Extending the Physics Reach of LHCb in Run 3 Using Machine Learning in the
Real-Time Data Ingestion and Reductlon System

R. Fang!, H. Schreiner !>, M. D. Sokoloff!, M. Stahl!, C. Weisser?

University of Cincinnati !, MIT 2, Princeton University’

M. Williams 2

Abstract

» LHCb's High Level Trigger will process 5 TB/s of data. Machine learning
algorithms have the potential to improve fidelity and execute very quickly.

» The first stage (HItl) will process approximately 30 MHz of events.
» The second stage (HIt2) will process approximately 1 MHz of events.

» We are developing a hybrid deep learning algorithm to identify primary and
secondary vertices in pp collisions.
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Figure 1: LHCb detector schematic. Charged tracks are
reconstructed using data collected in the Vertex Locator Figure 2: CPU Trigger Schematic.
(VELO) and 4 additional tracking stations (UT, T1-T3). A GPU option for HItl has been
LHCb is ~ 20 m long, 10 m high. demonstrated, as well.

A hybrid ML approach to finding primary vertices
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Machine learning features (so far)

e Prototracking converts sparse 3D dataset to feature-rich 1D dataset

e Easy and effective visualization due to 1D nature

e Even simple networks can provide interesting results

Kernel generation (41M pixels — 4K histogram entries)

Tracking procedure

e Hits lie on the 26 planes

e For simplicity, only 3 tracks shown
e Make a 3D grid of voxels (2D shown)

e Note: only z will be fully calculated and
stored

e Tracking (full or partial)

e Fill in each voxel center with Gaussian PDF

e PDF for each (proto)track is combined

e Fill z "histogram™ with xy value at max KDE T
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A typical kernel (4000 x 100 um bins)
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Target histograms as proxies to learn (circa early 2019)
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Kernel Density

e True PV position as the mean of Gaussian

e o (standard deviation) is 100 um (simplification)

e Fill bins with integrated PDF within +3 bins (£300 pm)

Build target distribution »
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Event 5 @ 197.4 mm: PV found
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PV found example
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PV found example

Architecture (circa early 2019) [implemented using PyTorch]
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FP per event
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Search for PVs (handwritten, maybe not optimial)
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Tunable efficiency vs. FP

vy

e Search £5 bins (+£500um) around a true PV

e At least 3 bins with predicted probability > 1% and

integrated probability > 20%.

e The asymmetry parameter
controls FP vs. efficiency

More recent progress and future plans

added xy features perturbatively,
using a parallel CNN;

added layers to original CNN;
modified target histograms
(learning proxies);

tested inference engine on LHCb
full simulation data;

deployed inference engine in
LHCb software stack.
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Newer results compared with ACAT-2019
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For a fixed efficiency of 94%, the false positive rate is about 2 x smaller
than a year ago for the same toy MC data.

We will re-train the algorithm using full LHCb simulation in place of toy
simulation to improve performance.

We will develop another machine learning algorithm to learn the KDE
directly from the tracks, then combine the two algorithms into one.

We develop an algorithm to assign tracks to PVs probabilistically.



