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Formula for choosing k . Based on Eq. (5) and (4), we de�ne the
per-element function �:

�(k,E) = C1
h
k+1
E
�
2
E
. (6)

Plugging (6) into (3) (and adding a user-provided tolerance element-
independent B, we obtain:

C1
h
k+1
E
�
2
E

kukk+1 = BC1
ĥ
k̂+1

�̂ 2 kukk+1,

where ĥ is the average edge length of the mesh, �̂ =
p
6/12 in 3D and

�̂ =
p
3/6 in 2D (shape parameter for a perfectly regular element).

By solving for the degree k of an element E

k =

ln
✓
Bĥ

k̂+1 �
2
E

�̂ 2

◆
� ln hE

ln hE
. (7)

Comparison with Interpolation Error. Before proceeding, we com-
pare the solution error (5) to the interpolation error of the Lagrange
basis, which is commonly used to evaluate tesselation quality. For
instance, [?] describes accurate formulas for both L2 and H1 inter-
polation errors for piecewise-linear elements.
This demonstrates that the gradient (equivalently H

1) error is
inversely proportional to the shape parameter � , while L2 error
depends only on h, not on � .

Speci�cally, for an element E of degree k , the interpolation errors
have the form

ku � uh k0,E  C2h
k+1
E kukk+1,E

ku � uh k1,E  C3
h
k
E

�E
kukk+1,E

(8)

where k · km,E is the norm restricted to the element E, and the con-
stants are independent from the element size or shape and k . Note
the contrast to (5): the solution error grows faster with deterioration
in shape, compared to the gradient error, consistent with Figure 5.
This distinction is con�rmed in practice: badly shaped elements

lead to large solution errors, not just large errors in solution deriva-
tives and related quantities (e.g., stresses in elasticity). For this rea-
son, the interpolation error is not necessarily the best way to deter-
mine the element quantity. In contrast, (5) measures the e�ect on
shape more directly.

5 TECHNICAL AND IMPLEMENTATION DETAILS
Equipped with our a priori estimate, we brie�y describe how to
design a FE method that uses it to decouple simulation accuracy
from element quality, by assigning degrees to elements based on
their shape quality

Propagation of Tags. While the degrees of freedom of P1 elements
corresponds to corners of the mesh only, higher order elements have
DOFs on edges/faces (P2), and on their interior (P3 and higher).
To ensure C0 continuity on edges/faces, it is necessary to impose
constraints on some of the degrees of freedom on shared edges/faces
of the elements. However, locking degrees of freedoms reduces the
representation power of the basis on the higher-order element: an

n
1

n
2

n
3

n
4

n
5 '

11
'
12

'
13

'
16

'
17

'
22

'
21'

23

Fig. 6. Illustration of the basis construction between a cubic and linear
element. The element nodes, the evaluation of the constraint, and the plot
of the basis.

example is shown in Figure 6, where a P3 element touches a P1
element. As a result, to ensure C0 continuity, the functions in the
space spanned by the basis have to be linear on the shared edge of
the elements, that is, not all cubic functions on P3 element can be
reproduced. To ensure that the basis for an element E has a complete
Pke basis, which is required for the H1 interpolation error to work
we need to ensure that all its edge/face neighbors have at least
degree Pke .
To enforce this condition, we do a pass over all elements, in

ascending order by degree, and for each element E we navigate its
edge and face neighbors and set their order to ke if it is strictly
smaller than ke (Figure 4).

C0 Basis Construction. To achieve the optimal convergence order
of k̂ + 1, three conditions needs to be satis�ed [?]: (a) polynomial
reproduction up to degree k̂ , (b) quadrature accuracy, and (c) con-
sistency. (a) is satis�ed by construction in our setting since we only
use Pk elements, with k � k̂ . (b) can be easily satis�ed by using
a proper quadrature order that integrates polynomials of degree k
exactly. Consistency (c) is ensured by using conforming, that is, C0
elements.

To guarantee continuity of the basis, we mark as interface element
all elements which have at least one neighbor with a smaller order,
and mark as regular the remaining ones. For regular elements, the
basis and nodes construction follows the standard �nite elements
construction [?].

For the interface between elements of di�erent orders, we need to
introduce a set of constraints to ensure continuity. We observe that,
for the speci�c case ofP basis (Appendix ??), a useful property holds:
any polynomial of order k1 < k2 can be viewed as a polynomial
of order k2; therefore, any function in the span of the Pk1 basis
can be expressed in Pk2 basis. In particular, this holds on interface
faces/edges of elements E1 and E2 of di�erent orders k1 and k2.

Ask1 < k2, some of the nodes of E2 at the interface with E1 are not
present in E1 (but, for the Lagrange basis, all nodes of E1 are present
in E2) and, as a consequence, if a basis is associated with such a node,
it will be discontinuous, as there is no matching polynomial local
basis on the other side. For this reason, we eliminate the degrees
of freedom at these nodes, and require that the unknowns at these
nodes are constrained to the values of the lower-order polynomial
interpolant of order k1, computed from the unknowns at shared
nodes of E1 and E2. This ensures continuity at the interface.

As the positions of the nodes in barycentric coordinates are inde-
pendent of the element geometry, these interpolant values are linear
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Fig. 11. Example of models where P1 discretization has a low h-e�iciency
(large values) for the Poisson equation, the color represents the actual point-
wise errors.
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Fig. 12. Distribution of element’s degrees for our 3D dataset with high
quality (le�) and low quality (right).

Increase in the number of DOFs compared to P1
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Fig. 13. Histograms of the ratio of the number of degree of freedom of our
method over linear P1 elements for our 3D dataset with high quality (le�)
and low quality (right).

uses elliptic PDEs, we plan extend our estimate to a larger class of
non-elliptic PDEs, such as wave equations.
We believe that the bene�ts of our technique heavily outweigh

the downsides: we expect our contribution to have a large impact
not only on the design of black-box simulation pipelines, but also
on improving the quality and reliability of every graphics algorithm
relying on solving a discrete PDE.

Fig. 14. Sample models from our optimized 3D dataset composed of 9 809
tetrahedral meshes generated with TetWild [?] using default parameters,
the colors represent the Dirichlet boundary conditions used to solve the
Poisson problem on the interior.
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Fig. 15. Accumulation plot of the timings for the combined meshing and
analysis pipeline on two datasets (semi-optimized/optimized) each contain-
ing 9 809. The pipeline is considerably faster if we stop themesh optimization
early (semi-optimized), compared to a complete quality optimization (opti-
mized). With our technique, the h-e�iciency of the solution is not a�ected
significantly (see Figure ?? for the corresponding e�iciency plots), provid-
ing a simple and e�ective way of speeding up the computation of the FE
solution.
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