CSSI Framework: Cyberloop for Accelerated Bionanomaterials Design PI: <u>Hendrik Heinz</u>, Co-Pis: Wonpil Im, Ellad Tadmor Institutions: U Colorado Boulder, Lehigh U, U Minnesota #### **Objective** Merge 3 major existing community programs with 10+ year usage record for open source, accurate simulations of nanomaterials and biomaterials. ## Supported Nanomaterials from IFF https://bionanostructures.com/interface-md/ - Fcc metals: Ag, Al, Au, Cu, Ni, Pb, Pd, Pt bulk minerals, including different cleavage planes (up to 3), a variety of shapes (i.e., sphere, cylinder, rod, polygon, and box), and Wulff construction. In particular, ligand-protected Au nanocluster/nanoparticle/surface are also provided. - Clay Minerals: Kaolinite $(Al_2Si_2O_5(OH)_4)$ and Montmorillonite $(K, Na)_n[Si_4O_8][Al_{2-n}Mg_nO_2(OH)_2]$. In the case of Montmorillonite, users can control the contents of Mg defect and ion types. - Mica: Muscovite (KAI₂(AISi₃)O₁₀(OH)₂). - Calcium Sulfates: Gypsum (CaSO₄-2H₂O), Hemihydrate (CaSO₄-1/2H₂O), and Anhydrite (CaSO₄) with different cleavage planes and Wulff construction. - Cement Minerals: Tricalcium Silicate (Ca₃SiO₅) and Tricalcium Aluminate (Ca₃Al₂O₆) with different cleavage planes and Wulff construction. - Calcium Silicate Hydrate: Tobermorite (Ca₄Si₆O₁₅(OH)₂-5H₂O). - Silica: bulk minerals (α -quartz, α -cristobalite) as well as surfaces of different degree of ionization for specific pH values and particle sizes - Phosphate Minerals: bulk mineral of Hydroxyapatite (Ca₅(PO₄)₃(OH)), different cleavage planes and Wulff construction for various pH. - Carbonaceous Materials: Carbon Nanotube, Graphene, and Graphite. # Newly Added Metals and Oxides - Provide force field, structures, and IFF surface model database to CHARMM-GUI and Nanomaterial Modeler - Assist OpenKIM with standardizing protocols for property calculations in LAMMPS: cell parameters, surface energy, hydration energy, mechanical properties at 298 K and 101 kPa - Assisting in testing and quality improvement ### Working Scheme of CHARMM-GUI Nanomaterial Modeler http://www.charmm-gui.org/?doc=input/nanomaterial - Automatic generation of simulation-ready files in different formats: LAMMPS, NAMD, GROMACS, OpenMM - Next step: automated integration of biomacromolecules into model building ## Curating and testing of force fields on OpenKIM https://openkim.org/ The **Open Knowledgebase of Interatomic Models project** curates force fields (FFs) with full provenance control, issues them DOIs so that they can be cited in publications, and tests them exhaustively using "KIM Tests" that compute a host of material properties and "Verification Checks" (VCs) on coding correctness. FFs archived in OpenKIM conform to the KIM Application Programming Interface (API) that allows them be used in plug-and-play fashion with a variety of major simulation codes. The overall aim of the project is to improve the reliability and reproducibility of molecular simulations of materials including bionanomaterial systems. Overview of OpenKIM Structure: Users interact with OpenKIM through a website where they can upload/download FFs and visualize Test and VC results. An FF uploaded to OpenKIM is run against all compatible Tests and VCs in the system using an automated **Processing**Pipeline framework, which consists of a cloud-based system of a Gateway, Director, and workers that perform the computations. - First simulator models for bonded potentials (IFF) were built and tested, adding a new category of widely used force fields into OpenKIM - Standardized property validation protocols (surface energies, hydration energies, mechanical) in progress ■ -■ LennardJones612_Universal [108] ■ - LennardJones612_UniversalShifted [109] Pair_Johnson_Fe [112, 113] Pair_Morse_Shifted_GirifalcoWeizer_HighCutoff_Fe [66, 114] Pair_Morse_Shifted_GirifalcoWeizer_MedCutoff_Fe [66, 115] • Pair_Morse_Shifted_GirifalcoWeizer_LowCutoff_Fe [66, 116] ■ EAM_Dynamo_Ackland_Bacon_Fe [117, 118] *model_Fe_PF_DudarevDerlet [119, 120] • • *model_Fe_PF_chiesa_quinticsplines [120, 121] o o *EAM_Dynamo_Mendelev_Han_Fe_5 [122, 123] • • *EAM_Dynamo_Zhou_Johnson_Fe [103, 124] o o *EAM_Dynamo_Mendelev_Han_VFe [123, 125] • *EAM_Dynamo_Ackland_Mendelev_FeP [126, 127] o o *EAM_Dynamo_Hepburn_Ackland_FeC [128, 129] *EAM_Dynamo_Mendelev_Han_Fe_2 [123, 130] o o *EAM_Dynamo_Bonny_Pasianot_FeNi [131, 132] • *EAM_Dynamo_Bonny_Pasianot_FeCuNi [133, 134] *EAM_Dynamo_Mendelev_Srolovitz_AlFe [73, 123] o o *model_Fe_PF_mendelev [123, 135] Runnels et al, in preparation (2020). **Example:** Comparison of FF prediction for grain boundary (GB) excess energy in FCC Fe as a function of symmetric tilt angle about the <110> axis for FFs in OpenKIM.