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Material Science Desigh Challenges

This project includes the leaders in data driven design through Materials Informatics.
The project leverages this expertise in the material science domain in conjunction with
the computer science expertise to achieve the following objectives :

1) We are aiming to provide a data infrastructure that permits one to link diverse types
of data to help users solve complex materials problems. In these cases, one type of
data (such as only crystallographic, thermodynamic, kinetic, and other types of
data) is typically not sufficient.

2) The bulk of knowledge lies not in well organized databases but is spread over
technical papers, books, notes, etc. Further, much of the “data” lies in the empirical
knowledge and heuristic interpretations of graphs and figures. The latter is almost
untapped in terms of Machine Learning. This program focuses on this challenge.

Computer Science Challenges

The Pl and Co-Is from Computer Science are pioneers in developing Al/machine learning
technologies for document recognition and data analysis. This project brings computer
science expertise into the material science domain for the following objectives :

1) We develop state-of-the-art machine learning techniques for extracting data and
insights from scientific charts and figures, a field which is still in a nascent stage. We
take a two-pronged approach to tap this hitherto unexplored rich source of data: A
generalized approach to extract data from common types of charts such as line, bar
and pie charts, by parsing commonly occurring elements; and a targeted approach to
process specialized diagrams (e.g. phase diagrams) by leveraging domain knowledge.

2) We develop innovative tools that allow practitioners to easily experiment with and
understand a variety of machine learning models using their own data, across
multiple pipeline stages so that time is spent on analysis rather than programming.

Convergence of Materials Science and Computer Science for Accelerated Discovery

Graphics recognitions to uncover overlooked data for the
discovery of new materials

* Infographic tools extracted contours and boundaries from phase diagrams. Phase
diagrams are widely available, but are generally used only to visually assess stable
microstructures.

e By integrating this data with informatics based analysis of thermodynamic and
crystallographic data, coupled with uncertainty quantification techniques, nearly 40
binary alloys that have been overlooked as metallic glass formers were discovered.

Application of infographic tools for outreach and education
activities in materials

* Tools were developed for extracting and more efficiently using data, not
just in terms of designing materials but also in how to represent issues.
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Genetic Programming

and Manifold Learning Led to joint MDI / CSE paper : over
1,000 downloads in last year.

Enabled outreach efforts to extend to a network
of over 100 teachers and ~ 300 students

MaDE@UB Web portal (madeatub.buffalo.edu)

Machine Learning Toolkit
O Contributed vital modules to ChemML- an open-

ChemML Repository Web Framework Architecture

Experiment with Model Selection &
Various ML Models Visualize

y g \\\
Structured [ Eredieien ) Validated
Data | Results | Results
L Plot Outputs
N,

Cross validation, Grid Search, Genetic
Algorithms, Save Intermediate Results,
Plots - Line, Scatter, Bar

Gather Data Represent Data Pre - Process Data

Feature
Extraction

CSV, Molecular Description Files, Crystal
Structure Files, XYZ Files
Local Storage, MaDE@UB, HubZero
Cloud containers - Amazon, Google etc.

Bag of Bonds, Coulomb Matrix, Dragon, Split, Concatenate, PCA, Impute Missing  SVM, Neural Network, Regression - Linear,
RDKit, Inorganic Descriptors - Structural, Values, Normalize, Skew, Transform, Logistic, ADR, Ridge, Lasso, Lars,
Atomic, Molecular Bond properties Binarize, One Hot Encoder Bayesian, Ridge etc

Sub-Task Chart
Upstream tasks feed their output as the input of downstream tasks

Data Extraction Tools and Outcomes
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Output

Preference Ranking

eDecision Theory : Select most

promising materials through

community to engage in chart data extraction

research.

Q Datasets including synthetic and those drawn from
scientific papers were assembled for the — .

ICDAR CHART 20189 - Task 1 Results)

competition.

O  The overall task of data extraction was divided into
sub-tasks with metrics designed or adapted for each
stage.

O This competition for comprehensive end-to-end data
extraction is the first of its kind..

Q Innovative techniques developed to extract and
summarize content from instructional videos won
best paper awards at ICDAR 2019 and CBDAR 2019.

(e) Axis Annotation (f) Data Annotation

consideration of chemistry-
structure-performance trade-offs in
sparse and uncertain data.
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