CHICAGO

THE UNIVERSITY OF

Parsl: Productive Parallel Programming in Python

http://parsl-project.org ArgOn ne

* * * * NATIONAL LABORATORY
Yadu Babuji, Anna Woodard , Zhuozhao Li, Daniel S. Katz®, Ben Clifford’,

Ryan Chard*, Justin M. Wozniak’, lan Foster™ Michael Wilde*~, Kyle Chard™ I ILLINOIS
N . . . NCSA | National Center for
University of Chicago, *Argonne National Laboratory; "Globus; ~Parallel Works Supercomputing Applications

°National Center for Supercomputing Applications, University of lllinois at Urbana-Champaign
@ Parallel Works

Motivation Programming with Parsl|
@python_app <g— @python_app is a Python
e Software is increasingly assembled rather than written, using high-level languages def pi(num_points): decorator that introduces

from random import random
inside = ©

asynchronous behavior to

e New scientific methods demand many-task, parallel & distributed computing the funct
e functions

e Python is pervasive in science and engineering for i in range(num_points):
. _ _ _ o X, y = random(), random() #8rop a random point in the box.
e Developers require parallel runtimes & remote execution for new science applications If x*2 4 yEE2 < 1 = Qounrt sesites wERHn Hhe ennelle,

inside += 1
Parsl aims to bring together the simplicity and high productivity possible with Python return (inside*4 / nu

with the complex workflow patterns and extreme scale demanded by scientific
computing

futures are a proxy for an
asynchronous computation.
App that com When decorated functions
@python_app are invoked, they return
Why ParSI? def mean(a, b, c): futures

return (a + b + c) / 3

es the mean of three values

Passing futures from one

e Pure Python: Easily parallelize Python code app to another introduces a
e Implicit dataflow: Apps execute concurrently while respecting data dependencies # Estimate three values for pi dependency in the task
_ a, b, c = pi(10**6), pi(10**6), pi(10** graph
e \Write once, run anywhere: On clouds, clusters, and supercomputers
Wait for future

e Automated data management: Implicit and flexible wide area and local staging

Compute the mean of the e estimates

e Toolkit approach: Different executors optimized for different classes of applications mean_pi = mean(a, b, c)

e Open source & open community: Guided by users, with some executors and other
components from outside the core team

Print the results
print("Average: {:.5f}".format(mean_pi.result()))

Features

Resource abstraction. Block-based model overlaying
different providers and resources

Globus. Delegated authentication and wide area data
management

Data management. Automated staging with HTTP,
FTP, and Globus

Fault tolerance. Support for retries, checkpointing,
and memoization

Containers. Sandboxed execution environments for
workers and tasks

Multi site. Combining executors/providers for
execution across different resources

L] L] L] L] .Ié}lﬁ‘%{{\ L] L] L] L]
ko Elasticity. Automated resource expansion/retraction | 0 tor Jupyter integration. Seamless description and
o B R
1 Qs based on workload J 4 management of workflows
S s
3N o ‘

Monitoring. Workflow and resource monitoring and Reproducibility. Capture of workflow provenance in the

visualization task graph
Applications (users performing data analysis, simulation, etc.) Configuration
g Comet_config = Config(Use arbitrary resources B Sonfentcon
ArcticDEM: LSST-DESC: Designing new executors=[Provid y for clouds. clust How to Configure
: . . °
Satellite Simulated = battery oy g e rovIaers ortc Steish Bt Comet (SDSC)
L\ . . label="'comet_htex multinode’, supercomputers '
Image Sky Survey B\ Sy materials with ST e il : -, P P Com NERSE)
. e . . Vi A R RO RTAHRSAIC AR e Separation of code and confi S de2 (TACC
PI"OCGSSIHg e reinforcement) g . iR, p g tampede2 ()
learnin N1 e \Write once, run anywhere petEe en)
g
i Vevay i arsl.load(Comet_confi Theta (ALCF)
. S contalnerllzed ZJ2} @ ETE High-throughput ML on heterogeneous systems, g (- 8)
Months-to-years of robustly processing HPC systems (Cori, Theta) for days to T YL e S 1]l Cooley (ALCF)
: , ’ combinin raining, simulation, model selection,
massive amounts of data for sharing create simulated LSST images ning ning, simuiat ' Blue Waters (Cray)

~wmpp

T

and inference

Summit (ORNL)

CC-IN2P3

Platforms (tools on which users analyze data, simulate, etc.) IS 55 amazon e
T e 7 webservices ____ , |
WA . ,-,/"'}' | A e & Open Science Grid
@ o Bopes—s DLHub: “oisoo - Coffea: Column [§ ; 7] | ; wytlell e
Coog il v p S oo ool [<l
QCArchive ~ 85 g o8 Learning AT for Effective G Ad-Hoc Clusters
A MolSSI Project = n ¢ P i iCqumnar ‘ S I' P rf
_ Inference Analysis e — | Cca Ing eriformance
Compile, aggregate, query, and share . .
quantum chemistry data on diverse systems Interactive execution of user-provided :E.’:Ck.—en?—agnostllc data pIObCGSSCIjna_ .) o
machine learning models in real-time ioraries Tor granular event-based righ Energy L o .
S e S] e o] e Scaling data on Blue Waters
E] Raiee £ 103
. : : : T 109 o HTEC TR c e Outperforms other
o i EXEX \\\\
Education (teaching and embedding parallelism) % - N g
I e Python-based approaches
. © 1o igem S okesesnand®?
Lewis & Clark QuarkNet: _ (e S Y S SR C 1011)0' 710102 103104 108 e Scales beyond ~2M tasks
' Dzl Tuiueel vor : Interactive notebooks Number of workers Number of workers
SRS sttt ek i ine LERIEIE) 28l that enable high school . | e Easily scales to >2K nodes,
Campus Cluster campus cluster, hiding Science with students to learn data Strong scaling Weak scaling ith >1K tasks/
Interface the HPC scheduler Cosmic Ray Data science at scale (50k 1-second tasks) (10 1-second tasks per worker) Wi sEil

e Install from PyPI or Conda Forge
e Open source (Apache 2.0 license)

e Open community (~200 GitHub stars, ~35
contributors, used by ~30 projects)

e http://parsl-project.org

Parsl is supported by the National Science Foundation under awards 1550476, 1550475, 1550528, 1550562, 1550588
and Argonne National Laboratory's Laboratory Directed Research and Development (LDRD) program

