
CSSI: EPEXA
Ecosystem for Programming and
Executing eXtreme-scale Applications

George Bosilca
Thomas Herault
ICL, University of Tennessee
http://www.icl.utk.edu/
Award #1931384

Introduction to EPEXA
EPEXA is creating a production-quality, general-purpose, community-supported,
open-source software ecosystem to attack the twin challenges of programmer productivity
and portable performance for advanced scientific applications. Through application-driven
codesign we focus on the needs of irregular and sparse applications that are poorly served by
current programming and execution models on massively-parallel, hybrid systems.

Challenges from Modern Computational Science
● Advances in predictive, high-fidelity simulation characterized by increasingly irregular and

dynamic computation (block sparse, low-rank, mixed representations, etc.).

● Ongoing technology trend in heterogeneous architectures with dynamically changing
performance, and need to increase concurrency at all scales.

Specific Aims
● To extend, complete, and harden the successful TESSE research prototype providing its first

production quality implementation using a community-based, science-driven approach.

● To grow and support the user community, associated applications, and research use cases.

● To create a community to design, maintain, support and to grow EPEXA in the future.

● To transform the scalability of key parts of new and existing numerical simulation codes,
including enabling the development of new DSLs by utilizing the API of the EPEXA runtime,
and by migration paths for both applications and application programmers to follow.

EPEXA Community and Driving Applications
● Robert Harrison (PI) - multiresolution numerical analysis

(MADNESS; https://github.com/m-a-d-n-e-s-s/madness)
● Mahdi Javanmard - dynamic programming
● Edward Valeev (co-PI) - block-sparse tensor algebra

(TiledArray; https://github.com/ValeevGroup/tiledarray)
● George Bosilca and Thomas Herault (co-PIs) - parallel programming and runtime

(PaRSEC; http://icl.utk.edu/parsec/)
● Scott Thornton - geospatial AI (Descartes Labs; https://www.descarteslabs.com/)
● Florian Bischoff - chemistry (Humboldt University; https://bit.ly/2RZG2q0)
● Wolfgang Bangerth - deal.II open-source finite-element engineering and physics

(Colorado State University; https://www.dealii.org)

What is TESSE?
● An extensible, robust and scalable directed acyclic graph (DAG) execution model supported

by an intelligent and dynamic runtime that can adapt to changing requirements presented
by the evolving numerical theories and HPC platforms.

● TTG (template task graph - see RHS panel) is the main initial C++ API.
● Multiple runtimes are supported (MADNESS and PaRSEC currently, plans for UCX, HPX,

native C++, and cloud stacks)
● Plans for multiple interoperable DSLs and algorithms on distributed data

Templated Task Graph (TTG)
The Templated Task Graph API / DSL has been developed to enable a straightforward
expression of the parallelism for algorithms that work on irregular and unbalanced data sets.
Combining our experience with MADNESS, TiledArray and PaRSEC, the DSL employs C++
templates to build an internal representation of the Distributed DAG of Tasks.

Overall Objective
● Provide an intermediate-level expression of data-dependent irregular

algorithms while leveraging a powerful micro-task runtime to manage
dependencies, scheduling, and data motion within the data flow.

● Encourage programs that avoid non-essential barriers and intermediates,
express available parallelism without drowning the developer
in detail, and reap most benefits of fusion within a more general framework.

Key Concepts
1) Parameterize each task that will execute the operation by a key or index (e.g. a loop index

making a separate task for each iteration; the label of each node in a tree being traversed;
a pair of indices labelling a matrix sub-block).

2) Avoid describing / observing the entire task graph at once (avoid memory clogging)

3) Data labeled by a key to match with consuming task (all inputs of a task must have the same
key, while outputs may target different keys)

4) Through each output, a task can send data to a specific successor (identified by its key),
or broadcast to multiple successors (keys).

Example: Differentiation

Robert. J. Harrison
Mohammad Mahdi Javanmard
IACS, Stony Brook University
https://iacs.stonybrook.edu/
Award #1931387

Edward F. Valeev
Department of Chemistry,
Virginia Tech
https://bit.ly/3aZmM4G
Award #1931347

void diff(const Key& key, const Node& left, const Node& center,
 const Node& right,
 tuple<nodeOut,nodeOut,nodeOut,nodeOut>& out)
{
 nodeOut &L=get<0>(out), &C=get<1>(out),
 &R=get<2>(out), &result=get<3>(out);
 if (!(left.has_children || center.has_children ||
 right.has_children)) {
 double derivative = (right.s - left.s)/(4.0*::L*pow2(-key.n));
 result.send(key,Node(key,derivative,0.0,false));
 }
 else {
 result.send(key,Node(key,0.0,0.0,true));
 if (!left.has_children) L.send(key.left_child(), left);
 if (!center.has_children) {
 auto children = {key.left_child(),key.right_child()};
 L.send(key.right_child(),center);
 C.broadcast(children,center);
 R.send(key.left_child(), center);
 }
 if (!right.has_children) R.send(key.right_child(),right);
 }
}

r = (x + y) * z

Dense Linear Algebra over multi-GPUs/node using PaRSEC
Extracting high performance out of hybrid systems like the ones developed for exascale computing
can be challenging because of the complexity of the platforms. For example, Summit, the ORNL
pre-exascale system from the DOE features 6 Pascal P-100 accelerators per node, each with a
limited memory (16GB). 97% of the computing capability is located on the GPUs, but data
movement must be orchestrated to
remain within the bounds of memory
available on the node and within the
bounds of memory
available on each GPU.

Using PaRSEC, we were able to provide a
scalable approach that achieves more
than 85% of the peak performance, and
that sustains this performance even
when the problem size outgrows the
memory capacity of the accelerators.
In that case, the runtime system moves
the data transparently and in the
background, while computations
continue on the GPUs.

Distribution of tile sizes and amount of computations
per task for the ABCD term in the coupled-cluster
doubles equation for (H2O)12 in aug-cc-pVDZ basis set.

Irregularly-tiled ABCD term using TiledArray, PaRSEC and MADNESS
(a crucial step towards block-sparse computation)

In the context of TiledArray, each tile of the GEMM has a
different size, generating large variation in memory and
load. Integrating TA, PaRSEC and MADNESS, enabled
excellent scalability, and use of multiple-GPUs per node,
relieving constraints from the TA-only implementation.

rharrison@stonybrook.edu http://tesseorg.github.io/

http://www.icl.utk.edu/
https://github.com/m-a-d-n-e-s-s/madness
https://github.com/ValeevGroup/tiledarray
http://icl.utk.edu/parsec/
https://www.descarteslabs.com/
https://bit.ly/2RZG2q0
https://www.dealii.org
https://iacs.stonybrook.edu/
https://bit.ly/3aZmM4G
mailto:rharrison@stonybrook.edu
http://tesseorg.github.io/

