

CSSI Element A Quantum Electromagnetics Simulation Toolbox (QuEST) for Active Heterogeneous Media by Design

PI: Carlo Piermarocchi, Co-PI: Shanker Balasubramaniam Students: Elliot Lu, Connor Glosser, Thomas Bertus

Institution: Michigan State University

GOALS:

- Software elements for nano-photonics
- Simulating light propagation in complex non-linear media

INTELLECTUAL MERITS:

- Beyond homogeneous media: interacting quantum dots
- Time Domain Accelerated Algorithms: $O(N^2) \rightarrow O(N \ln N)$
- Localization/ Cooperative effects
- Material Optimization

RESULTS: Local and wavelength-scale features

- 10k dots; 0.2 μ m x 4 μ m cylinder oriented along the laser pulse propagation k vector
- Snapshots at -50 fs, 0 fs, 50 fs and 100 fs relative to pulse peak
- Hotspots separated by λ appear

REQUIREMENTS:

Interaction: capture dot-dot electromagnetic coupling **Fast:** Integral-based electromagnetics solvers **Self-consistent:** calculation of the polarization dynamics **Scaling:** describe 3D systems with a large number of dots Microscopic: follow the evolution of each active center

APPROACH:

Semi-classical: A collection of two-level quantum systems described by density matrices interacting with a classical radiation field

Integral equation model: The radiation field is described in terms of a dyadic Green's function convolved with the polarization density acting as a source

Polarization: P(r) is calculated from optical the coherence in the density matrix

Two level system Hamiltonian Dissipation and decoherence $\begin{pmatrix} (\rho_{00} - 1)/T_1 & \rho_{01}/T_2 \\ \rho_{10}/T_2 & \rho_{11}/T_1 \end{pmatrix}$ $\mathbf{d} \cdot \mathbf{E}(t)$ $\hat{\mathcal{D}}[\hat{\rho}] \equiv$ $\hat{\mathcal{H}}(t) \equiv$ $\hbar\omega_0$

RESULTS: Super-radiant behavior in the time domain

Radiation reaction field: Derived from expansion of Helmholtz dyadic Green's function for dots well within λ (including a self term).

Collective effects: The radiation reaction leads to a nonlinear damping effect.

Super-radiance: Population of excited dots decays with time scaling as 1/N.

Magnitude of population inversion w = $1 - 2\rho_{00}$ averaged over all dots, for N = 10/20/40.

Note that without radiation reaction there is no apparent shortening of the decay with increasing N.

ACCELERATION WITH THE ADAPTIVE INTEGRAL METHOD (AIM)

To ensure scalability to large numbers of dots, we reduce the O(N²) complexity of the discrete convolution step to O(N logN). The AIM algorithm achieves this by:

- Projecting the spatial basis functions onto auxiliary basis functions on points of a grid
- Evaluating the discrete convolution between grid points using a FFT

FFT runtime (excluding setup time) using a third-order expansion. (Top left) 1024 time steps with grid mesh of $\Delta s = \lambda/400$ and prescribed polarizations in the fixed frame. (Bottom left) 1000 time steps with $\Delta s = \lambda/10$ and Liouville-dynamics polarization in the rotating frame. Both cases have a quasi-quadratic scaling in the direct calculation, whereas the FFTaccelerated calculation performs slightly worse than linear. (Right) Schematics of expansion grid.

CONCLUSIONS

So far we have:

- Developed software elements to discover novel photonic materials
- Implemented and tested accelerated methods that led us to simulate systems with 100,000+ centers
- Included radiation reaction effects •
- Observed coherent collective effects both in the • space and time domain

AIM code available on:

https://github.com/cglosser/QuEST QuEST: v0.2.1. (2018). doi:10.5281/zenodo.1246090

REFERENCES AND CONTACT

Carlo Piermarocchi: piermaro@msu.edu Shanker Balasubramaniam: bshanker@msu.edu

Lu, E., Piermarocchi, C., & Shanker, B. (2020). Modeling Radiation Reaction Induced Superradiance in Quantum Dot Systems (submitted).

Glosser, C., Lu, E., Bertus, T. J., Piermarocchi, C., & Shanker, B. (2019). Acceleration techniques for semiclassical Maxwell-Bloch systems: An application to discrete quantum dot ensembles. *arXiv preprint arXiv:1910.08594*.

Glosser, Connor, Carlo Piermarocchi, and B. Shanker. "Acceleration techniques for semiclassical Maxwell-Bloch systems." In 2018 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), pp. 1-3. IEEE, 2018.

Glosser, Connor, B. Shanker, and Carlo Piermarocchi. "Collective Rabi dynamics of electromagnetically coupled quantum-dot ensembles." Physical Review A 96, no. 3 (2017): 033816.