
RADICAL-Cybertools: Middleware Building Blocks
NSF's Cyberinfrastructure Ecosystem (NSF 1931512)
Motivation: Sophisticated and scalable workflows have become essential
for advances in computational science. In spite of the many successes of
workflow systems, there is an absence of a reasoning framework for
end-users to determine which systems to use, when and why. Workflows
are increasingly a manifestation of the algorithmic and methodological
advances; workflow users and workflow system developers are often the
same. Workflow systems must be easily extensible so as to support
diverse functionality and the proverbial “last mile customization”.

We advance the science of workflows and prevent workflow system
“vendor lockin” by formulating a building blocks approach to middleware
for workflow systems grounded on four design principles of
self-sufficiency, interoperability, composability, and extensibility. A
building block has: (i) one or more modules implementing functionalities
to operate on a set of explicitly defined entities; and (ii) two well-defined
and stable interfaces, one for input and one for output.

Properties of building blocks
● Self-sufficiency: design does not depend on the specificity of other

building blocks
● Interoperability: can be used in diverse system architectures without

semantic modifications
● Composability: its interfaces enable communication and coordination

with other building blocks
● Extensibility: its functionalities and entities can be extended to

support new requirements or capabilities

Motivation: Middleware Building Block

The diagram below describes the primary functional requirements for
workflow systems. RADICAL-Cybertools are designed and implemented
in accordance with the building block approach, span functional levels:

(L4) Workflow and Application Description: Requirements and
semantics of applications and workflows.

(L3) Workload Management System:
Applications devoid of semantic
context are expressed as
workloads.

(L2) Task Runtime System (TRS):
Execution of the tasks of a
workload.

(L1) Resource Access Layer:
Capabilities, availability and
interfaces required by the
tasks to be executed.

Primary Functional Levels

RADICAL-SAGA (Simple API for Grid Applications): Provides an
interoperability layer that lowers the complexity of using distributed
infrastructure whilst enhancing sustainability of distribut- ed
applications, services, and tools in the form of a Python API. By
abstracting away the heterogeneity of the underlying systems,
RADICAL-SAGA simplifies access to many distributed cyberinfrastruc-
tures such as XSEDE and OSG.

(L2-L1) Interface to Resource
ExTASY: Enables advanced sampling of complex macromolecules using
molecular dynamics.
DeepDriveX: Enables scalable and concurrent execution of Machine
Learning (ML) and HPC workloads (X) on HPC Platforms.
ICEBERG: Enables scalable image analysis on HPC. It allows the
integration of image analysis frameworks and algorithms.
SCALE-MS: Enables the concurrent execution of adaptive ensemble
algorithms. It uses RADICAL-Pilot for workload execution.

RADICAL-Cybertools support multiple points of integration, “unifying”
conceptual reasoning across otherwise different tools and systems

(L4) Workflow Management Systems

Ensemble Toolkit (EnTK): Provides the ability to execute flexible
combinations of ensemble-based workflows. It promotes “ensembles”
to a first class entity, by taking charge of where and how the ensemble
workload is executed. EnTK exposes the pipeline-stage-task (PST)
programming model & interface to express ensemble based workflows.

(L3-L4) Workflow / Workload Management

SeisFlows
● Supports seismic inversion workflows on HPC machines, at scale
● We integrated SeisFlow

○ with RADICAL-SAGA (L1) to execute compute jobs
○ with RADICAL-EnTK (L3) to orchestrate tasks and data staging

ATLAS (Panda and Harvester)
● PanDA is a WMS designed to support the distributed execution of

workflows via pilots.
● We integrated Panda and RADICAL-Pilot to improve its scaling on

large HPC resources, and integrated Harvester and RADICAL-Pilot to
provide scalable task execution on HPC machines

Swift /ParSL
● Swift is a language and a runtime system to execute workflows.
● We integrated Swift with RADICAL-WLMS (L3) to execute workloads

concurrently on HPC and HTC resources.

Fireworks
● Fireworks is a system that enables material science workflows
● We integrate Fireworks and RADICAL-Pilot (L2) to improve its scaling

on HPC resources

For more information: http://radical.rutgers.edu

Integration with other Tools

RADICAL-Pilot: Scalable pilot system for the simple and versatile
execution of concurrent and distributed many-task applications on
clusters, grids, and clouds. RADICAL-Pilot offers users a lightweight
Python API to handle a variety of workloads—including MPI,
multiprocess, multithreaded, CPU, and GPU tasks—and scheduling
O(10k) tasks while marshalling O(10k) distributed cores.

(L2) Task Runtime Management

