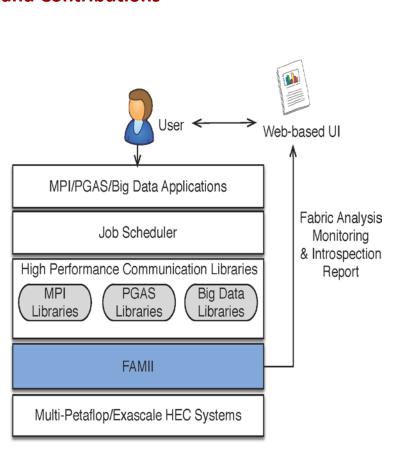
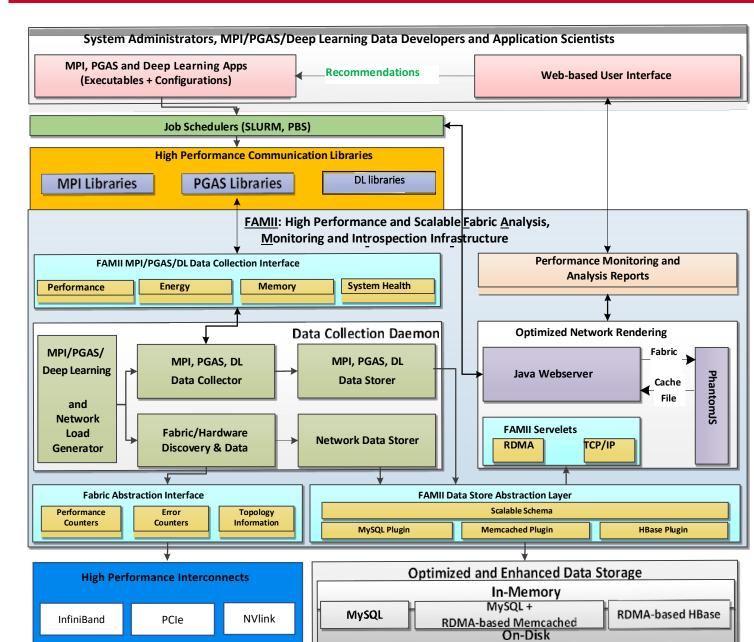


SI2-SSI (2020): FAMII: High-Performance and Scalable Fabric Analysis, Monitoring and Introspection Infrastructure for HPC and Big Data PI: Dhabaleswar K. (DK) Panda, Co-PIs: Karen Tomko, Hari Subramoni, Heechang Na Institutions: The Ohio State University

Proposed Framework

Award #: OAC-1664137

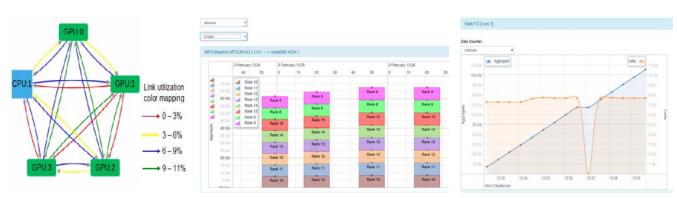

Research Challenges


Broad Challenge

Can a high performance and scalable tool be designed which is capable of analyzing and correlating the communication on the fabric with behavior of HPC/Big Data/Deep Learning applications through tight integration with the communication runtime and the job scheduler?

Research Challenges and Contributions

- 1. Enhance gathering, storing, retrieving, and visualization of the metrics for large and complex HPC networks with low latency
- 2. Introduce MPI T event-based metrics for point-to-point and collective MPI communication patterns
- 3. Design a profile-enabled communication library to gather GPU and MPI performance counters using CUPTI and MPI T interfaces, respectively
- 4. Present a real-time and low-overhead profiler tool to correlate MPI-level with network-level metrics



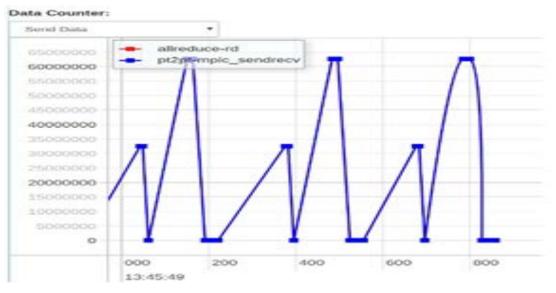
The Proposed Performance Monitoring, Analysis, and Introspection Framework

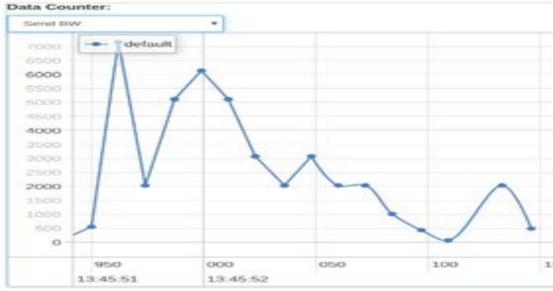
Usage Scenarios

Identifying and Analysing Sources of Interconnect and Link Congestion

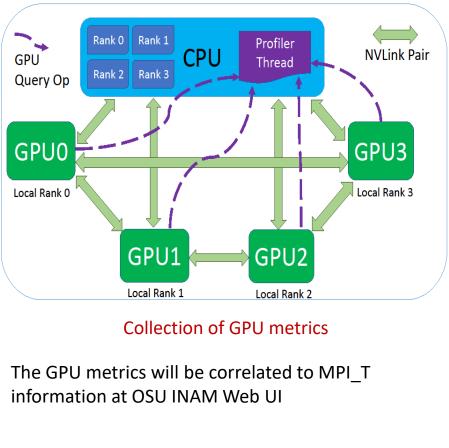
Monitoring Jobs Based on Various Metrics

Job ID 🕴	CPU User Usage 🕴	Virtual Memory Size	Total Communication	Total Inter Node	Total Intra Node 🕴	Total Collective	RMA Sent
270747	99	8.19 Mb	92.35 Gb	36.69 Gb	55.66 Gb	64.46 Gb	0.00 bytes
270748	99	15.12 Mb	149.98 Gb	58.23 Gb	91.76 Gb	102.78 Gb	0.00 bytes
270749	99	30.39 Mb	151.23 Gb	58.35 Gb	92.88 Gb	100.34 Gb	0.00 bytes
270759	99	17.99 Mb	58.71 Gb	37.29 Gb	21.43 Gb	303.73 Kb	0.00 bytes
270765	99	9.42 Mb	32.52 Gb	23.19 Gb	9.33 Gb	0.00 bytes	0.00 bytes


Profiling and Reporting Performance Metrics at Different Granularities


MPI T Introspection

Phases in Intra-node GPU Metric Collection


- Startup: Each rank discovers the topology and updates shared region. Then, one rank per node setups and starts a profiler thread on CPU to profile all GPUs on the node once using GPUs.
- Query: The profiler thread profile all enrolled GPUs based on user defined interval and send data to OSU INAM periodically
- Exit: Once the ranks stop using device, profiler thread will perform one last read and send data then exit.

Screenshot of PVAR Chart. The X-axis represents current time and Y-axis represents the number of bytes sent over the network to the OSU INAM daemon

Screenshot of NVLink Metrics chart for TensorFlow. The X-axis represents time and Y-axis represents the link bandwidth utilization

Scalability of the Design

• Each node aggregates and sends the GPU and PVAR metrics to the OSU INAM daemon • The metrics scale linearly based on the number of GPUs per node

TIMING OF THE GPU PROFILER THREAD PHASES FOR EACH NODE. EACH NODE HAS FOUR GPUS
NODE INSTOOK OF 05

Metrics	Average	Min	Max	STDEV.p
Startup phase	1.632 s	1.561 s	1.672 s	0.035 s
CUDA context create	e 1.624 s	1.548 s	1.663 s	0.035 s
Query phase	2.33 ms	1.63 ms	208.03 ms	4.43 ms
Exit phase	88 us	85 us	93 us	28 us
OVERHEAD OF COLLEG	CTING PVAR		ANOSECOND	
Metrics	Amorea	Min Max		CTDDEV.
inited ites	Average	wiin	Iviax	STDDEV.p

Overhead of Proposed Designs on End-To-End Performance

Very low (~5%) overhead caused by profiling on end-to-end performance

* * 16 32 64 12 256 522, 102 204 008 009 819, 638 3168

Message Size

262144

Message Size (Bytes)

— MVAPICH2 — Proposed Design

Overhead of proposed designs on End-To-End

Performance

MPI_Allreduce for different message sizes

131072

524288

1048576

— MVAPICH2 — Proposed Design

MPI_T information will be sent from MPI library to OSU INAM Daemon

MPI Primitives: most used

• OSU INAM receives and shows live view of MPI_T data for different levels like node/job and the cluster

				Metric: Bytes se • Top: 5 •	
#	Job ID	Node	Algorithm	PVAR	Value
1	223894	o0024 HCA-1	MPI_Alltoall	MV2_COLL_ALLTOALL_BYTES_SEND	1.355T
2	223894	o0025 HCA-1	MPI_Alltoall	MV2_COLL_ALLTOALL_BYTES_SEND	1.355T
3	223894	o0024 HCA-1	MPI_Allreduce	MV2_COLL_ALLREDUCE_BYTES_SEND	540
4	223894	o0025 HCA-1	MPI_Allreduce	MV2_COLL_ALLREDUCE_BYTES_SEND	540
5	223894	o0024 HCA-1	MPI_Allgather	MV2_COLL_ALLGATHER_BYTES_SEND	8

Overview of the most recently used MPI primitives and PVARs for live jobs

User can see which algorithms are used for MPI operation and interplay of **MPI** modules

				м	PI Primitives:	× Collectives			Met	ric: B	ytes sent		*								
	0	1	2	3	4	5	6	1			× Poir	nt-to-po	oint								
	58.78 MB	759.04 MB	758.76 MB	758.78 MB	758.87 MB	759.04 MB	758.78 MB	0.00 bytes		400 G	-	MPI_A	Allgather(agg				MPI_Allg	ather(d	elta) 🔶	-4T	
1	59.04 MB	758 78 MB	0.00 bytes	759.04 MB	758 78 MB	758.91 MB	759.04 MB	759 04 MB		375 G		 MPI_Allgatherv(agg) MPI_Allreduce(agg) 					MPI_Scatter(delta)			3.75 T	
0	00 bytes	768.78.MR	759.79.UR	750 0.4 MR	768 78 MR	768 78 HR	760 (M MR	759 01 MB		350 G	-		Alltoall(agg)	'				pt2pt(d		3.5 T	
V	00 01100	224.47.410	100.70 mb	100.04100	100.10 MD		707.04 10			325 G 300 G -			Alltoallv(agg)				MPI_Allga		1.	3.25 T	
	00.76 MB	106.91 MD	106.76 MB	0.00 bytes	758.78 MB	709.04 NB	(00.16 MB	759.04 MB		275 G	1	 MPI_Bcast(agg) MPI_Gather(agg) 					MPI_Allre	educe(d	Assessed and an and	2.75 T	
1	58.78 MB	759.04 MB	758.81 MB	758.78 MB	759.04 MB	0.00 bytes	758 78 MB	758.78 MB		250 G 225 G	MPI_Gatherv(agg)		-			MPI_AU			2.5 T		
	59.04 MB	758.78 MB	759.04 MB	758.78 MB	0.00 bytes	758.78 MB	758.91 MB	758.78 MB			+	- MPI_Reduce(agg)					1000	Bcast(d		2.25 T	
	58 78 MB	758 78 MB	758.78 MB	759 04 MB	758 78 MB	759.04 MB	0.00 bytes	759.04 MB		200 G 175 G			Sarrier(agg)			/	MPI_Ga	ather(d therv(d	10 10 10	-2 T 1.75 T	
	59.70 MR	0.00 bytes	759.84 MR	758 78 MB	750.07.1/8	758 78 MR	769.70 MR	758.78 MB		150 G	+	MPI_p	ot2pt(agg)			/	MPI_Re	educe(d	elta) 🗕	1.5 T	
	VV. I V 1910.	v.ov vytea	TVU.VH IIID.	034.13.000	100.04.00	190.10700	100.10.000	.099709.000		125 G					/					1.25 T	
										100 G - 75 G					/					-1T	
	Б	ank	love		~~~~	unic	atio	n aria		75 G				/						750 G 500 G	
	R	diik	leve			unic	allo	on gric	,	25 G				1						250 G	
		eac	h ele	eme	nt (i	,j) ir	ו the	e grid			19:1	15	19:16	19:17	19:18	19:19	19:	20	19:21		
					•			of data				28 Janu									
	10	ehie	sen	is li	le al	mou		n uato													

job/node/cluster level

Enhanced Fabric Discovery and Port Metrics Inquiry

Challenges and Solutions

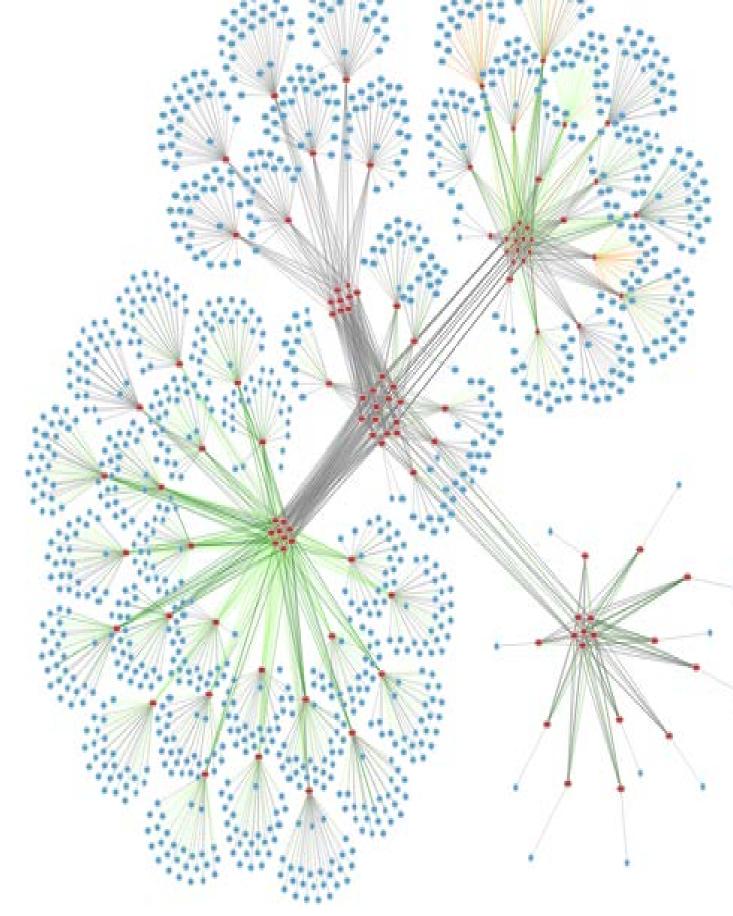
Designing a low overhead and scalable tool to discover the fabric topology and gather fabric metrics is a burdensome task since it involves 1) profiling of the data and aggregation, 2)

5032

ଦ୍ଧ ⁴⁰³²

a 3032

iĒ 2032


1032

32

65536

Research Publications

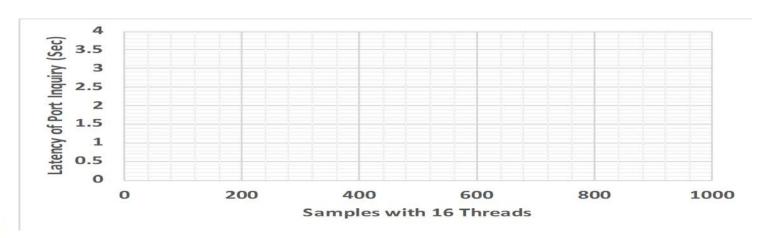
Designing a Profiling and Visualization Tool for Scalable and In-Depth Analysis of High-Performance GPU Clusters, P. Kousha, B. Ramesh, K. Kandadi Suresh, C. Chu, A. Jain, N. Sarkauskas, D. Panda, IEEE HiPC, Dec 2019

Network View with expanded and hidden modes showing Ohio Supercomputer Center (OSC) with 3 heterogeneous clusters all connected to the same InfiniBand Fabric (114 switches and 1,428 compute nodes connected through 3,402 links)

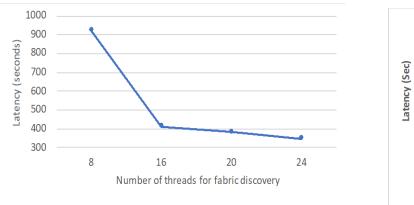
storing and 3) rendering the data.

Interval to read the hardware counters should be low to ensure they do not overflow • Uses different levels of threading, bulk insertions and deletions for storing, and parallel

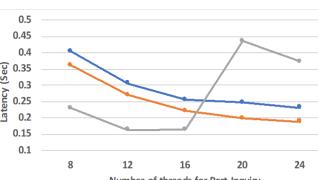
components for Fabric Discovery and Port Metric Inquiry


Performance Evaluation

Enhanced performance for fabric discovery using optimized OpenMP-based multi-threaded designs with **14x** speedup


Ability to gather InfiniBand performance counters at sub-second granularity for very large (>2,000 nodes) clusters

NETWORK AND LIVE JOBS VIEW GENERATION TIMING ON OSC WITH 1K JOBS


View	Average	Min	STDEV.p	
Network View	196.15 ms	187 ms	206.09 ms	5.75 ms
Live Jobs View	18.17 ms	16 ms	20 ms	1 ms

Histogram of querying port metrics for all nodes for OSC

Impact of multi-threading on Fabric Discovery module on OSC cluster

Impact of multi-threading on Port Inquiry module on OSC cluster

operation

• A. Ruhela, H. Subramoni, S. Chakraborty, M. Bayatpour, P. Kousha, and DK Panda, Efficient Design for MPI Asynchronous Progress without Dedicated Resources, Parallel Computing - Systems & Applications, Volume 85, July 2019.

Software Release, Community Engagement and Metrics

• A v0.9.5 release of OSU INAM has been made on Jan'20 Ohttp://mvapich.cse.ohio-state.edu/tools/osu-inam/

OMore than 600 downloads with support for PBS and SLURM

- This release has been installed at OSC and OSU to monitor clusters
- Tutorials at SC '19, ISC'19, HiPEAC '20, MUG'19
- Community Engagement with: NOAA, U. of Utah, CAE Services @ Germany, Pratt & Whitney, Ghent University @ Germany, and Cyfronet @ Poland

Future Work

• As part of future work we aim to:

OExtend data collection daemon to further intra-node metrics, intra-node communication matrix, and power metrics

OSupport to profile multiple MPI libraries through MPI_T interface **O**Extend support for introspection of PGAS and DL applications

Supported by: OAC-1664137

UNIVERSITY

Ohio Supercomputer Center An **OH** • **TECH** Consortium Membe

