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INTRODUCTION RESEARCH OBJECTIVES METAMORPHIC TESTING

Custom scientific software is widely used in science and engineering. Often such *  Develop and evaluate techniques for creating automated test oracles for scientific Operates by checking whether the program under test behaves according to an
software plays an important role in critical decision making. But, due to the lack of programs. expected set of properties known as metamorphic relations (MRs).

systematic testing in scientific software, subtle faults can remain undetected. One
of the greatest challenges for systematic testing of scientific software is the oracle

Develop approaches for automatically generating and selecting test cases to
improve the effectiveness of partial oracles.

problem. We aim to develop automated testing techniques to overcome this . . . . Initial test
challenge. These techniques will be implemented in METtester: a publically * Develop inexpensive automated methods for evaluating the effectiveness of test case ai|a|as|as|as|=|S
available testing tool that can be used in the day-to-day scientific development oracles. PAermU% Wojstant
process. * Develop a publicly available automated testing tool: METtester for scientific
software. Follow-up [ 5, Ta.Ta;[as | a, |=[ S Follow-up | g,+k [ a,+k | as+k | as+k | as+k | =| S+5*k
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