
Data

Original title contains the term “data manipulations”. I actually came to prefer the more
neutral term “data transformations”, but I left it here on the title slide in order not to
confuse the organizing committee :-)

➔

➔

AS IS

This presentation is about the Library of the University of Amsterdam project

“Dataflow Inventory”.

The project’s objective is to develop a Dataflow Repository serving as:

○ Reference work for (meta)data types/formats, object/content types, flows,

system dependencies (Current infrastructure: ‘AS IS’)

○ Blueprint - Starting point for efficiency improvements, innovative services,

system independent data exchange (Future infrastructure: ‘TO BE’)

●
●
●
●
●
●

ToC

Contents of this presentation:
● Description of the problem and the background
● Description of the project, methodology, tool
● Description of the structure of the repository using the methodology and the

tool
● Types of dataflows and their issues
● Types of data redundancy and their issues
● Benefits and possible next steps

Data
redundancy

Data

manipu

lation

System
interdependency

Fragmented
discovery

Harvesting
& indexing

Federated
search

Ghost
busters!

The ultimate goal of the project is to improve the information infrastructure of the
library.
Huge amounts of time and effort are spent on moving data from one system to
another and shoehorning one record format into the next, only to fulfill the necessary
everyday services of the university library.
This creates critical system interdependencies and proprietary data transformation
configurations.

aMAZE
d

aMAZEd

It’s also the cause of a lot of data redundancy.
When drawing this overview of metadata distribution for a SWIB12 presentation, I was
really aMAZEd how far and wide one item’s data is dispersed.
The word “amazed” is etymologically related to “maze”, which this diagram looks like.

There is a difference between a maze and a labyrinth. At least according to some
experts.
A labyrinth has a single through-route with twists and turns but without branches.
A maze is a confusing pathway that has many branches, choices of path and dead-
ends.
Library data infrastructure resembles a maze, not a labyrinth.

And then there's the QR code!

https://www.flickr.com/photos/thomas-merton/2989653563

So we’re facing a Data Maze, where you can easily get lost.
Not only end users of the library, but also library staff: cataloguers, data experts,
systems people, domain experts

“Not only is it not possible to invest this time and effort productively in innovative
developments, but this fragmented system and data infrastructure is also completely
unsuitable for fundamental innovation. Moreover, information provided by current end
user services is fragmented as well. Systems are holding data hostage.”

Dependency on systems provided by one or a few companies is sometimes referred
to as “vendor lock-in”, something that we need to avoid, we are told. In reality
however, there is not much else. We are always dependent on one or more system
and database providers (not only commercial ‘vendors’, but also local developers and
free and open source software communities). Better to speak of “systems lock-in”
(also referred to as “silos”).
Anyway, from a system management and efficiency perspective ‘vendor lock-in’
appears to be better than the chaotic multi system and silo environment. This does
not mean that you won’t have any problems, but you don’t have to solve them
yourself. From the innovation perspective however, this is not the case. But in my
view there is not much difference here with a fragmented infrastructure.

It would however be great if we can free the data, in such a way as to minimalize (not
eliminate) these dependencies, which would also lead to more efficient and innovative
investment of people, expertise and funding.

With “(library) data” I do not mean “research data” (as is used more and more recently
in ‘data librarian’ etc.), nor just what is commonly referred to as “metadata”. I don’t like
to use the term “metadata”. It’s also not just “bits” (like in telecom provider talk, or
elementary information science).
In library environments we have various types of data: object descriptive data
(physical format, dimensions, etc.), content descriptive data (subjects, periods, etc.),
location data (where is the object located), availability data (how can I get access to
it), usage data (how much, by who is it used), etc.
In this specific case “research datasets” are merely one type of content/object.

●
○

●
○
○
○
○

One of the umbrella projects/programmes in the University Library short term ICT
Action plans: “Development and improvement of the information architecture and
data flows”
Within this context the Dataflow Inventory Project was started, because first of all “a
thorough analysis of a library’s current information infrastructure is required”.

“The goal of the project is to describe the nature and content of all internal and
external datastores and dataflows between internal and external systems in terms of
object types (such as books, articles, datasets, etc.) and data formats, thereby
identifying overlap, redundancy and bottlenecks that stand in the way of efficient data
and service management.”

Library

The Library of the University of Amsterdam, as many academic libraries, is managing
data for three ‘domains’, Bibliographic (traditional library), Heritage, Research.
Content and data in these three domains largely overlap, but there are also
differences in types and services/customers.
The domains can be regarded also as three different perspectives on library data.

●
●
●
●

Yeah!

What is needed to make an inventory of dataflows in an academic library?
A method (how do we do it) and a methodology (which conventions do we use).
Yeah, there is a difference.
With what can we do it? Which tool suits our needs and the chosen methodology
best? And is not too expensive?
We don’t want to invent the wheel: have other libraries done similar projects?

●
●
●
●

●
●
●
●

●
●
●

EA

Since the initial and primary goal of this project is to describe the existing
infrastructure instead of a desired new situation, the first methodological area to
investigate appears to be Enterprise Architecture: “...practice for conducting
enterprise analysis, design, planning, and implementation...” - “...guide organizations
through the business, information, process, and technology changes...”
(27 november 2014: Wikipedia states “This article appears to contain a large
number of buzzwords“. Not anymore.)

“Enterprise”= “the organization” (more or less).
“Business”= “the services delivered”(more or less).
In our project we need “analysis” (from the Enterprise side) of “information”
“processes” and “technology” (from the Business side).
Two main EA frameworks/methodologies used globally. TOGAF, Archimate (which
complies to TOGAF).
Three main areas/levels: Business, Application, Infrastructure.
Exactly what we need. Service areas (Business Layer), Systems (Application Layer),
Databases/Platforms (Infrastructure). With some overlap of course (databases).

http://en.wikipedia.org/wiki/Enterprise_architecture
http://en.wikipedia.org/wiki/Enterprise_architecture

●
○
○

○

Trying to find similar work, we knew of BIBNET Flemish Public Library Network and
their Architecture Study. Contact Rosemie Callewaert.
They focused on the big picture, not the dataflows as such. Using Archimate among
others.

http://www.bibnet.be/portaal/Bibnet/Over_Bibnet/Onderzoek/Systeemarchitectuur%20voor%20de%20digitale%20bibliotheek

●
●

●

Looking at tools, a number of packages provide a number of methods/methodologies
for Business Process Modeling, UML, System Design, etc.
An old method(ology) is Data Flow Diagramming (DFD), which I knew from systems
designer days.
Part of the Structured Analysis Methodology (Yourdon). Structured Analysis/DFD is
used for analysing business workflows, information flows etc. in order to design
systems. We decided to adapt the method for describing already existing systems
and information architecture, because it is relatively easy to use (compared to
methods like Archimate) and it would fit our initial purpose.

Flow

Example of traditional DFD: describing information architecture on a conceptual/real
life level

For instance: Entity A=Librarian, Process A=Cataloguing, Datastore A=Publication
records

System 1 ILS DB System 2

Module A1

Function X

CRIS DB

IndexStaff End user

Staff
only

Our adaptation of DFD’s: describing information architecture on an implementation
level, where Process are Systems, Modules or Functions.
System 1 could for instance be an ILS, like Aleph.

●
●

●
…

●

We needed a repository based tool which enables reuse of elements in other
diagrams, linking, descriptions, reporting.

Basically there are three types of tools that can be used for diagramming.
 Drawing tools, cons: no reuse of elements, reports
 Data modeling tools, cons: mainly focused on data and relationships, not flows and
processes
 Business/system modelling, with all kinds of method(ologie)s.

●
●
●
●
●
●

We chose Visual Paradigm because of these reasons + the costs.
The tool is relatively open, with a number of export/import formats, a lot of reporting
and documenting options, a shared online multi user version management model
repository, and the option to use it for other purposes with other methods in the future.
Company and support is very responsive.

After this blog post about how to figure out the best ways to do data flow inventory,
there were two more institutions that told us they were doing a similar thing.

●
○

●
○

The German regional Library Service Center hbz said they were doing similar things.
We have not been in contact with hbz so far.
We have had talks and exchanges with the Royal Library of The Netherlands. They
started from the other way, describing the data in a “metadata registry” using an
Access database, whereas we started with describing flows and moving towards
describing data.
Fortunately the Royal Library seemed to use the same perspectives and functional
views :-)

●
●
●

●
●
●
●

The first months were needed for finding out how we were going to work, how to
adapt DFD, how to work with Visual Paradigm, etc. By trial and error. In the end we
came up with our “Methodology”, which is partly our adaptation of DFD, partly our
adaptation of the tool, partly our inventory/repository structure.

We have a global distinction between Business Layer and Application+Infrastructure
layer.
All described using DFD elements + Data Dictionary.
We distinguish certain “stereotypes” (a technique borrowed from UML, but possible in
Visual Paradigm for DFD too) for “Processes” to identify “Domains”, “Services”,
“Systems/Applications”, “Modules”, “Functions”etc.

Repo

Our Visual Paradigm Project Model is subdivided into meaningful folders/submodels.
In Visual Paradigm these submodels can also be used to generate focused reports.

Business Layer top level, incomplete example without all existing external entities.
In DFD: the top level “Context Model” has dataflows with all possible External Entities,
that can be external systems, internal/external persons/roles, etc.
In our adaptation it is easier to use external entities also in lower levels.

Business Layer second level.
Drilling down (“decomposition”) into lower levels with decomposed processes.
Officially External Entities should only be drawn on the top level Context Model. Every
flow that goes in or out must also be dealt with at the lower level

This level shows the main three Functional areas that we distinguish: “Collection
Management” (the back office real world business) on one end, “Dissemination
Management” (the front office business) on the other end, and in between the
important “Data Management” Hub where connections are made between collection
and end user services (discovery and delivery).

It is hard to draw solid lines between the three areas.

Business Layer third level.
Drilling down Data Management: two areas of data:
Cataloguing (creation of data)
Data Exchange (moving data from cataloguing to dissemination: discovery and
delivery services/datastores)

Application/Technology Infrastructure Layer.
Lowest level decomposition, showing dataflows between applications and databases.
In this case in the Data Exchange area. This is just an incomplete snapshot.
Typically we see here modules, scripts, functions that are part of a system or stand-
alone, managing import and export of data between systems.

●
●
●
●
●
●
● …

For Dataflows and Datastores detailed information is recorded in the Data Dictionary.
This is completely customizable.

The Data Dictionary subfolder is divided into meaningful subfolders.
The data Dictionary Terms can be composed of multiple other Terms.

All terms used in the models to describe Dataflows and other elements are
automatically linked to terms in the Data Dictionary.

This is the Data Dictionar entry for “Aleph Bibliographical Record”.
Also all terms used in Data Dictionary descriptions are also linked to their own
descriptions.
The official syntax used comprises composition, optionality, iteration, selection and
aliases.

Data
Store

We can distinguish 5 types of dataflows:

● A dataflow from an external entity representing an internal or external role,

department, person, etc. to a process describes manual or automated data

input into that process (system, module or function) and possibly, via that

process, to a datastore.

● A dataflow from a datastore to a process represents the reading of data from

a database or file by the process.

● A dataflow from a process to another process represents an exchange of data

between systems, modules or functions by means of harvesting, API calls,

push or similar.

● A dataflow from a process to an external entity represents output to an end

user interface (screen, export, report, etc.) or external system.

● A dataflow from a process to a datastore indicates the writing of data to a

database or file.

Dataflows that copy data between datastores (start and endpoint flows “read” and
“write”) have three forms:
Direct read: A system, module or function reads directly from the source datastore
and writes directly to the destination datastore (Direct reading of a database by an
external system is hardly ever possible; this would be the scenario for real Linked
Open Data. Direct writing to a database by an external system is hardly ever possible
either).
Function call: A system, module or function sends a call to another system, module
or function, requesting information, receives data from that system, module or
function, and writes to the destination datastore (the call between two systems is
usually done via the dedicated API of the called system; another implementation is
harvesting via OAI)
Export/import: A system, module or function reads directly from the source
datastore and writes to a temporary file; another system, module or function reads
from the temporary file and writes to the destination datastore

Dataflows that use data from datastores for direct output have two forms:
Direct read: A system, module or function reads directly from the source datastore
and sends directly to the destination entity; this is typically the way a single system
works through its own user interface (Again, direct reading of a database by an
external system is hardly ever possible)
Function call: A system, module or function sends a call to another system, module
or function, requesting information, receives data from that system, module or
function, and sends to the destination entity (again here the call is done using the
dedicated API of the called system)

●
●

●
●
●
●
●

Dataflows always imply selection, by systems, institutional policies, professional
preferences: whole or part of datasource, which data elements?
Selection must be documented in order to be transparent.

●
●

●
●
●
●

Split

Dataflows between systems/datastores imply transformation of data from one format
to another.
Transformation can be done on two levels: format (data structure) and fields (data
elements).
Some data elements have to be combined, some have to be split up, some have to be
left out, some have to be created.
Transformation must be documented in order to be transparent.

●
●
●

Lost

In many cases input and output dataflows, with selection and transformation, are
performed by proprietary functions and configurations, belonging to source and/or
target systems.
This constitutes an additional complication in administering the complete systems and
data infrastructure, if and when a system is replaced and not only data, but also
selection and transformation procedures have to be converted. A considerable
investment and a substantial body of knowledge used for essential data
transformations become useless and have to be created from scratch.
This must be documented.

●

●
●
●

Strings

Data redundancy is the core issue in data infrastructure management.

Data redundancy typology. The origins of redundancy.
Levels and scopes matrix.

● Type redundancy: Certain object/content types (such as books, images,
people, articles, artefacts) can be managed with multiple systems/datastores
(for instance “books” in a CRIS and an ILS).

○ Type redundancy is also possible within a system/datastore: in multiple
records (in that case we see implicit object types=relationships as
strings, such as “persons” as “creator”, “subject”, etc.)

○ Type redundancy within one record: for instance MARC “author”: tag
100 (person as creator), 700 (organization as creator), and subfield
245 $c (Title: Statement of responsibility - person or organization as
creator)

● Object redundancy implies Type redundancy: actual items are recorded in
multiple systems/datastores (for instance a dissertation in a CRIS, but also in
the ILS), multiple records (for instance a specific person as creator, subject in
multiple records), multiple fields (for instance the same person as creator and
subject: an autobiography!).

● Property redundancy: the same fields (common fields such as Title, Creator,
Date, Subject) are managed in multiple systems/datastores, records, fields.
Special case: unique identifiers in one record can consist of multiple fields and
combinations of fields: internal ID, ISBN, DOI, ORCID, VIAF id, or even
Journal title+Volume+Issue+pages).

● Value redundancy: again these are implicit relationships as strings; and also
variants (for instance multilingual) representing the same object, for
search/retrieve purposes

●
●
●
●

Type and Object redundancy across datastores can be recorded and discovered in
the tool with high level descriptions of Dataflows and Datastores.

This is an example of object types per datastore and dataflow in a situation of copying
data between backend (Collection Management) and frontend (Dissemination
Management) systems.

Visual Paradigm provides automatic matrix overviews of relations between datastores
and object types, if recorded correctly.

Back to the data redundancy typology matrix.

●
●
●
●

For data redundancy within systems/datastores, records, and for Property and Value
redundancy we need more detailed descriptions, recorded in the Data Dictionary.

Again the Data Dictionary example.

●
●
●
●
●
●
●
●

It is important to understand data redundancy because it is the possible cause of a
substantial number of bottlenecks.

A final look at the Data Redundancy Typology Matrix: the orgins.

Linked Open
Data

Linked Open
Data

Linked Open
Data

Linked Open
Data

Linked Open
Data

Linked Open
Data

Linked Open
Data

Linked Open
Data

Linked Open
Data

Linked Open
Data

Linked Open
Data

Linked Open
Data

Solutions for all these issues would ideally by some form of linked open data.

●
○

●
○

●
●
●

To conclude, the benefits of maintaining a living dataflow repository are to provide an
overview of the available data, to help identify dependencies and bottlenecks in the
library information infrastructure, and to offer a number of clues and starting points
for the elimination of these bottlenecks and for the improvement of workflows and
end user services

●

●

○

?
?

?

For this to be useful, dataflow repository management should be part of normal
workflows and be managed in a structural way.

A feasible intermediate term Innovative Data Management/Exchange project could
be: to develop an intermediate system independent data layer, like d:swarm.

Special thanks to Céline Carty, without whom this Thank you slide and the following
Final slide would not be here. ;-)

