
@python_app
def pi(num_points):
 from random import random
 inside = 0
 for i in range(num_points):
 x, y = random(), random() # Drop a random point in the box.
 if x**2 + y**2 < 1: # Count points within the circle.
 inside += 1
 return (inside*4 / num_points)

App that computes the mean of three values
@python_app
def mean(a, b, c):
 return (a + b + c) / 3

Estimate three values for pi
a, b, c = pi(10**6), pi(10**6), pi(10**6)

Compute the mean of the three estimates
mean_pi = mean(a, b, c)

Print the results
print("Average: {:.5f}".format(mean_pi.result()))

Parsl: Productive Parallel Programming in Python
http://parsl-project.org

Yadu Babuji*, Anna Woodard*, Zhuozhao Li*, Daniel S. Katz°, Ben Clifford*,
Ryan Chard+, Justin M. Wozniak*, Ian Foster*⚑, Michael Wilde*⚐, Kyle Chard*⚑

*University of Chicago, +Argonne National Laboratory; ⚑Globus; ⚐Parallel Works
°National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign

Parsl is supported by the National Science Foundation under awards 1550476, 1550475, 1550528, 1550562, 1550588
and Argonne National Laboratory's Laboratory Directed Research and Development (LDRD) program

Motivation

● Software is increasingly assembled rather than written, using high-level languages

● New scientific methods demand many-task, parallel & distributed computing

● Python is pervasive in science and engineering

● Developers require parallel runtimes & remote execution for new science applications

Parsl aims to bring together the simplicity and high productivity possible with Python
with the complex workflow patterns and extreme scale demanded by scientific
computing

Why Parsl?

● Pure Python: Easily parallelize Python code

● Implicit dataflow: Apps execute concurrently while respecting data dependencies

● Write once, run anywhere: On clouds, clusters, and supercomputers

● Automated data management: Implicit and flexible wide area and local staging

● Toolkit approach: Different executors optimized for different classes of applications

● Open source & open community: Guided by users, with some executors and other
components from outside the core team

Globus. Delegated authentication and wide area data
management

Fault tolerance. Support for retries, checkpointing,
and memoization

Containers. Sandboxed execution environments for
workers and tasks

Data management. Automated staging with HTTP,
FTP, and Globus

Multi site. Combining executors/providers for
execution across different resources

Elasticity. Automated resource expansion/retraction
based on workload

Monitoring. Workflow and resource monitoring and
visualization

Reproducibility. Capture of workflow provenance in the
task graph

Jupyter integration. Seamless description and
management of workflows

Resource abstraction. Block-based model overlaying
different providers and resources

Features

● Install from PyPI or Conda Forge
● Open source (Apache 2.0 license)
● Open community (~200 GitHub stars, ~35

contributors, used by ~30 projects)
● http://parsl-project.org

ParslFest 2019 attendees

Applications (users performing data analysis, simulation, etc.)

Platforms (tools on which users analyze data, simulate, etc.)

ArcticDEM:
Satellite
Image
Processing

LSST-DESC:
Simulated
Sky Survey

DLHub:
Machine
Learning
Inference

Education (teaching and embedding parallelism)

Months-to-years of robustly processing
massive amounts of data for sharing

Compile, aggregate, query, and share
quantum chemistry data on diverse systems

Running containerized apps on entire
HPC systems (Cori, Theta) for days to
create simulated LSST images

Interactive execution of user-provided
machine learning models in real-time

QuarkNet:
Teaching Data
Science with
Cosmic Ray Data

Interactive notebooks
that enable high school
students to learn data
science at scale

Back-end-agnostic data processing
libraries for granular event-based High Energy
Physics analysis

Coffea: Column
Object Framework
for Effective
Analysis

Designing new
battery
materials with
reinforcement
learning
High-throughput ML on heterogeneous systems,
combining ML training, simulation, model selection,
and inference

Lewis & Clark
College's
Campus Cluster
Interface

Default method for
submitting tasks to the
campus cluster, hiding
the HPC scheduler

Programming with Parsl
@python_app is a Python
decorator that introduces
asynchronous behavior to
the functions

futures are a proxy for an
asynchronous computation.
When decorated functions
are invoked, they return
futures

Passing futures from one
app to another introduces a
dependency in the task
graph

Wait for future

Comet_config = Config(

 executors=[

 HighThroughputExecutor(

 label='comet_htex_multinode',

 provider=SlurmProvider(

 'compute'

))])

parsl.load(Comet_config)

Use arbitrary resources
● Providers for clouds, clusters,

supercomputers
● Separation of code and config
● Write once, run anywhere

 Scaling Performance

Configuration

● Scaling data on Blue Waters

● Outperforms other
Python-based approaches

● Scales beyond ~2M tasks

● Easily scales to >2K nodes,
with >1K tasks/s

Strong scaling
(50k 1-second tasks)

Weak scaling
(10 1-second tasks per worker)

