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Abstract

I LHCb’s High Level Trigger will process 5 TB/s of data. Machine learning
algorithms have the potential to improve fidelity and execute very quickly.

I The first stage (Hlt1) will process approximately 30 MHz of events.

I The second stage (Hlt2) will process approximately 1 MHz of events.

I We are developing a hybrid deep learning algorithm to identify primary and
secondary vertices in pp collisions.
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The Run 3 LHCb Detector & Baseline Trigger

Figure 1: LHCb detector schematic. Charged tracks are
reconstructed using data collected in the Vertex Locator
(VELO) and 4 additional tracking stations (UT, T1–T3).
LHCb is ∼ 20 m long, 10 m high.
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Figure 1: Baseline trigger design for LHCb in Run 3 [?].
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Figure 2: CPU Trigger Schematic.
A GPU option for Hlt1 has been
demonstrated, as well.

A hybrid ML approach to finding primary vertices
A hybrid ML approach Introduction
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Machine learning features (so far)
• Prototracking converts sparse 3D dataset to feature-rich 1D dataset
• Easy and effective visualization due to 1D nature
• Even simple networks can provide interesting results

What follows is a proof of principle implementation for finding PVs.
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Kernel generation (41M pixels → 4K histogram entries)
Kernel generation Design

Tracking procedure
• Hits lie on the 26 planes
• For simplicity, only 3 tracks shown
• Make a 3D grid of voxels (2D shown)
• Note: only z will be fully calculated and
stored

• Tracking (full or partial)
• Fill in each voxel center with Gaussian PDF
• PDF for each (proto)track is combined
• Fill z “histogram” with xy value at max KDE
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A typical kernel (4000× 100µm bins)Example of z KDE histogram Design
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Note: All events from toy detector simulation

Human learning
• Peaks generally correspond to PVs and SVs

Challenges
• Vertex may be offset from peak
• Vertices interact
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Target histograms as proxies to learn (circa early 2019)
Target distribution Design

Build target distribution
• True PV position as the mean of Gaussian
• σ (standard deviation) is 100µm (simplification)
• Fill bins with integrated PDF within ±3 bins (±300µm)
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Compare predictions with targets: Examples Results
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Architecture (circa early 2019) [implemented using PyTorch]Neural network architecture Design
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Tune efficiency vs. false positive (FP) rate using cost function
False Positive and efficiency rates Results
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Search for PVs (handwritten, maybe not optimial)
• Search ±5 bins (±500µm) around a true PV
• At least 3 bins with predicted probability > 1% and
integrated probability > 20%.

Tunable efficiency vs. FP
• The asymmetry parameter
controls FP vs. efficiency
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More recent progress and future plans

I added xy features perturbatively,
using a parallel CNN;

I added layers to original CNN;

I modified target histograms
(learning proxies);

I tested inference engine on LHCb
full simulation data;

I deployed inference engine in
LHCb software stack.

I For a fixed efficiency of 94%, the false positive rate is about 2× smaller
than a year ago for the same toy MC data.

I We will re-train the algorithm using full LHCb simulation in place of toy
simulation to improve performance.

I We will develop another machine learning algorithm to learn the KDE
directly from the tracks, then combine the two algorithms into one.

I We develop an algorithm to assign tracks to PVs probabilistically.


