
CPU: up to Fam17 Zeppelin Zen
GPU: ROCm, ROCm-smi Cortex, Cavium ThunderX, ARM64

Gemini and Aries interconnect,
power

Blue Gene Series, Q: 5-D Torus, I/O
System, EMON power, energy

Power 5,6,7,8,9
Power monitoring support

Power9 NEST event support via
Performance Co-Pilot (PCP) PAPI

component

Westmore, Sandy/Ivy Bridge, Haswell,
Broadwell, Skylake(-X), Kaby Lake,

Cascadelake
KNC, KNL, Knights Mill
including power/energy RAPL (power/energy), powercap

Tesla, Kepler, Maxwell, Pascal, Volta
Power monitoring and capping

support (NVML), NVLink Virtual Environment Virtual Environment

PART 2 PAPI’s Counter Analysis Toolkit
Anthony Danalis, Heike Jagode, Daniel Barry

Target Audience
● Performance-conscious application developers

● PAPI developers working on new architectures (think preset events)

● Developers interested in validating hardware event counters

.

PART 3 Modernizing PAPI Infrastructure
Vince Weaver and Yan Liu

Improved PAPI Test Infrastructure
● The existing PAPI test suite is used to test the correctness of PAPI before release.

● The hardware and operating systems used by PAPI are always changing, and some of the existing tests
were outdated or gave false negatives.

● Existing tests were checked to ensure accurate results on modern hardware.

● New counter validation tests were created, which should provide a sanity check when bringing up support
for a new processor architecture.

Low-Overhead PAPI_read() Support
● Traditionally, PAPI_read() counter reads went

through the standard Linux read() system call,
which can be slow (around 1,000 cycles).

● x86 hardware supports a userspace rdpmc()
instruction that bypasses the kernel and requires
200 cycles (a 5× speedup).

● Various bugs in the Linux kernel around this
interface were found and fixed so that rdpmc() can
be enabled by default.

Enhanced Sampling Interface
● PAPI currently has a limited counter-sampling interface that only allows gathering the instruction pointer

at regular intervals.

● Modern processors support much richer sampling information, including the cause of cache misses, where
in the cache hierarchy the miss happened, and the cycles taken.

● We extended the PAPI sampling interface to provide this additional sampling information.

PAPI
● PAPI provides a consistent interface (and methodology) for hardware performance counters found

across a compute system: i. e., CPUs, GPUs, on- and off-chip memory, interconnects, I/O system, file
system, energy/power, etc.

● PAPI enables software engineers to see, in near real time, the relationship between software
performance and hardware events across the entire compute system.

PART 1 PAPI for Arithmetic Intensity Anthony Danalis, Heike Jagode, Daniel Barry

Floating-point Operations: ddot, dgemm
FLOPS involve multiple events for capturing operations of different vector length.

IBM Power9: Intel Skylake:

Memory Traffic: ddot, dgemm
Traffic to DRAM involves multiple non-trivial uncore (Intel)/northbridge (AMD)/nest (IBM) events.

IBM Power9: Intel Skylake 2 Sockets:

SI2-SSI: PAPI-EX
Performance Application Programming Interface
for Extreme-Scale Environments

Jack Dongarra
Heike Jagode
Anthony Danalis
Daniel Barry
UNIVERSITY OF TENNESSEE

Vince Weaver
UNIVERSITY OF MAINE

Boxplot showing read latency
for various versions of PAPI
and the large improvement by
using rdpmc.

Comparison of historical
performance counter
interfaces (perfmon2, perfctr)
showing that perf_event rdpmc
matches even the best
historical interface.

ACKNOWLEDGMENTS
This material is based upon work supported in part by the National Science Foundation NSF under awards No. 1450429. A portion
of this research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of
Energy Office of Science and the National Nuclear Security Administration.

The goal of this work is to create a set of microbenchmarks for illustrating details in hardware events
and how they relate to the behavior of the microarchitecture.

Events that count the hits and misses on the L1 D-Cache follow very
sharp step functions that perfectly match the expected signatures .

Events that pertain to the L2 D-Cache have more complex signatures
due to the effects of prefetching.

Events that pertain to the L3 D-Cache have very complex signatures
without sharp boundaries. However, they still roughly follow the
expected shapes for the different regions of interest.

Events that pertain to the Instruction cache have the most complex
signatures and are challenging to match automatically. However, the
curves of the different events are distinctly different from each other.

The goal of this work is to create a set of PAPI presets (predefined events) for effortless computation of the Arithmetic Intensity (a.k.a. Computational Intensity), measured as ratio of computation to traffic (flops / bytes).

pcp:::perfevent.hwcounters.nest_mcs01_imc.PM_MCS01_128B_RD_DISP_PORT01.value:cpu84
pcp:::perfevent.hwcounters.nest_mcs01_imc.PM_MCS01_128B_RD_DISP_PORT23.value:cpu84
pcp:::perfevent.hwcounters.nest_mcs01_imc.PM_MCS01_128B_WR_DISP_PORT01.value:cpu84
pcp:::perfevent.hwcounters.nest_mcs01_imc.PM_MCS01_128B_WR_DISP_PORT23.value:cpu84
pcp:::perfevent.hwcounters.nest_mcs23_imc.PM_MCS23_128B_RD_DISP_PORT01.value:cpu84
pcp:::perfevent.hwcounters.nest_mcs23_imc.PM_MCS23_128B_RD_DISP_PORT23.value:cpu84
pcp:::perfevent.hwcounters.nest_mcs23_imc.PM_MCS23_128B_WR_DISP_PORT01.value:cpu84
pcp:::perfevent.hwcounters.nest_mcs23_imc.PM_MCS23_128B_WR_DISP_PORT23.value:cpu84

skx_unc_imc0::UNC_M_CAS_COUNT:WR:cpu=0
skx_unc_imc1::UNC_M_CAS_COUNT:WR:cpu=0
skx_unc_imc2::UNC_M_CAS_COUNT:WR:cpu=0
skx_unc_imc3::UNC_M_CAS_COUNT:WR:cpu=0
skx_unc_imc4::UNC_M_CAS_COUNT:WR:cpu=0
skx_unc_imc5::UNC_M_CAS_COUNT:WR:cpu=0
skx_unc_imc0::UNC_M_CAS_COUNT:RD:cpu=0
skx_unc_imc1::UNC_M_CAS_COUNT:RD:cpu=0
skx_unc_imc2::UNC_M_CAS_COUNT:RD:cpu=0
skx_unc_imc3::UNC_M_CAS_COUNT:RD:cpu=0
skx_unc_imc4::UNC_M_CAS_COUNT:RD:cpu=0
skx_unc_imc5::UNC_M_CAS_COUNT:RD:cpu=0

skx_unc_imc0::UNC_M_CAS_COUNT:WR:cpu=18
skx_unc_imc1::UNC_M_CAS_COUNT:WR:cpu=18
skx_unc_imc2::UNC_M_CAS_COUNT:WR:cpu=18
skx_unc_imc3::UNC_M_CAS_COUNT:WR:cpu=18
skx_unc_imc4::UNC_M_CAS_COUNT:WR:cpu=18
skx_unc_imc5::UNC_M_CAS_COUNT:WR:cpu=18
skx_unc_imc0::UNC_M_CAS_COUNT:RD:cpu=18
skx_unc_imc1::UNC_M_CAS_COUNT:RD:cpu=18
skx_unc_imc2::UNC_M_CAS_COUNT:RD:cpu=18
skx_unc_imc3::UNC_M_CAS_COUNT:RD:cpu=18
skx_unc_imc4::UNC_M_CAS_COUNT:RD:cpu=18
skx_unc_imc5::UNC_M_CAS_COUNT:RD:cpu=18

DOUBLE-precision FLOPs = 1 FP_ARITH_INST_RETIRED.SCALAR_DOUBLE +
2 FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE +
4 FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE +
8 FP_ARITH_INST_RETIRED.512B_PACKED_DOUBLE

SINGLE-precision FLOPs = 1 FP_ARITH_INST_RETIRED.PACKED_SINGLE +
4 FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE +
8 FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE +
16 FP_ARITH_INST_RETIRED.512B_PACKED_SINGLE

DOUBLE-precision FLOPs = PM_DP_QP_FLOP_CMPL

SINGLE-precision FLOPs = PM_SP_FLOP_CMPL

