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§ Use Bayesian framework to
§ Extract knowledge from data

§ Quantify uncertainty in predictions

§ Make decisions under uncertainty

§ Prohibitive with conventional algorithms for 

complex high-dimensional models

§ Develop scalable open-source software to enable 

solution of Bayesian inverse problems of 

unprecedent size and realism

§ Make advanced inversion capabilities available to a 

broader scientific community and accelerate 
scientific discovery

§ muq.mit.edu hippylib.github.io
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Introduction

Needs and motivation

⌅ The inverse problem seeks to extract knowledge from data via models, and is a critical
precursor to computational prediction with rigorously quantified uncertainties

⌅ Bayesian inference provides a comprehensive and systematic framework for formulating
and solving inverse problems under uncertainty

⌅ Bayesian inversion with conventional algorithms and software is prohibitive for complex
models and high dimensional parameter spaces

⌅ Intensive research efforts are creating advanced algorithms that exploit the structure of
the posterior, resulting in orders of magnitude speedups

⌅ However, these new algorithms have not been made accessible to a broad community
of scientists and engineers interested in solving inverse problems

Intellectual merits

⌅ Develop, deploy, & support robust, scalable, high-performance, open-source software
⌅ Provide reference implementations of advanced Bayesian inversion algorithms
⌅ Enable the solution of Bayesian inverse problems of unprecendent size and realism

Broader impacts

⌅ Facilitate the wider adoption of Bayesian tools in simulation-driven science
⌅ Organize workshops & summer schools and develop short & long courses
⌅ Any scientist interested in integrating data with models to quantify and reduce uncer-

tainties in model predictions is a potential user

Bayesian Formulation of Inverse Problems

⌅ Goal: given (noisy, indirect) data and a deterministic or stochastic forward model, infer
model parameters and update model predictions

⌅ Solving the inverse problem then amounts to characterizing the posterior distribution:
drawing samples; estimating the mean, covariance, or higher moments; evaluating the
posterior probabilities of particular events or quantities of interest
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⇡like(y|m)=⇡noise(Bu� y)

The process of extracting knowledge from data by solving inverse problems

Software Framework

MUQ-hIPPYlib integration

⌅ Goal: Make the software efficient and scalable as well as easy to use at all user levels

⌅ Software abstractions to follow mathematical abstraction

⌅ Highly composable modeling framework that encourages code reuse, facilitates con-
struction of complex or hierarchical models, allows for algorithmic innovation

Geometry, mesh
Finite element spaces
Assembly of weak forms
Automatic differentiation

FEniCS

• PDE
– First/second order

forward/adjoint PDEs
• Likelihood
– Observation operator
– Noise covariance
• Prior
– Covariance/regularization

operators
• QOI
– Prediction & sensitivities

hIPPYlib Model

• Large-scale optimization algorithms
• Randomized linear algebra
– Eigensolvers
– Trace/diagonal estimators
• Scalable Gaussian random fields

hIPPYlib Algorithms

Parallel linear algebra
Krylov methods
Preconditioners

PETSc

• Forward/adjoint solver
• Incremental forward/adjoint
• Gradient evaluation
• Hessian action

Model Evaluation &

Sensitivities

• MAP point
• Low rank-based decomposition

of posterior covariance

Laplace Approximation

• Abstract model interface
• Probability distributions

ModPieces

• Curvature-informed proposals
– pCN and MALA with

Laplace approximation
– Dimension-independent

likelihood-informed
• Flexible kernels
– Metropolis-Hastings
– Delayed rejection

MCMC Proposals &

Kernels

• Graphical model specification
• Bayesian hierarchical modeling
• Gradient/Hessian propagation

MUQ Modeling

• Posterior sampling
– MCMC
– Transport maps
– Likelihood-informed subspaces
• Surrogates
– Sparse adaptive gPC
– Gaussian processes
• Prediction tools
– Global sensitivity analysis
– Optimal experimental design

MUQ Algorithms

Interface

MUQ and hIPPYlib have complementary capabilities that, combined, provide a unique

software framework for large-scale Bayesian inversion

Single-phase subsurface flow example

Goal: Infer the log-permeability field from pressure data and compute the predictive pos-
terior distribution of the effective log-permeability of the medium (QOI)

⌅ The parameter, state, and data spaces have dimensions 1,089, 4,225, 300, respectively

⌅ Each evaluation of the likelihood function requires discretizing and solving a PDE

⌅ Sampling methods that exploit curvature information (h-pCN and h-MALA) show up to
2 orders of magnitude speed up w.r.t. standard methods (pCN and MALA)

⌅ Delayed Rejection (DR) kernel allows us to further improve the mixing of the MCMC
chains by combining different proposals

QOI traces
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Autocorrelation Predictive Posterior QOI

Method Predicted QOI AR (%) IAT ESS ES/min

• pCN (0.01) – 7.2 4416.0 4.5 0.2
• MALA (1E-5) – 30.6 2544.8 7.9 0.1
• h-pCN (0.9) 0.477 10.6 69.3 288.5 16.9

• h-MALA (0.1) 0.541 53.5 53.5 373.8 6.0
• DR h-pCN (1.0)/ h-MALA (0.1) 0.491 59.5 24.8 806.8 10.3

Research, Education and Outreach

Research

Several projects at Army Corps of Engineers, MIT, NYU, NC State, University of Heidel-
berg (Germany), UC Merced, UT Austin, and WashU are using MUQ-hIPPYlib, including:
⌅ Inversion for coupled flow–geomechanics to understand induced seismicity (MIT)
⌅ Design of experiments, optimization, and learning for complex systems under uncer-

tainty (MIT, UT)
⌅ Inversion and prediction of ice sheet dynamics (UC Merced, WashU, MIT)
⌅ Accounting for model errors in inverse problems (UC Merced)
⌅ Statistical treatment of inverse problems constrained by stochastic models (UC Merced)
⌅ Inversion and control for CO2 sequestration with poroelastic models (UT)
⌅ Goal-oriented inference for reservoir models (UT)
⌅ Inferring functional tissue properties from photoacoustic tomography data (WashU)

Workshops, summer schools, and short & long courses

(a) (b)

(c) (d) (e)

⌅ Short course on Inverse Problems and Uncertainty Quantification, Trimester on Mathe-
matics of Climate and the Environment, Institut Henri Poincaré, Paris, France, Novem-
ber 4–8, 2019

⌅ Bayesian Inverse Problems for Structural Health Monitoring of Civil Infrastructure, Dart-
mouth College, Hanover, NH, May 21–24, 2019

⌅ Inverse Problems: Systematic Integration of Data with Models under Uncertainty, 2018
Gene Golub SIAM Summer School, Breckenridge, CO, June 17–30, 2018(a)

⌅ hIPPYlib: An Extensible Software Framework for Large-Scale Deterministic and Lin-

earized Bayesian Inverse Problems, SAMSI Summer School, SAMSI, Research Trian-
gle Park, NC, 8–12 August, 2016(b)

⌅ Inverse Problems and Uncertainty Quantification, ICERM IdeaLab, Brown University,
6–10 July, 2015(c,d)

⌅ Introduction to Uncertainty Quantification, IMA Short Course, University of Minnesota,
15–26 June, 2015(e)

⌅ Graduate-level courses on inverse problems and uncertainty quantification at Dart-
mouth College, MIT, NC State, NYU, UC Merced, UT Austin, and WashU

Code repositories & infrastructure

⌅ http://muq.mit.edu ⌅ http://hippylib.github.io

Python, C++, Jupyter, Scipy, Eigen, FEniCS, PETSc, Docker, Github, Bitbucket
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