

1. Initialize mean S with nS uniformly distributed spikes,
(nS = max{n1, . . . , nN})

2. Matching Step: Use the dynamic programming to find warping γk to
S. γk =

argminγ[m + n− 2

n∑
j=1

m∑
i=1

Ixi=γ(yj) + λ2
∑

xi=γ(yj)

(xi − yj)2]

3. Centering Step:

(a) Find the optimal position of spikes in current mean S and encode
it in a warping function γ̄−1. New spike positions are averaged
over all spikes matched with the spike investigated in S. Then
the new spike position s̄l is the average of positions of matched
spikes: s̄l = 1

|Ml|
∑

x∈Ml
x

(b) Update to the new mean S to S̄ = γ̄−1(S).

4. Pruning Step: Remove spikes from the proposed mean S̄, that are
matched less then N/2 times.

(a) For each spike sk in S̄, count the number of times sk appears in
{ ¯γi(Si)}Ni=1.

(b) Remove the spikes from S̄ which appear at most N/2 times in
{ ¯γi(Si)}Ni=1. Denote the new set S̄∗.

5. Safety check: To avoid being stuck in local minimum check if addition
or/and deletion of specific single spike will improve the mean.

(a) Check Ŝ∗ as S̄∗ except one spike with minimal number of appear-
ances if improves the sum of squares

(b) Check ˆ̂S∗” as the current mean with one spike added at random
if improves the sum of squares

6. Mean Upadate: Update S with proposition that minimizes the sum of
squares among {S̄∗; Ŝ∗; ˆ̂S∗}.

7. Go back to (2) if break condition not achieved.

Notation and definitions

[Mean: ] For spike trains S1, S2, · · · , SN ∈ S, Karcher mean under a metric d
(delastic or dGV P ) is:
S∗ = argminS∈S

∑N
k=1 d[λ](Sk, S)2.

[Spike train: ] S is a spike train with spike times 0 < s1 < s2 < · · · < sM < T , where
[0, T ] denotes the recording time domain. We denote this spike train
as
S = (sj)

M
j=1 = (s1, s2, . . . , sM).

[Warping: ] Let Γ be the set of all time warping functions, where a time warping
is defined as an orientation-preserving diffeomorphism of the domain
[0, T ]. That is, γ : [0, T ] → [0, T ] is a time-warping if, in addition to be-
ing continuous and (piecewise) differentiable, it satisfies these three
conditions: γ(0) = 0, γ(T ) = T, 0 < γ̇(t) < ∞. It is easy to verify
that Γ is a group with the operation being the composition of functions.
By applying γ ∈ Γ on a spike train S = (sj)

M
j=1, one can get a warped

spike train γ(S) = (γ(sk))
M
k=1.

[GVP: ] GVP distance between X = (xi)
M
i=1 and Y = (yj)

N
j=1 is given in the

following form:

dGV P [λ](X, Y ) = minγ∈Γ

(
EOR(X, γ(Y )) + λ

∑
{i,j:xi=γ(yj)}(xi − yj)

2
)1/2

[Elastic: ] the elastic Euclidean metric between X = (xi)
M
i=1 and Y = (yj)

N
j=1 is

given in the following form:

delastic[λ](X, Y ) = minγ∈Γ

(
EOR(X, γ(Y )) + λ

∫ T
0 (1−

√
γ̇(t))2dt

)1/2

,

where EOR(·, ·) is the cardinality of the Exclusive OR - number of un-
matched spike times.

Picture to the right: Shows
the convergence rate
of the MCP algorithm
(Top, blue curve) and
temporal mean adjust-
ments during algorithm
iterations (Bottom, red
stripes correspond to
spikes).

Comparisons on real data

Spike train from MI neuron recorded while performing 4 types of hand movements.

• The dataset consists of 240 spike trains which correspond to four different trajectories of a hand movement
along a rectangle (60 spikes for each) as given on figure above. The trajectories follow the contour of the
rectangle, but differ in starting point: (Blue, Red, Green, Cyan).

• Half of the dataset is used to learn the mean spike train patterns for 4 types of trajectories.

• The class for a new spike train X is assigned to one of four classes (Blue, Red, Green, Cyan) based on
normalized distance to corresponding mean µ ∈ {µBlue, µRed, µGreen, µCyan}.

argmin
d(µ,X)

σ
| µ ∈ {µBlue, µRed, µGreen, µCyan}

Table 1: Classification efficiency

% of succesfull classification for classes: Blue Red Green Cyan Overall
λ = 65

using Elastic metric 66,7 90 80 56,7 73,3
usign GVP metric 60 83,3 96,7 100 85

λ = 40
using Elastic metric 83,3 90 90 90 88,3
usign GVP metric 70 83,3 90 90 83,3

Classification efficiency w.r.t metric parameter λ

Figure 1: Classification scores for a range of parameter λ ∈ (10, 200).

For this dataset we have

• For most parameter values λ GVP performs better then Elastic,

• However, maximum correct classification score is held by Elastic metric.

• Towards large values of lambda classification efficiency drops. Elastic metric assignes random values, but GVP
maintains the level of around 70%.

Choice of λ may depend on data type that is investigated.

Comparisons on simulated data

• Simulated 40 spike trains from a Poisson point
process on interval [0, 2] with Gaussian intensity
function, as seen on picture to the right.

ρ(t) =
1√

2πσ2
e
−(t−m)2

2σ2 (1)

• 20 spikes were generated with µ = 0.6 and
20 with µ = 1.4,
σ2 was set equal in both cases to 0.3.

.

• Each red dot represents a pair of spike trains for which GVP and Elastics distance are the coordinates,

• In all cases λ ∈ {1, 20, 80, 500} - almost linear relation between metrics,

• In all cases the metrics form two clusters corresponding to spike train pairs that have small distances (are
generated within a group) and large distances (between the two groups),

• Discretisation of Elastic metric occurs when λ = 1, due to the fact that the [m+n− 2
∑n

j=1

∑m
i=1 Ixi=γ(yj)] compo-

nent is dominating, when λ = 500 the penalty for moving spikes is so big that it’s not worth matching any spikes,
again the ”matching” term sets up the discretization, however it is no longer dominating.

Classification efficiency w.r.t model parameters: m, σ

80 spikes generated according to Poisson point process model as training and test datasets. Two
settings investigated:

[1 ] Groups hold the same σ = 0.15, but differ in m: from 0.5 to 1.5.

[2 ] Groups have fixed, but different m values: m1 = 0.8, m2 = 1.2, σ is varied in range [0.1, 0.5], σ is
same for both groups.

• The class for a new spike train X is assigned based on normalized distance to corresponding mean
{µ1, µ2}: min d(µ,X)

σ | µ ∈ {µ1, µ2}

Results:

•When shift between intensity functions is fixed GVP outperforms Elastic even for large variance

•When the variance is fixed and intensity functions are being shifted Elastic outperforms GVP, until
classification differences become irrelevant.


