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Abstract

Accelerating the development of novel materials that have desirable
properties is a critical challenge as it can facilitate advances in diverse
fields across science, engineering, and medicine. However, the current
prevailing practice in materials discovery relies on trial-and-error
experimental campaigns and/or high-throughput screening approaches,
which cannot efficiently explore the huge design space to develop
materials with the targeted properties. Furthermore, measurements of
material composition, structure, and properties often contain
considerable errors due to technical limitations in materials synthesis and
characterization, making this exploration even more challenging. This
project aims to develop an effective in-silico experimental design platform
to accelerate the discovery of novel materials. The platform is built on
optimal Bayesian learning and experimental design methodologies that
can translate scientific principles into predictive models, in a way that
takes model and data uncertainty into account. The optimal Bayesian
experimental design framework will enable the collection of smart data
that can help exploring the material design space efficiently, without
relying on slow and costly trial-and-error and/or high-throughput
screening approaches.

Open-Access Materials Discovery Platform

• The developed Bayesian learning/experimental design tools will benefit 
from modular design, and they will be included in MSGalaxy Toolshed 
thereby integrated within the MSGalaxy workflow management system

• Furthermore, the developed tools will enrich TAMMAL (Texas A&M 
Materials Modeling Automation Library)

Limitations of Current Existing Approaches Materials Discovery

• Most existing data-enabled approaches for materials discovery rely on 
costly data-collection based on (1) trial-and-error experimental campaigns 
or (2) high-throughput screening methods (both real/virtual)

• Such data requirements often become practical bottlenecks for 
accelerating materials discovery through computational approaches

• Existing experimental/computational approaches do not provide effective 
means for synergistic integration and optimal planning of real 
experiments and computational simulations

• Furthermore, existing strategies are often not built to improve the 
knowledge about a given system, hence the generated data from 
experiments/simulations do not necessarily enhance system knowledge

Research Progress Highlights

• Automatic Feature Engineering

• We have developed RL-based scheme for automated feature 
engineering scheme that can find (1) physically meaningful features 
(2) that can accurately  predict functional properties, to be used 
within our Bayesian learning & experimental design framework.

• Tree-based semantic grammar has been adopted to guide feature 
engineering in both reinforcement learning and Bayesian 
optimization.

• Promising preliminary results have been obtained when performance 
was compared to a state-of-the-art method called SISSO (Sure 
Independence Screening and Sparse Operation). 

• Results show “objective-based” or “goal-oriented” feature engineering 
is critically important

Addressing the Challenges Towards Autonomous Materials Discovery

• This CSSI project aims to design and implement a robust and optimal in-
silico experimental design platform for accelerated materials discovery

• Furthermore, we aim to provide a preliminary demonstration of an 
effective “autonomous” simulation-based materials discovery platform

• Primary focus is on the development of efficient Bayesian learning and 
experimental design framework that features/enables
1. Prior construction scheme that can incorporate scientific knowledge 

and first principles in materials science
2. Integration of data and scientific knowledge
3. Quantification of model/data uncertainty
4. Optimal experimental design for uncertainty reduction

• The Bayesian framework in this project is built on the concept of MOCU
(mean objective cost of uncertainty) – for objective-based uncertainty 
quantification and objective-based optimal experimental design
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• Active Learning for Efficient Sampling of Configuration Space

• We have developed an active learning scheme to efficiently sample 
large configuration space for developing density-functional theory 
(DFT) based machine learning force field (MLFF) for large scale 
molecular dynamics (MD)  simulations
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