
@python_app
def pi(num_points):
   from random import random
   inside = 0
   for i in range(num_points):
       x, y = random(), random()  # Drop a random point in the box.
       if x**2 + y**2 < 1:        # Count points within the circle.
           inside += 1
   return (inside*4 / num_points)

# App that computes the mean of three values
@python_app
def mean(a, b, c):
   return (a + b + c) / 3

# Estimate three values for pi
a, b, c = pi(10**6), pi(10**6), pi(10**6)

# Compute the mean of the three estimates
mean_pi  = mean(a, b, c)

# Print the results
print("Average: {:.5f}".format(mean_pi.result()))
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Motivation

● Software is increasingly assembled rather than written, using high-level languages

● New scientific methods demand many-task, parallel & distributed computing

● Python is pervasive in science and engineering

● Developers require parallel runtimes & remote execution for new science applications

Parsl aims to bring together the simplicity and high productivity possible with Python 
with the complex workflow patterns and extreme scale demanded by scientific 
computing

Why Parsl?

● Pure Python: Easily parallelize Python code

● Implicit dataflow: Apps execute concurrently while respecting data dependencies

● Write once, run anywhere: On clouds, clusters, and supercomputers

● Automated data management: Implicit and flexible wide area and local staging

● Toolkit approach: Different executors optimized for different classes of applications

● Open source & open community: Guided by users, with some executors and other 
components from outside the core team

Globus. Delegated authentication and wide area data 
management

Fault tolerance. Support for retries, checkpointing, 
and memoization

Containers. Sandboxed execution environments for 
workers and tasks

Data management. Automated staging with HTTP, 
FTP, and Globus 

Multi site. Combining executors/providers for 
execution across different resources

Elasticity. Automated resource expansion/retraction 
based on workload

Monitoring. Workflow and resource monitoring and 
visualization

Reproducibility. Capture of workflow provenance in the 
task graph

Jupyter integration. Seamless description and 
management of workflows

Resource abstraction. Block-based model overlaying 
different providers and resources

Features

● Install from PyPI or Conda Forge
● Open source (Apache 2.0 license)
● Open community (~200 GitHub stars, ~35 

contributors, used by ~30 projects)
● http://parsl-project.org
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Applications (users performing data analysis, simulation, etc.)

Platforms (tools on which users analyze data, simulate, etc.) 

ArcticDEM: 
Satellite 
Image 
Processing

LSST-DESC: 
Simulated 
Sky Survey

DLHub: 
Machine 
Learning 
Inference

Education (teaching and embedding parallelism) 

Months-to-years of robustly processing 
massive amounts of data for sharing

Compile, aggregate, query, and share 
quantum chemistry data on diverse systems

Running containerized apps on entire 
HPC systems (Cori, Theta) for days to 
create simulated LSST images

Interactive execution of user-provided 
machine learning models in real-time

QuarkNet: 
Teaching Data 
Science with 
Cosmic Ray Data

Interactive notebooks 
that enable high school 
students to learn data 
science at scale

Back-end-agnostic data processing 
libraries for granular event-based High Energy 
Physics analysis

Coffea: Column 
Object Framework 
for Effective 
Analysis

Designing new 
battery 
materials with 
reinforcement 
learning
High-throughput ML on heterogeneous systems, 
combining ML training, simulation, model selection, 
and inference

Lewis & Clark 
College's 
Campus Cluster 
Interface

Default method for 
submitting tasks to the 
campus cluster, hiding 
the HPC scheduler

Programming with Parsl
@python_app is a Python 
decorator that introduces 
asynchronous behavior to 
the functions

futures are a proxy for an 
asynchronous computation. 
When decorated functions 
are invoked, they return 
futures

Passing futures from one 
app to another introduces a 
dependency in the task 
graph

Wait for future

Comet_config = Config(

    executors=[

        HighThroughputExecutor(

            label='comet_htex_multinode',

            provider=SlurmProvider(

                'compute'

       ))])

parsl.load(Comet_config)

Use arbitrary resources 
● Providers for clouds, clusters, 

supercomputers
● Separation of code and config
● Write once, run anywhere

 Scaling Performance

Configuration

● Scaling data on Blue Waters

● Outperforms other 
Python-based approaches

● Scales beyond ~2M tasks

● Easily scales to >2K nodes, 
with >1K tasks/s

Strong scaling
(50k 1-second tasks)

Weak scaling
(10 1-second tasks per worker)


