
GreenDataFlow: Minimizing the Energy Footprint of Global Data Movement
PI: Tevfik Kosar, University at Buffalo

Award #: 1842054

Background:
§ 1+ Zettabytes of data is 
moved globally in a year;
§ Consumes 200 Terawatt 
hours of electricity, costing 
40 billion Dollars per year.

Goal:
§ Minimize energy consumption
during data movement through 
application-level tuning and 
optimization at the end systems.

Application Areas:
§ Bulk data replication, cloud-hosted web 
services, mobile/IoT data transfers 

SLOW

START

INCREASE WARNING

RECOVERY

ch = ch ⇥ bw
avgTput

neutral feedback

positive feedback

increaseChannels()

negative feedback

positive or neutral feedback

negative feedback

decreaseChannels()

negative feedback

increaseChannels()

positive or

neutral feedback

Figure 1: Algorithms Finite State Machine

Algorithm 2 Slow Start algorithm
1: for Timeout do

2: calculateThroughput()
3: numCh ⇤= bandwidth / lastThroughput
4: updateWeights()
5: for dataset in datasets do

6: ccLeveli = weighti ⇤ numCh
7: updateChannels()
8: end for

9: end for

algorithm 1, the data transfer is started and a different
algorithm is executed depending on the SLA agreement.
Nonetheless, all three algorithms presented in this paper
follow a similar structure that can be described using a Finite
State Machine, illustrated in figure 1.

The first state, denominated Slow Start, is entered after
algorithm 1. After a short timeout, the tuning algorithm mea-
sures the throughput and, if necessary, adjusts the number
of channels to compensate for the initial estimation error.

In state Increase, the transfer parameters are increased or
decreased based on the feedback from the channel. If the al-
gorithm’s goal is energy-related, the feedback is represented
by the energy consumption since the last timeout, otherwise
it is the average throughput during the last time interval.

Upon receiving negative feedback, the algorithm transi-
tions to the state Warning. From there, a positive or neutral
feedback suggests that the performance drop was only
temporary, which causes a transition back to state Tuning.
However, upon receiving a second negative feedback, the
algorithm enters state Recovery.

From here, a positive or neutral feedback is a sign that
reducing the channel count eased the load on the network,
and the algorithm goes back to state Increase. On the

other hand, a negative feedback indicates that the channel’s
available bandwidth dropped, hence the previous channel
count is restored and the algorithm transitions back to state
Increase.

C. Threshold-based dynamic frequency and core scaling

Algorithm 3 Load Control algorithm
1: for Timeout do

2: if cpuLoad > maxLoad then

3: if numActiveCores < numCores then

4: increaseActiveCores()
5: else if cpuFreq < maxFreq then

6: increaseFrequency()
7: end if

8: else if cpuLoad < minLoad then

9: if cpuFreq > minFreq then

10: decreaseFrequency()
11: else if numActiveCores > 1 then

12: decreaseActiveCores()
13: end if

14: end if

15: end for

The CPU frequency and the number of active cores are dy-
namically tuned using a threshold-based policy, implemented
in algorithm 3.

When the CPU utilization increases above a certain
threshold, named maxLoad, the algorithm tries to increase
the number of active cores or CPU frequency, in order to
reduce the load on the system (line 2-7). Conversely, if the
CPU utilization is lower than a certain threshold, named
minLoad, the algorithm tries to reduce the CPU frequency
or the number of active cores.

Algorithm 3 is called at regular intervals by the parameter
tuning algorithms to keep the energy consumption as low
as possible without sacrificing performance. In fact, every
time one of the other transfer parameters is modified, the
CPU load might change as well, and could either use more
energy than needed or cause a lower performance gain than
expected.

IV. PARAMETER TUNING ALGORITHMS

In this section, we present three novel energy-efficient pa-
rameter tuning algorithms, which dynamically adapt the pa-
rameter values to achieve three different SLA requirements:
minimum energy consumption, maximum throughput, and
target throughput.

A. Minimum energy algorithm
The minimum energy algorithm tries to achieve minimum

energy consumption using two different strategies: 1) in-
creasing the concurrency level only if that results in a lower
estimated energy usage; 2) increasing the active core count


