
CPU: up to Fam17 Zeppelin Zen
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Power monitoring support
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Performance Co-Pilot (PCP) PAPI 
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Broadwell, Skylake(-X), Kaby Lake, 

Cascadelake
KNC, KNL, Knights Mill
including power/energy RAPL (power/energy), powercap

Tesla, Kepler, Maxwell, Pascal, Volta
Power monitoring and capping 

support (NVML), NVLink Virtual Environment Virtual Environment

PART 2 PAPI’s Counter Analysis Toolkit
Anthony Danalis, Heike Jagode, Daniel Barry

Target Audience
● Performance-conscious application developers

● PAPI developers working on new architectures (think preset events)

● Developers interested in validating hardware event counters

.

PART 3 Modernizing PAPI Infrastructure
Vince Weaver and Yan Liu

Improved PAPI Test Infrastructure
● The existing PAPI test suite is used to test the correctness of PAPI before release.

● The hardware and operating systems used by PAPI are always changing, and some of the existing tests 
were outdated or gave false negatives.

● Existing tests were checked to ensure accurate results on modern hardware.

● New counter validation tests were created, which should provide a sanity check when bringing up support 
for a new processor architecture.

Low-Overhead PAPI_read() Support
● Traditionally, PAPI_read() counter reads went 

through the standard Linux read() system call, 
which can be slow (around 1,000 cycles).

● x86 hardware supports a userspace rdpmc() 
instruction that bypasses the kernel and requires 
200 cycles (a 5× speedup).

● Various bugs in the Linux kernel around this 
interface were found and fixed so that rdpmc() can 
be enabled by default.

Enhanced Sampling Interface
● PAPI currently has a limited counter-sampling interface that only allows gathering the instruction pointer 

at regular intervals.

● Modern processors support much richer sampling information, including the cause of cache misses, where 
in the cache hierarchy the miss happened, and the cycles taken.

● We extended the PAPI sampling interface to provide this additional sampling information.

PAPI
● PAPI provides a consistent interface (and methodology) for hardware performance counters found 

across a compute system: i. e., CPUs, GPUs, on- and off-chip memory, interconnects, I/O system, file 
system, energy/power, etc.

● PAPI enables software engineers to see, in near real time, the relationship between software 
performance and hardware events across the entire compute system.

PART 1 PAPI for Arithmetic Intensity  Anthony Danalis, Heike Jagode, Daniel Barry

Floating-point Operations: ddot, dgemm
FLOPS involve multiple events for capturing operations of different vector length.

IBM Power9:                                                                                                Intel Skylake:

Memory Traffic: ddot, dgemm
Traffic to DRAM involves multiple non-trivial uncore (Intel)/northbridge (AMD)/nest (IBM) events.

IBM Power9:                                                                                                Intel Skylake 2 Sockets:

SI2-SSI: PAPI-EX
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Boxplot showing read latency 
for various versions of PAPI 
and the large improvement by 
using rdpmc.

Comparison of historical 
performance counter 
interfaces (perfmon2, perfctr) 
showing that perf_event rdpmc 
matches even the best 
historical interface.
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The goal of this work is to create a set of microbenchmarks for illustrating details in hardware events 
and how they relate to the behavior of the microarchitecture.

Events that count the hits and misses on the L1 D-Cache follow very 
sharp step functions that perfectly match the expected signatures .

Events that pertain to the L2 D-Cache have more complex signatures 
due to the effects of prefetching.

Events that pertain to the L3 D-Cache have very complex signatures 
without sharp boundaries. However, they still roughly follow the 
expected shapes for the different regions of interest.

Events that pertain to the Instruction cache have the most complex 
signatures and are challenging to match automatically. However, the 
curves of the different events are distinctly different from each other.

The goal of this work is to create a set of PAPI presets (predefined events) for effortless computation of the Arithmetic Intensity (a.k.a. Computational Intensity), measured as  ratio of computation to traffic (flops / bytes).  

pcp:::perfevent.hwcounters.nest_mcs01_imc.PM_MCS01_128B_RD_DISP_PORT01.value:cpu84
pcp:::perfevent.hwcounters.nest_mcs01_imc.PM_MCS01_128B_RD_DISP_PORT23.value:cpu84
pcp:::perfevent.hwcounters.nest_mcs01_imc.PM_MCS01_128B_WR_DISP_PORT01.value:cpu84
pcp:::perfevent.hwcounters.nest_mcs01_imc.PM_MCS01_128B_WR_DISP_PORT23.value:cpu84
pcp:::perfevent.hwcounters.nest_mcs23_imc.PM_MCS23_128B_RD_DISP_PORT01.value:cpu84
pcp:::perfevent.hwcounters.nest_mcs23_imc.PM_MCS23_128B_RD_DISP_PORT23.value:cpu84
pcp:::perfevent.hwcounters.nest_mcs23_imc.PM_MCS23_128B_WR_DISP_PORT01.value:cpu84
pcp:::perfevent.hwcounters.nest_mcs23_imc.PM_MCS23_128B_WR_DISP_PORT23.value:cpu84

skx_unc_imc0::UNC_M_CAS_COUNT:WR:cpu=0
skx_unc_imc1::UNC_M_CAS_COUNT:WR:cpu=0
skx_unc_imc2::UNC_M_CAS_COUNT:WR:cpu=0
skx_unc_imc3::UNC_M_CAS_COUNT:WR:cpu=0
skx_unc_imc4::UNC_M_CAS_COUNT:WR:cpu=0
skx_unc_imc5::UNC_M_CAS_COUNT:WR:cpu=0
skx_unc_imc0::UNC_M_CAS_COUNT:RD:cpu=0
skx_unc_imc1::UNC_M_CAS_COUNT:RD:cpu=0
skx_unc_imc2::UNC_M_CAS_COUNT:RD:cpu=0
skx_unc_imc3::UNC_M_CAS_COUNT:RD:cpu=0
skx_unc_imc4::UNC_M_CAS_COUNT:RD:cpu=0
skx_unc_imc5::UNC_M_CAS_COUNT:RD:cpu=0

skx_unc_imc0::UNC_M_CAS_COUNT:WR:cpu=18
skx_unc_imc1::UNC_M_CAS_COUNT:WR:cpu=18
skx_unc_imc2::UNC_M_CAS_COUNT:WR:cpu=18
skx_unc_imc3::UNC_M_CAS_COUNT:WR:cpu=18
skx_unc_imc4::UNC_M_CAS_COUNT:WR:cpu=18
skx_unc_imc5::UNC_M_CAS_COUNT:WR:cpu=18
skx_unc_imc0::UNC_M_CAS_COUNT:RD:cpu=18
skx_unc_imc1::UNC_M_CAS_COUNT:RD:cpu=18
skx_unc_imc2::UNC_M_CAS_COUNT:RD:cpu=18
skx_unc_imc3::UNC_M_CAS_COUNT:RD:cpu=18
skx_unc_imc4::UNC_M_CAS_COUNT:RD:cpu=18
skx_unc_imc5::UNC_M_CAS_COUNT:RD:cpu=18

DOUBLE-precision FLOPs = 1 FP_ARITH_INST_RETIRED.SCALAR_DOUBLE + 
2 FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE + 
4 FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE + 
8 FP_ARITH_INST_RETIRED.512B_PACKED_DOUBLE

SINGLE-precision FLOPs = 1 FP_ARITH_INST_RETIRED.PACKED_SINGLE +
4 FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE + 
8 FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE + 
16 FP_ARITH_INST_RETIRED.512B_PACKED_SINGLE

DOUBLE-precision FLOPs =  PM_DP_QP_FLOP_CMPL

SINGLE-precision FLOPs = PM_SP_FLOP_CMPL


