Extending the Physics Reach of LHCb in Run 3 Using Machine Learning in the Real-Time Data Ingestion and Reduction System

R. Fang¹, H. Schreiner^{1,3}, M. D. Sokoloff¹, M. Stahl¹, C. Weisser², M. Williams²

University of Cincinnati ¹, MIT ², Princeton University³

Abstract

- ► LHCb's High Level Trigger will process 5 TB/s of data. Machine learning algorithms have the potential to improve fidelity and execute very quickly.
- ► The first stage (Hlt1) will process approximately 30 MHz of events.
- ► The second stage (Hlt2) will process approximately 1 MHz of events.
- ► We are developing a hybrid deep learning algorithm to identify primary and secondary vertices in pp collisions.

Supported by NSF awards OAC-1740102 & OAC-1739772 and via sub-awards under Cooperative Agreement OAC-1836650.

The Run 3 LHCb Detector & Baseline Trigger

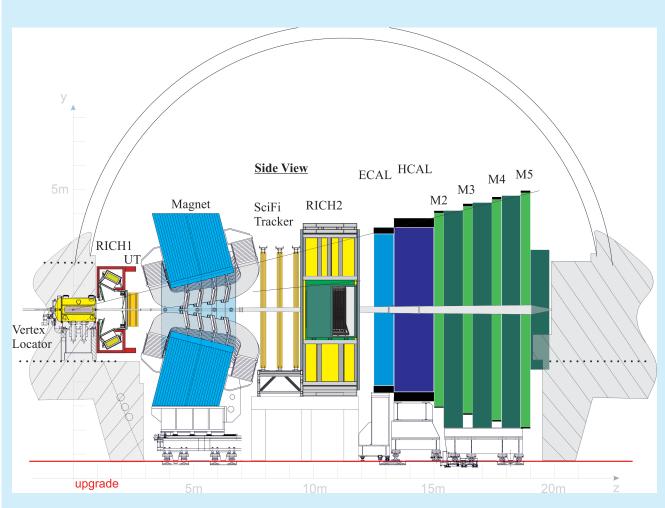


Figure 1: LHCb detector schematic. Charged tracks are reconstructed using data collected in the Vertex Locator (VELO) and 4 additional tracking stations (UT, T1–T3). LHCb is \sim 20 m long, 10 m high.

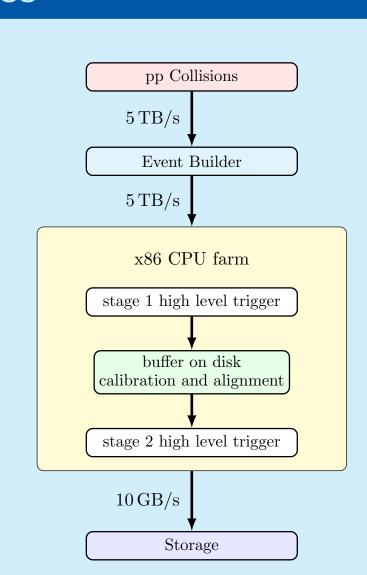
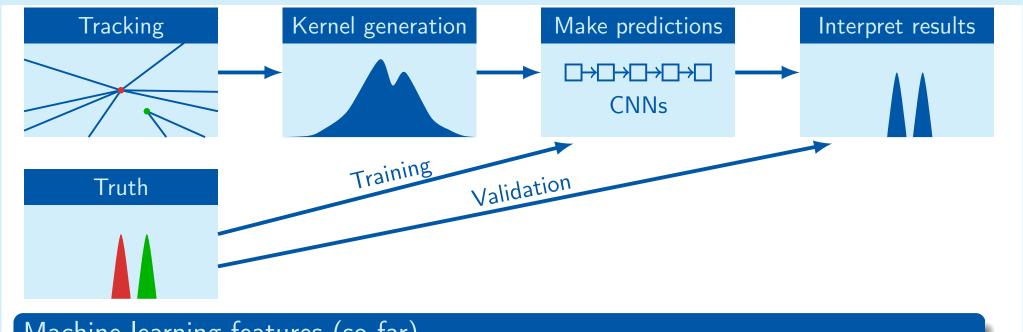


Figure 2: CPU Trigger Schematic. A GPU option for Hlt1 has been demonstrated, as well.

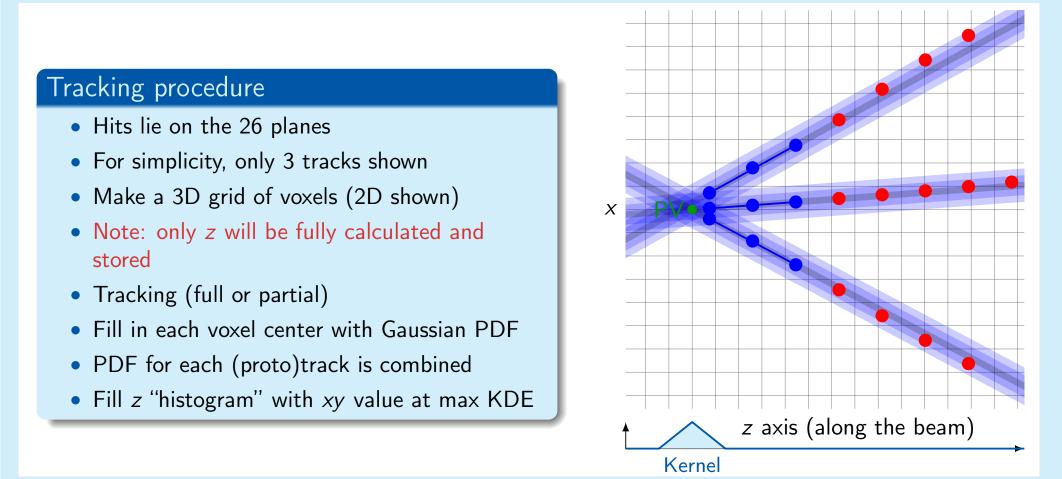
A hybrid ML approach to finding primary vertices



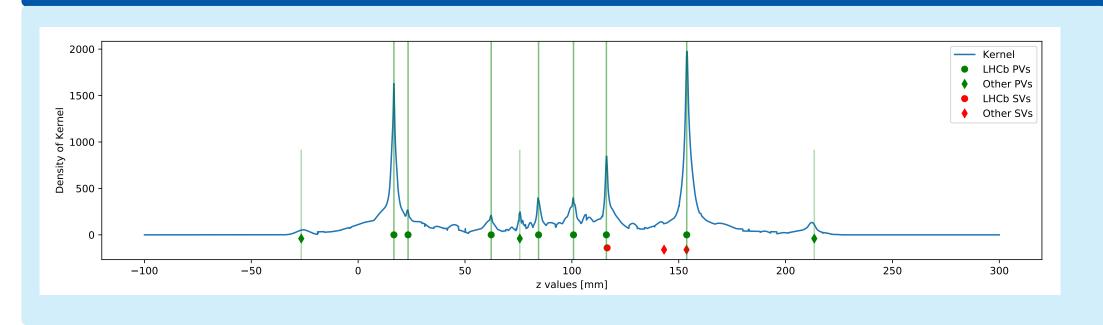
Machine learning features (so far)

- Prototracking converts sparse 3D dataset to feature-rich 1D dataset
- Easy and effective visualization due to 1D nature
- Even simple networks can provide interesting results

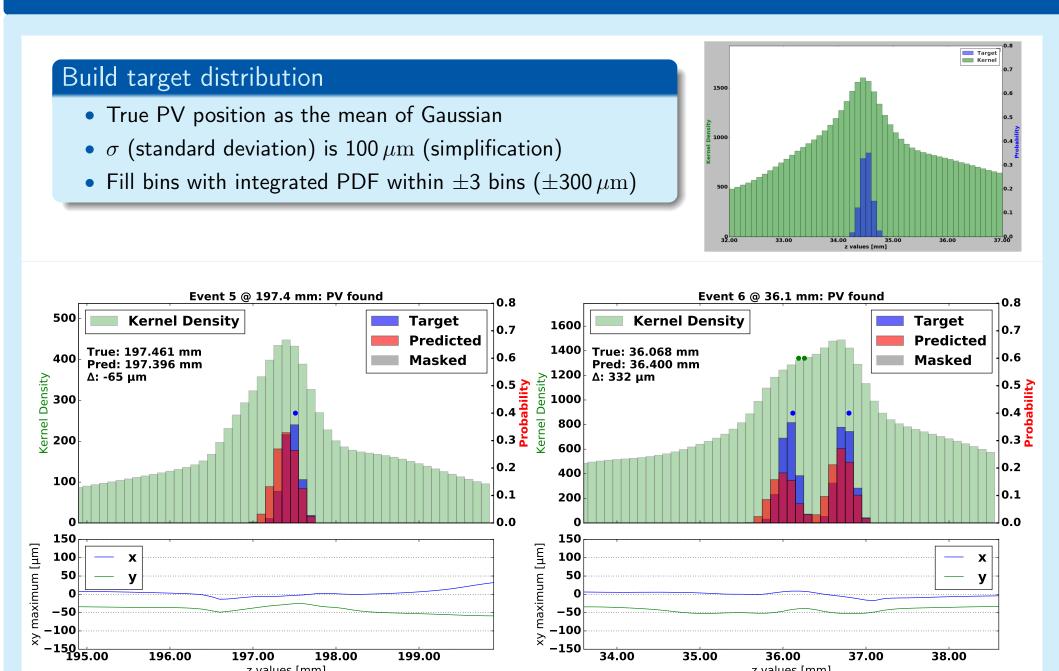
Kernel generation (41M pixels \rightarrow 4K histogram entries)



A typical kernel (4000 imes 100 μ m bins)

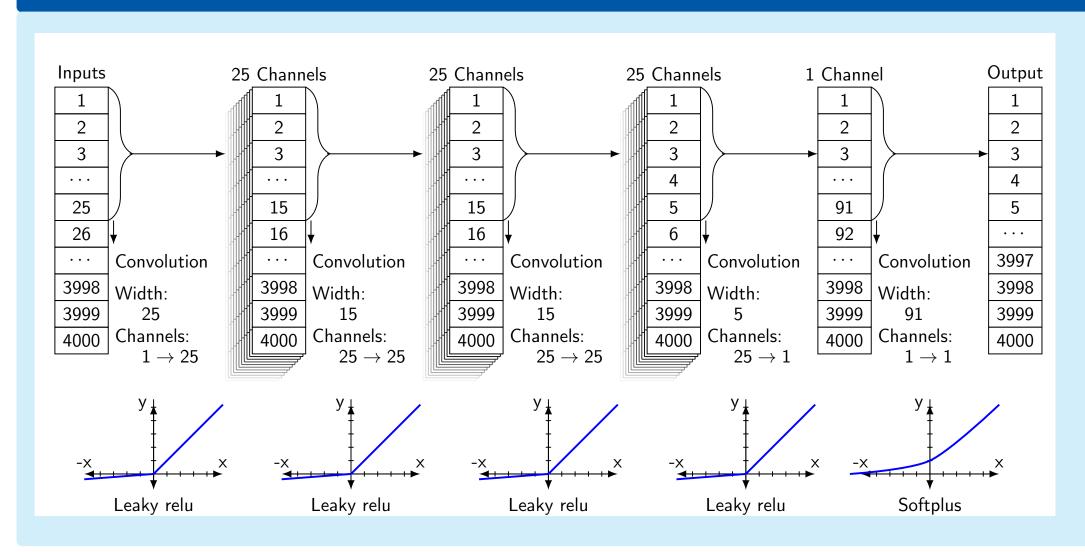


Target histograms as proxies to learn (circa early 2019)

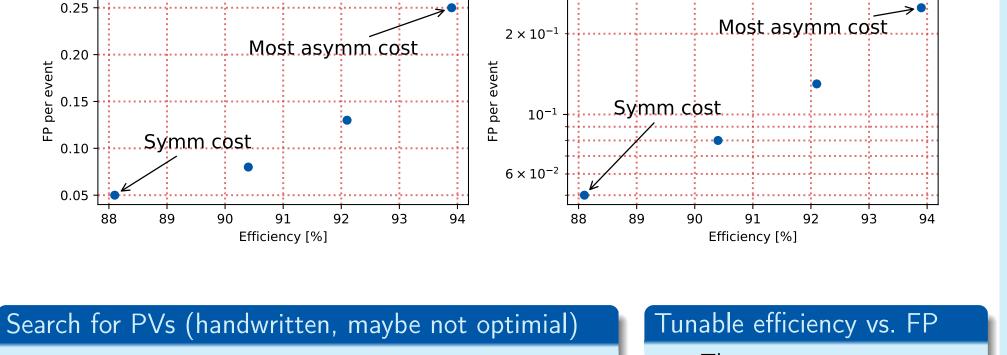


Architecture (circa early 2019) [implemented using PyTorch]

PV found example



Tune efficiency vs. false positive (FP) rate using cost function



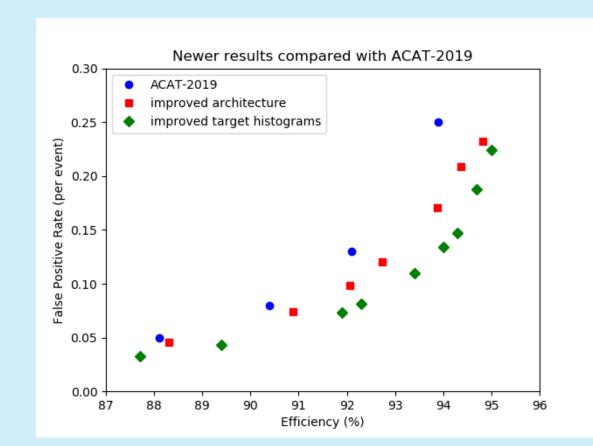
PV found example

- Search ± 5 bins ($\pm 500 \mu$ m) around a true PV
- ullet At least 3 bins with predicted probability >1% and integrated probability > 20%.

• The asymmetry parameter controls FP vs. efficiency

More recent progress and future plans

- added xy features perturbatively, using a parallel CNN;
- added layers to original CNN;
- modified target histograms (learning proxies);
- tested inference engine on LHCb full simulation data;
- deployed inference engine in LHCb software stack.



- \triangleright For a fixed efficiency of 94%, the false positive rate is about $2 \times$ smaller than a year ago for the same toy MC data.
- ► We will **re-train** the algorithm **using full LHCb simulation** in place of toy simulation to improve performance.
- ► We will develop another machine learning algorithm to learn the KDE directly from the tracks, then combine the two algorithms into one.
- ► We develop an algorithm to assign tracks to PVs probabilistically.