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Question Motivating Today’s Talk:
How certain should we be about estimates of the 

strength – R0 – of a disease at the outset of an outbreak?
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Tentative conclusion: Many values of R0 can be 
compatible with the same observed rate of increase in 
cases – even if projected outbreak sizes are different.



SIR Model - Basics
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S I R

�

TI

Population “Classes”

S – The number of susceptible individuals

I – The number of infectious individuals

R – The number of “removed” individuals 
(through recovery or, possibly, death)

Mechanisms

Infection: Requiring contact 
between a S and a I individual 
at rate b.

Recovery: After a period of 
infectiousness of average 
duration TI.



SIR Model – Initial Dynamics
Depend on Basic Reproductive Number, R0
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The expected number of cases, initially changes like:

where

İ =
I

TI
(R0 � 1)

R0 ⌘
infections per timez}|{

� ⇥
infectious periodz}|{

TI

SIR Model – Initial Dynamics
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The expected number of cases, initially changes like:

where

such that

• Disease spreads whenever the  average number of new cases 
exceeds unity, i.e: 

• The increase is exponential

İ =
I

TI
(R0 � 1)

R0 ⌘
infections per timez}|{

� ⇥
infectious periodz}|{

TI

R0 > 1

SIR Model – Initial Dynamics
Depend on Basic Reproductive Number, R0
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Estimating, R0, for 2019-nCoV

Basic reproductive
number R0

Mean generation
interval Ḡ (days)

Generation-interval
dispersion 

Study 1 1.5–3.5 10 1 Bedford et al. [4]
Study 2 2.5 (1.5–3.5)⇤ 8.4 unspecified† Imai et al. [5]
Study 3 2.92 (95% CI: 2.28–3.67) 8.4 0.2 Liu et al. [6]
Study 4 3.8 (95% CI: 3.6–4.0) 7.6 0.5 Read et al. [8]
Study 5 2.2 (90% CI: 1.4–3.8) 7–14 0.5 Riou and Althaus [10]
Study 6 5.47 (95% CI: 4.16–7.10)‡ 7.6–8.4 0.2 Zhao et al. [9]
Study 7 2.0–3.1 6–10 0 Majumder and Mandl [7]

Table 1: Reported estimates of the basic reproductive number and the assump-
tions about the generation-interval distributions. Estimates of R0 and their assump-
tions about the shape of the generation interval distributions were collected from 7 studies.
⇤We treat these intervals as a 95% confidence interval in our analysis. †We assume  = 0.5
in our analysis. ‡The authors presented R0 estimates under di↵erent assumptions regarding
the reporting rate; we use their baseline scenario in our analysis to remain consistent with
other studies, which do not account for changes in the reporting rate.

2 Methods

2.1 Description of the studies

We gathered information on estimates of R0 and their assumptions about the underlying
generation-interval distributions from 7 articles that were published online between January
23–26, 2020 (Table 1). Five studies [6–10] were uploaded to pre-print servers (bioRxiv,
medRxiv, and SSRN); one report was posted on the web site of Imperial College London [5];
and one report was posted on nextstrain.org [4]. Their modeling approaches vary widely: a
branching process model [4, 5, 10], a deterministic Susceptible-Exposed-Infected-Recovered
(SEIR) model [8], an exponential growth model [9], a Poisson o↵spring distribution model
[6], and the Incidence Decay and Exponential Adjustment (IDEA) model [7]. Four studies
estimated R0 by directly fitting their models to incidence data [6–9]. The remaining three
studies estimated R0 by comparing the predicted number of cases from their models with
the estimated number of total cases by January 18 (between 1,000 and 9,7000 [15]) Some
of these studies have now been published in peer-reviewed journals [16, 17] or have been
updated with better uncertainty quantification [18].

2.2 Gamma approximation framework for linking r and R0

Early in an outbreak, R0 is di�cult to estimate directly; instead, R0 is often inferred from
the exponential growth rate r, which can be estimated reliably from incidence data [19].
Given an estimate of the exponential growth rate r and an intrinsic generation-interval
distribution g(⌧) [20], the basic reproductive number can be estimated via the Euler-Lotka
equation [13]:

1/R0 =

Z
exp(�r⌧)g(⌧) d⌧. (1)
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Pooled estimates via a speed-
strength relationship 

(technically using generation intervals)
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Figure 1: Comparisons of the reported parameter values with our pooled esti-
mates. We inferred point estimates (black), uniform distributions (orange) or confidence
intervals (purple) for each parameter from each study, and combined them into pooled esti-
mates (red; see text). Open triangle: we assumed  = 0.5 for Study 2 which does not report
generation-interval dispersion.

t(µ = 0, � = 1, ⌫ = 4) assumes a priori that between-study variance is large, while weak
priors (e.g. half-Cauchy(0,5)) can lead to poor mixing.

We run 4 independent Markov Chain Monte Carlo chains each consisting of 500,000
burnin steps and 500,000 sampling steps. Posterior samples are thinned every 1000 steps.
Convergence is assessed by ensuring that the Gelman-Rubin statistic is below 1.01 for all
hyperparameters [24]; trace plots and marginal posterior distribution plots are presented in
Appendix. 95% confidence intervals are calculated by taking 2.5% and 97.5% quantiles from
the marginal posterior distribution for each parameter.

3 Results

Fig. 1 compares the reported values of the exponential growth rate r, mean generation in-
terval Ḡ, and the generation-interval dispersion  from di↵erent studies with the pooled
estimates that we calculate from our multilevel model. We find that there is a large uncer-
tainty associated with the underlying parameters; many models rely on stronger assumptions
that ignore these uncertainties. Surprisingly, no studies take into account how the variation
in generation intervals a↵ects their estimates of R0: all studies assumed fixed values for ,
ranging from 0 to 1.

Fig. 2 shows how propagating uncertainty in di↵erent combinations would a↵ect estimates
and CIs for R0. For illustrative purposes, we use our pooled estimates, which may represent
a reasonable proxy for the state of knowledge as of January 23–26 (Fig. 2A). Comparing
the models that include only some sources of uncertainty to the “all” model, we see that
propagating error from the growth rate (which all but one of the studies reviewed did)
is absolutely crucial: the middle bar (“GI mean”), which lacks growth-rate uncertainty,
is relatively narrow. In this case, propagating error from the mean generation interval
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Figure 3: Sensitivity of the reported R0 estimates with respect to our pooled
estimates of the underlying parameters. We replace the reported parameter values
(growth rate r, GI mean Ḡ, and GI variation ) with our corresponding pooled estimates
(µr, µG, and µ) one at a time and recalculate R0 (growth rate, GI mean, and GI
variation). The pooled estimate of R0 is calculated from the joint posterior distribution
of µr, µG, and µ (all); this corresponds to replacing all reported parameter values with
our pooled estimates, which gives identical results across all studies. Horizontal dashed
lines represent the 95% confidence intervals of our pooled estimate of R0. The reported
R0 estimates (base) have been adjusted to show the approximate 95% confidence interval
using the probability distributions that we defined if they had relied on di↵erent measures
for parameter uncertainties.

4 Discussion

Estimating the basic reproductive number R0 is crucial for predicting the course of an out-
break and planning intervention strategies. Here, we use a gamma approximation [21] to
decompose R0 estimates into three key quantities (r, Ḡ, and ) and apply a multilevel
Bayesian framework to compare estimates of R0 for the novel coronavirus outbreak. Our
results demonstrate the importance of accounting for uncertainties associated with the un-
derlying generation-interval distributions, including uncertainties in the amount of dispersion
in the generation intervals: our analysis of individual studies shows that assuming too nar-
row a generation-interval distribution can make the estimate of R0 overly sensitive to the
estimates of the exponential growth rate r.
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In other words, estimates of R0 must depend on the assumptions about the exponential
growth rate r and the shape of the generation-interval distribution g(⌧).

Here, we use the gamma approximation framework [21] to (i) characterize the amount of
uncertainty present in the exponential growth rates and the shape of the generation-interval
distribution and (ii) assess the degree to which these uncertainties a↵ect the estimate of R0.
Assuming that generation intervals follow a gamma distribution with the mean Ḡ and the
squared coe�cient of variation , we have

R0 =
�
1 + rḠ

�1/
. (2)

This equation demonstrates that a generation-interval distribution that has a larger mean
(higher Ḡ) or is less variable (lower ) will give a higher estimate of R0 for the same value
of r.

2.3 Statistical framework

As most studies do not report their estimates of the exponential growth rate, we first re-
calculate the exponential growth rate that correspond to their model assumptions. We do
so by modeling reported distributions of the reproductive number R0, the mean generation
interval Ḡ, and the generation-interval dispersion parameter  with appropriate probability
distributions; we used gamma distributions to model values reported with confidence inter-
vals and uniform distributions to model values reported with ranges. For example, Study 3
estimated R0 = 2.92 (95% CI: 2.28–3.67); we model this estimate as a gamma distribution
with a mean of 2.92 and a shape parameter of 67, which has a 95% probability of containing
a value between 2.28 and 3.67 (see Table 2 for a complete description). For each study i, we
construct a family of parameter sets by drawing 100,000 random samples from the probabil-
ity distributions (Table 2) that represent the estimates of R0i and the assumed values of Ḡi

and i and calculate the exponential growth rate ri via the inverse of Eq. 2:

ri =
Ri

0i � 1

iḠi
. (3)

This allows us to approximate the probability distributions of the estimated exponential
growth rates by each study; uncertainties in the probability distributions that we calculate
for the estimated exponential growth rates will reflect the methods and assumptions that
the studies rely on.

We construct pooled estimates for each parameter (r, Ḡ, and ) using a Bayesian mul-
tilevel modeling approach, which assumes that the parameters across di↵erent studies come
from the same gamma distribution. The pooled estimates, which are represented as proba-
bility distributions rather than point estimates, allow us to average across di↵erent modeling
approaches, while accounting for the uncertainties in the assumptions they make:

ri ⇠ Gamma(mean = µr, shape = µ2
r/�

2
r),

Ḡi ⇠ Gamma(mean = µG, shape = µ2
G/�

2
G),

i ⇠ Gamma(mean = µ, shape = µ2
/�

2
),

(4)
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Figure 1: Comparisons of the reported parameter values with our pooled esti-
mates. We inferred point estimates (black), uniform distributions (orange) or confidence
intervals (purple) for each parameter from each study, and combined them into pooled esti-
mates (red; see text). Open triangle: we assumed  = 0.5 for Study 2 which does not report
generation-interval dispersion.

t(µ = 0, � = 1, ⌫ = 4) assumes a priori that between-study variance is large, while weak
priors (e.g. half-Cauchy(0,5)) can lead to poor mixing.

We run 4 independent Markov Chain Monte Carlo chains each consisting of 500,000
burnin steps and 500,000 sampling steps. Posterior samples are thinned every 1000 steps.
Convergence is assessed by ensuring that the Gelman-Rubin statistic is below 1.01 for all
hyperparameters [24]; trace plots and marginal posterior distribution plots are presented in
Appendix. 95% confidence intervals are calculated by taking 2.5% and 97.5% quantiles from
the marginal posterior distribution for each parameter.

3 Results

Fig. 1 compares the reported values of the exponential growth rate r, mean generation in-
terval Ḡ, and the generation-interval dispersion  from di↵erent studies with the pooled
estimates that we calculate from our multilevel model. We find that there is a large uncer-
tainty associated with the underlying parameters; many models rely on stronger assumptions
that ignore these uncertainties. Surprisingly, no studies take into account how the variation
in generation intervals a↵ects their estimates of R0: all studies assumed fixed values for ,
ranging from 0 to 1.

Fig. 2 shows how propagating uncertainty in di↵erent combinations would a↵ect estimates
and CIs for R0. For illustrative purposes, we use our pooled estimates, which may represent
a reasonable proxy for the state of knowledge as of January 23–26 (Fig. 2A). Comparing
the models that include only some sources of uncertainty to the “all” model, we see that
propagating error from the growth rate (which all but one of the studies reviewed did)
is absolutely crucial: the middle bar (“GI mean”), which lacks growth-rate uncertainty,
is relatively narrow. In this case, propagating error from the mean generation interval
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Figure 3: Sensitivity of the reported R0 estimates with respect to our pooled
estimates of the underlying parameters. We replace the reported parameter values
(growth rate r, GI mean Ḡ, and GI variation ) with our corresponding pooled estimates
(µr, µG, and µ) one at a time and recalculate R0 (growth rate, GI mean, and GI
variation). The pooled estimate of R0 is calculated from the joint posterior distribution
of µr, µG, and µ (all); this corresponds to replacing all reported parameter values with
our pooled estimates, which gives identical results across all studies. Horizontal dashed
lines represent the 95% confidence intervals of our pooled estimate of R0. The reported
R0 estimates (base) have been adjusted to show the approximate 95% confidence interval
using the probability distributions that we defined if they had relied on di↵erent measures
for parameter uncertainties.

4 Discussion

Estimating the basic reproductive number R0 is crucial for predicting the course of an out-
break and planning intervention strategies. Here, we use a gamma approximation [21] to
decompose R0 estimates into three key quantities (r, Ḡ, and ) and apply a multilevel
Bayesian framework to compare estimates of R0 for the novel coronavirus outbreak. Our
results demonstrate the importance of accounting for uncertainties associated with the un-
derlying generation-interval distributions, including uncertainties in the amount of dispersion
in the generation intervals: our analysis of individual studies shows that assuming too nar-
row a generation-interval distribution can make the estimate of R0 overly sensitive to the
estimates of the exponential growth rate r.
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Take-home: R0 of 2.9 (95% CI 2.1-4.5) 
despite much larger point estimates.

Pooled estimates via a speed-
strength relationship 

(technically using generation intervals)

Sang Woo Park Jonathan Dushoff
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In other words, estimates of R0 must depend on the assumptions about the exponential
growth rate r and the shape of the generation-interval distribution g(⌧).

Here, we use the gamma approximation framework [21] to (i) characterize the amount of
uncertainty present in the exponential growth rates and the shape of the generation-interval
distribution and (ii) assess the degree to which these uncertainties a↵ect the estimate of R0.
Assuming that generation intervals follow a gamma distribution with the mean Ḡ and the
squared coe�cient of variation , we have

R0 =
�
1 + rḠ

�1/
. (2)

This equation demonstrates that a generation-interval distribution that has a larger mean
(higher Ḡ) or is less variable (lower ) will give a higher estimate of R0 for the same value
of r.

2.3 Statistical framework

As most studies do not report their estimates of the exponential growth rate, we first re-
calculate the exponential growth rate that correspond to their model assumptions. We do
so by modeling reported distributions of the reproductive number R0, the mean generation
interval Ḡ, and the generation-interval dispersion parameter  with appropriate probability
distributions; we used gamma distributions to model values reported with confidence inter-
vals and uniform distributions to model values reported with ranges. For example, Study 3
estimated R0 = 2.92 (95% CI: 2.28–3.67); we model this estimate as a gamma distribution
with a mean of 2.92 and a shape parameter of 67, which has a 95% probability of containing
a value between 2.28 and 3.67 (see Table 2 for a complete description). For each study i, we
construct a family of parameter sets by drawing 100,000 random samples from the probabil-
ity distributions (Table 2) that represent the estimates of R0i and the assumed values of Ḡi

and i and calculate the exponential growth rate ri via the inverse of Eq. 2:

ri =
Ri

0i � 1

iḠi
. (3)

This allows us to approximate the probability distributions of the estimated exponential
growth rates by each study; uncertainties in the probability distributions that we calculate
for the estimated exponential growth rates will reflect the methods and assumptions that
the studies rely on.

We construct pooled estimates for each parameter (r, Ḡ, and ) using a Bayesian mul-
tilevel modeling approach, which assumes that the parameters across di↵erent studies come
from the same gamma distribution. The pooled estimates, which are represented as proba-
bility distributions rather than point estimates, allow us to average across di↵erent modeling
approaches, while accounting for the uncertainties in the assumptions they make:

ri ⇠ Gamma(mean = µr, shape = µ2
r/�

2
r),

Ḡi ⇠ Gamma(mean = µG, shape = µ2
G/�

2
G),

i ⇠ Gamma(mean = µ, shape = µ2
/�

2
),

(4)
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Conditions for epidemic growth

20

Where infections per time, b, is a product of:

• Contacts by infectious individuals per unit time

• Probability of contact with a susceptible (S0/N)

• Probability that the contact transmits the disease

R0 ⌘
infections per timez}|{

� ⇥
infectious periodz}|{
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Conditions for epidemic growth also 
suggest opportunities for control
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Where infections per time, b, is a product of:

• Contacts by infectious individuals per unit time

• Probability of contact with a susceptible (S0/N)

• Probability that the contact transmits the disease

R0 ⌘
infections per timez}|{

� ⇥
infectious periodz}|{

TI

Contact tracing & 
targeted isolation

Vaccination (herd 
or ring)

Process engineering 
& PPE (masks)

Hospitalization & 
treatment



Next-stage models (and efforts to control)
 
 

1 
 

Figures 
 
Figure 1. Connectivity of Wuhan to other cities and provinces in mainland China, based on total commercial airline traffic from Wuhan in 
January 2017. Traffic is based on the number of departing bookings. 
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SEIR Metapopulation Model
As per Read et al., medRxiv
2020.01.23.20018549v2

Control (and consequences):
Limiting travel (but also has negative 
consequences for limiting  medical 
supplies, increasing anxiety, and co-
localizing infected patients).
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Figure S1: Model description. Our continuous-time stochastic model of Ebola transmission
between and within the community, hospitals, and funerals (SOM). We tracked the number of
people who are susceptible (S); latently infected (E); infectious (J & I); deceased Ebola victims
buried in traditional West African funeral customs (F); buried Ebola victims (D); and recovered
with immunity (R). We also distinguished between individuals who have di↵erent levels of exposure
to Ebola based on whether they are part of the general community (subscript G), hospitalized
for a reason other than Ebola (H), healthcare workers (W), attending a funeral ceremony (F) or
quarantined (Q). This diagram shows the per-capita transition rates between compartments, with
red labels indicating rates that can be impacted by interventions and red arrows indicating rates
that are entirely due to interventions. The J compartments ensure that the duration of infection for
hospitalized Ebola victims is the same whether they were infected in the community or the hospital.
The forces of infection are functions of the number of infectious people, as are the transition rates
fGF to funerals, fGH to hospitalization and to quarantine (30). Table S1 specifies parameter
definitions and values.
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Category based SEIR model
As per Pandey et al. Science (2014)

Control (and consequences):
Focuses on risk groups, challenging to 
differentially target accurately given 
complexity of model.
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Figure 3: Sensitivity of the reported R0 estimates with respect to our pooled
estimates of the underlying parameters. We replace the reported parameter values
(growth rate r, GI mean Ḡ, and GI variation ) with our corresponding pooled estimates
(µr, µG, and µ) one at a time and recalculate R0 (growth rate, GI mean, and GI
variation). The pooled estimate of R0 is calculated from the joint posterior distribution
of µr, µG, and µ (all); this corresponds to replacing all reported parameter values with
our pooled estimates, which gives identical results across all studies. Horizontal dashed
lines represent the 95% confidence intervals of our pooled estimate of R0. The reported
R0 estimates (base) have been adjusted to show the approximate 95% confidence interval
using the probability distributions that we defined if they had relied on di↵erent measures
for parameter uncertainties.

4 Discussion

Estimating the basic reproductive number R0 is crucial for predicting the course of an out-
break and planning intervention strategies. Here, we use a gamma approximation [21] to
decompose R0 estimates into three key quantities (r, Ḡ, and ) and apply a multilevel
Bayesian framework to compare estimates of R0 for the novel coronavirus outbreak. Our
results demonstrate the importance of accounting for uncertainties associated with the un-
derlying generation-interval distributions, including uncertainties in the amount of dispersion
in the generation intervals: our analysis of individual studies shows that assuming too nar-
row a generation-interval distribution can make the estimate of R0 overly sensitive to the
estimates of the exponential growth rate r.
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