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Introduction

Needs and motivation
� The inverse problem seeks to extract knowledge from data via models, and is a critical

precursor to computational prediction with rigorously quantified uncertainties
� Bayesian inference provides a comprehensive and systematic framework for formulating

and solving inverse problems under uncertainty
� Bayesian inversion with conventional algorithms and software is prohibitive for complex

models and high dimensional parameter spaces
� Intensive research efforts are creating advanced algorithms that exploit the structure of the

posterior, resulting in orders of magnitude speedups
� However, these new algorithms have not been made accessible to a broad community of

scientists and engineers interested in solving inverse problems

Intellectual merits
� Develop, deploy, & support robust, scalable, high-performance, open-source software
� Provide reference implementations of advanced Bayesian inversion algorithms
� Enable the solution of Bayesian inverse problems of unprecendent size and realism

Broader impacts
� Facilitate the wider adoption of Bayesian tools in simulation-driven science
� Organize workshops & summer schools and develop short & long courses
� Any scientist interested in integrating data with models to quantify and reduce uncertainties

in model predictions is a potential user

Bayesian Formulation of Inverse Problems
� Goal: given (noisy, indirect) data and a deterministic or stochastic forward model, infer

model parameters and update model predictions
� Solving the inverse problem then amounts to characterizing the posterior distribution:

drawing samples; estimating the mean, covariance, or higher moments; evaluating the
posterior probabilities of particular events or quantities of interest
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The process of extracting knowledge from data by solving inverse problems

Software Framework

MUQ-hIPPYlib integration
� Goal: Make the software efficient and scalable as well as easy to use at all user levels
� Software abstractions to follow mathematical abstraction
� Highly composable modeling framework that encourages code reuse, facilitates construc-

tion of complex or hierarchical models, allows for algorithmic innovation

Geometry, mesh
Finite element spaces
Assembly of weak forms
Automatic differentiation

FEniCS

• PDE
– First/second order

forward/adjoint PDEs
• Likelihood
– Observation operator
– Noise covariance
• Prior
– Covariance/regularization

operators
• QOI
– Prediction & sensitivities

hIPPYlib Model

• Large-scale optimization algorithms
• Randomized linear algebra
– Eigensolvers
– Trace/diagonal estimators
• Scalable Gaussian random fields

hIPPYlib Algorithms

Parallel linear algebra
Krylov methods
Preconditioners

PETSc

• Forward/adjoint solver
• Incremental forward/adjoint
• Gradient evaluation
• Hessian action

Model Evaluation &
Sensitivities

• MAP point
• Low rank-based decomposition

of posterior covariance

Laplace Approximation

• Abstract model interface
• Probability distributions

ModPieces

• Curvature-informed proposals
– pCN and MALA with

Laplace approximation
– Dimension-independent

likelihood-informed
• Flexible kernels
– Metropolis-Hastings
– Delayed rejection

MCMC Proposals &
Kernels

• Graphical model specification
• Bayesian hierarchical modeling
• Gradient/Hessian propagation

MUQ Modeling

• Posterior sampling
– MCMC
– Transport maps
– Likelihood-informed subspaces
• Surrogates
– Sparse adaptive gPC
– Gaussian processes
• Prediction tools
– Global sensitivity analysis
– Optimal experimental design

MUQ Algorithms

Interface

MUQ and hIPPYlib have complementary capabilities that, combined, provide a unique
software framework for large-scale Bayesian inversion

Single-phase subsurface flow example
Goal: Infer the log-permeability field from pressure data and compute the predictive posterior
distribution of the effective log-permeability of the medium (QOI)
� The parameter, state, and data spaces have dimensions 1,089, 4,225, and 300, respec-

tively
� Each evaluation of the likelihood function requires discretizing and solving a PDE
� Sampling methods that exploit curvature information (h-pCN and h-MALA) show up to 2

orders of magnitude speed up w.r.t. standard methods (pCN and MALA)
� Delayed Rejection (DR) kernel allows us to further improve the mixing of the MCMC chains

by combining different proposals
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Method Predicted QOI AR (%) IAT ESS ES/min

• pCN (0.01) – 7.2 4416.0 4.5 0.2
• MALA (1E-5) – 30.6 2544.8 7.9 0.1
• h-pCN (0.9) 0.477 10.6 69.3 288.5 16.9
• h-MALA (0.1) 0.541 53.5 53.5 373.8 6.0
• DR h-pCN (1.0)/ h-MALA (0.1) 0.491 59.5 24.8 806.8 10.3

Research, Education and Outreach

Research
Several projects at Army Corps of Engineers, MIT, NYU, NC State, University of Heidelberg
(Germany), UC Merced, UT Austin, and WashU are using MUQ-hIPPYlib, including:
� Inversion for coupled flow–geomechanics to understand induced seismicity (MIT)
� Design of experiments, optimization, and learning for complex systems under uncertainty

(MIT, UT)
� Inversion and prediction of ice sheet dynamics (UC Merced, WashU, MIT)
� Accounting for model errors in inverse problems (UC Merced)
� Statistical treatment of inverse problems constrained by stochastic models (UC Merced)
� Inversion and control for CO2 sequestration with poroelastic models (UT)
� Goal-oriented inference for reservoir models (UT)
� Inferring functional tissue properties from photoacoustic tomography data (WashU)

Workshops, summer schools, and short & long courses

(a) (b)

(c) (d) (e)

� Short course on Inverse Problems and Uncertainty Quantification, Trimester on Mathemat-
ics of Climate and the Environment, Institut Henri Poincaré, Paris, France, November 4–8,
2019

� Bayesian Inverse Problems for Structural Health Monitoring of Civil Infrastructure, Dart-
mouth College, Hanover, NH, May 21–24, 2019

� Inverse Problems: Systematic Integration of Data with Models under Uncertainty, 2018
Gene Golub SIAM Summer School, Breckenridge, CO, June 17–30, 2018(a)

� hIPPYlib: An Extensible Software Framework for Large-Scale Deterministic and Linearized
Bayesian Inverse Problems, SAMSI Summer School, SAMSI, Research Triangle Park, NC,
8–12 August, 2016(b)

� QUEST Uncertainty Quantification Summer School, USC, 19–21 August, 2015
� Inverse Problems and Uncertainty Quantification, ICERM IdeaLab, Brown University, 6–10

July, 2015(c,d)

� Introduction to Uncertainty Quantification, IMA Short Course, University of Minnesota, 15–
26 June, 2015(e)

� Graduate-level courses on inverse problems and uncertainty quantification at Dartmouth
College, MIT, NC State, NYU, UC Merced, UT Austin, and WashU

Code repositories & infrastructure
� http://muq.mit.edu � http://hippylib.github.io

Python, C++, Jupyter, Scipy, Eigen, FEniCS, PETSc, Docker, Github, Bitbucket
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