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ovel coronavirus (2019-nCoV) situation as of
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Question Motivating Today’s Talk:

How certain should we be about estimates of the
strength — RO — of a disease at the outset of an outbreak?
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Tentative conclusion: Many values of RO can be

compatible with the same observed rate of increase in

cases - even if projected outbreak sizes are different.



SIR Model - Basics

Population “Classes”
$ — The number of susceptible individuals
I — The number of infectious individuals

R —The number of “removed” individuals
(through recovery or, possibly, death)

Mechanisms

Infection: Requiring contact
between a § and a I individual
at rate [.

Recovery: After a period of
infectiousness of average
duration T,.



SIR Model — Initial Dynamics

Depend on Basic Reproductive Number, R,
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SIR Model — Initial Dynamics
Depend on Basic Reproductive Number, R,
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SIR Model = Initial Dynamics
Depend on Basic Reproductive Number, R,

The expected number of cases, initially changes like:

: 1
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The increase is exponential
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Estimating, R, for

Basic reproductive
number Rg

Study 1 | 1.5-3.5

Study 2 | 2.5 (1.5-3.5)*

Study 3 | 2.92 (95% CI: 2.28-3.67)
Study 4 | 3.8 (95% CI: 3.6-4.0)
Study 5 | 2.2 (90% CI: 1.4-3.8)
Study 6 | 5.47 (95% CI: 4.16-7.10)*
Study 7 | 2.0-3.1

Many model choices:
Branching process

SEIR model (like SIR but with an asymptomatic class)
Exponential growth...

2019-nCoV

Bedford et al. [4]

Imai et al. [5]

Liu et al. [6]

Read et al. [8]

Riou and Althaus [10]

Zhao et al. [9]

Majumder and Mandl [7]




Estimating, R, for 2019-nCoV

Basic reproductive
number Rg

Mean generation
interval G (days)

Generation-interval
dispersion k

Study 1 | 1.5-3.5 10 1 Bedford et al. [4]

Study 2 | 2.5 (1.5-3.5)* 8.4 unspecified Imai et al. [5]

Study 3 | 2.92 (95% CI: 2.28-3.67) | 84 0.2 Liu et al. 6]

Study 4 | 3.8 (95% CI: 3.6-4.0) 76 05 Read et al. 3]

Study 5 | 2.2 (90% CI: 1.4-3.8) 7-14 0.5 Riou and Althaus [10]
Study 6 | 5.47 (95% CI: 4.16-7.10)* | 7.6-8.4 0.2 Zhao et al. [9]

Study 7 | 2.0-3.1 6-10 0 Majumder and Mandl [7]

Many model choices & latent assumptions:

Branching process

SEIR model (like SIR but with an asymptomatic class)
Exponential growth...

How to reconcile and weight different models
to get a pooled estimate and uncertainty in RO?



Pooled estimates via a speed-

strength relationship

technicall

Step I: estimate

latent uncertainty in

‘parameters’.
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Pooled estimates via a speed-

strength relationship
technically usin eneration intervals

r G K
step I : estimate Study 1 o Study 1 ° Study 1- .
. . Study 2+ —_—o Study 2 . Study 2 a
latent uncertainty in sty ] _ . . susyal e
‘parameters’. Study 4- -~ suye] o Stuay 4- .
Study 5 ———&— Study 54 Study 5+ .
Study 6+ - Study 61 —_ Study 6 - .
Study 7+ b Study 74— Study 7- @
Pooled estimate . _.._ . Pooled estimate - —— Pooled estimate - O
0.0 o1 02 08 6 8 10 12 14 000 025 050 075 100
Exponential growth rate (days ') Mean generation interval (days) Squared coefficient of variation

Step 2: incorporate
different types of
uncertainty into RO
estimates by study or 81
as part of a ‘pooled’
estimate (using a
Bayesian multi-level
model)
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Pooled estimates via a speed-

strength relationship
(technically using generation intervals)
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Conditions for epidemic growth

infections per time infectious period
~ = ~ N
RO — B X T[

Where infections per time, £, is a product of:

* Contacts by infectious individuals per unit time
* Probability of contact with a susceptible (S,/N)

* Probability that the contact transmits the disease



Conditions for epidemic growth also
suggest opportunities for control

infections per time infectious period

~ = AN

— Hospitalization &
RO o B X I treatment

Where infections per time, £, is a product of:

* Contacts by infectious individuals per unit time Contact tracing &

targeted isolation

* Probability of contact with a susceptible (S,/N) Vaccination (herd
or ring)

* Probability that the contact transmits the disease Process engineering
& PPE (masks)



Next-stage models (and efforts to control)
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SEIR Metapopulation Model
As per Read et al., medRxiv
2020.01.23.20018549v2

Control (and consequences):
Limiting travel (but also has negative
consequences for limiting medical
supplies, increasing anxiety, and co-
localizing infected patients).
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Category based SEIR model
As per Pandey et al. Science (2014)

Control (and consequences):
Focuses on risk groups, challenging to
differentially target accurately given
complexity of model.



Estimating the strength, speed,

and final size of disease outbreaks:

application to 2019-nCoV

1600

1400

1200

1000

%
=3
(=]
Infected, I(t)

D
=]
S

400

200

0 005 01 UI/S 02 025 03 50 100 150
Br Days, t

base —+— growthrate —=— Glmean Gl variation —& all

-3

-

Basic reproductive number

o

IS
T T
1 1
1 1
1 1
——
1 1
1 1
1 1
1 1
1 1
—_—— 1

—_— 1
T T
1 1
1 1
1 1
1 1
|

) e — 1
1 1
1 1
1 1
1 1
1 1
1 = 1
. 1
1 1
1 1
1 1
1 1
> 1

1 —
1 1
1 1
1 1
1 1
' 1

1
— 1
1
1
1
1
T
T
1
1
1
1
1
1
—-—

Pooled estimate ~ Study 1 Study 2 Study 3 Study 4 Study 5 Study 6 Study 7

Email: jsweitz@gatech.edu
Web: http://ecotheory.biology.gatech.edu

Cir

medrxiv: 2020.01.30.20019877v3

Questions?

Acknowledgements

Sang Woo Park, Princeton
Jonathan Dushoff, McMaster
Bradford Taylor, GT (now MSKCC)

Technical References

Park, S W., Bolker, B. M., Champredon, D. Earn,
D.J., Li, M., Weitz, J.S., Grenfelll, B.T., and
Dushoff, J.D. Reconciling early-outbreak
preliminary estimates of the basic reproductive
number and its uncertainty: framework and
applications to the novel coronavirus (2019-nCoV)
outbreak. Eurosurveillance in review & medrxiv.

Park, S.W., Champredon, D., Weitz, J.S., and
Dushoff, J. (2019) Exploring how generation

intervals link strength and speed of epidemics.
Epidemics. 27: 12-18.

Taylor, B.P., Dushoff, J. and Weitz, J.S. (2016)
Stochasticity and the limits to confidence when
estimating RO of Ebola and other emerging
infectious diseases. J. Theor. Biol. 408: 145-154.

J.S. Weitz and J. Dushoff (2015). Modeling post-
death transmission of Ebola: challenges for

inference and opportunities for control. Scientific
Reports 5: 8751



